NetBSD/usr.bin/top/machine/m_netbsd13.c

885 lines
21 KiB
C

/* $NetBSD: m_netbsd13.c,v 1.4 1999/04/12 06:02:27 ross Exp $ */
/*
* top - a top users display for Unix
*
* SYNOPSIS: For a NetBSD-1.3 (or later) system
*
* DESCRIPTION:
* Originally written for BSD4.4 system by Christos Zoulas.
* Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider.
* NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn.
* NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green.
* NetBSD-1.4/UVM port by matthew green.
* -
* This is the machine-dependent module for NetBSD-1.3 and later
* works for:
* NetBSD-1.3
* NetBSD-1.3.1
* NetBSD-1.3.2
* NetBSD-1.3.3
* NetBSD-1.3.4 (beta)
* and should work for:
* NetBSD-1.4 (when released)
*
* LIBS: -lkvm
*
* CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR `printf ".include <bsd.own.mk>\nxxx:\n.if defined(UVM)\n\techo -DUVM\n.endif\n" | make -s -f-`
*
* AUTHORS: Christos Zoulas <christos@ee.cornell.edu>
* Steven Wallace <swallace@freebsd.org>
* Wolfram Schneider <wosch@cs.tu-berlin.de>
* Arne Helme <arne@acm.org>
* Luke Mewburn <lukem@netbsd.org>
* matthew green <mrg@eterna.com.au>
*
*
* $Id: m_netbsd13.c,v 1.4 1999/04/12 06:02:27 ross Exp $
*/
#define UVM
#include <sys/types.h>
#include <sys/signal.h>
#include <sys/param.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <sys/sysctl.h>
#include <sys/dir.h>
#include <sys/dkstat.h>
#include <sys/file.h>
#include <sys/time.h>
#include <vm/vm_swap.h>
#if defined(UVM)
#include <uvm/uvm_extern.h>
#endif
#include "os.h"
#include <err.h>
#include <errno.h>
#include <kvm.h>
#include <math.h>
#include <nlist.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
static int check_nlist __P((struct nlist *));
static int getkval __P((unsigned long, int *, int, char *));
extern char* printable __P((char *));
#include "top.h"
#include "machine.h"
#include "utils.h"
/* get_process_info passes back a handle. This is what it looks like: */
struct handle
{
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
int remaining; /* number of pointers remaining */
};
/* declarations for load_avg */
#include "loadavg.h"
#define PP(pp, field) ((pp)->kp_proc . field)
#define EP(pp, field) ((pp)->kp_eproc . field)
#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
/* define what weighted cpu is. */
#define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
/* what we consider to be process size: */
#define PROCSIZE(pp) \
(VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize))
/* definitions for indices in the nlist array */
static struct nlist nlst[] = {
#define X_CCPU 0
{ "_ccpu" }, /* 0 */
#define X_CP_TIME 1
{ "_cp_time" }, /* 1 */
#define X_HZ 2
{ "_hz" }, /* 2 */
#define X_STATHZ 3
{ "_stathz" }, /* 3 */
#define X_AVENRUN 4
{ "_averunnable" }, /* 4 */
#if !defined(UVM)
#define X_CNT 5
{ "_cnt" },
#endif
{ 0 }
};
/*
* These definitions control the format of the per-process area
*/
static char header[] =
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
/* 0123456 -- field to fill in starts at header+6 */
#define UNAME_START 6
#define Proc_format \
"%5d %-8.8s %3d %4d%7s %5s %-5s%7s %5.2f%% %5.2f%% %.14s"
/* process state names for the "STATE" column of the display */
/* the extra nulls in the string "run" are for adding a slash and
the processor number when needed */
char *state_abbrev[] =
{
"", "start", "run\0\0\0", "sleep", "stop", "zomb"
};
static kvm_t *kd;
/* values that we stash away in _init and use in later routines */
static double logcpu;
/* these are retrieved from the kernel in _init */
static int hz;
static int ccpu;
/* these are offsets obtained via nlist and used in the get_ functions */
static unsigned long cp_time_offset;
static unsigned long avenrun_offset;
#if !defined(UVM)
static unsigned long cnt_offset;
#endif
/* these are for calculating cpu state percentages */
static long cp_time[CPUSTATES];
static long cp_old[CPUSTATES];
static long cp_diff[CPUSTATES];
/* these are for detailing the process states */
int process_states[7];
char *procstatenames[] = {
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
" zombie, ", " ABANDONED, ",
NULL
};
/* these are for detailing the cpu states */
int cpu_states[CPUSTATES];
char *cpustatenames[] = {
"user", "nice", "system", "interrupt", "idle", NULL
};
/* these are for detailing the memory statistics */
int memory_stats[7];
char *memorynames[] = {
"K Act ", "K Inact ", "K Wired ", "K Free ",
"K Swap ", "K Swap free ",
NULL
};
/* these are names given to allowed sorting orders -- first is default */
char *ordernames[] = {
"cpu",
"pri",
"res",
"size",
"state",
"time",
NULL
};
/* forward definitions for comparison functions */
int (*proc_compares[]) __P((struct proc **, struct proc **)) = {
compare_cpu,
compare_prio,
compare_res,
compare_size,
compare_state,
compare_time,
NULL
};
/* these are for keeping track of the proc array */
static int nproc;
static int onproc = -1;
static int pref_len;
static struct kinfo_proc *pbase;
static struct kinfo_proc **pref;
/* these are for getting the memory statistics */
static int pageshift; /* log base 2 of the pagesize */
/* define pagetok in terms of pageshift */
#define pagetok(size) ((size) << pageshift)
int
machine_init(statics)
struct statics *statics;
{
int i = 0;
int pagesize;
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
return -1;
/* get the list of symbols we want to access in the kernel */
(void) kvm_nlist(kd, nlst);
if (nlst[0].n_type == 0)
{
fprintf(stderr, "top: nlist failed\n");
return(-1);
}
/* make sure they were all found */
if (i > 0 && check_nlist(nlst) > 0)
{
return(-1);
}
/* get the symbol values out of kmem */
(void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!");
if (!hz) {
(void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz),
nlst[X_HZ].n_name);
}
(void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
nlst[X_CCPU].n_name);
/* stash away certain offsets for later use */
cp_time_offset = nlst[X_CP_TIME].n_value;
avenrun_offset = nlst[X_AVENRUN].n_value;
#if !defined(UVM)
cnt_offset = nlst[X_CNT].n_value;
#endif
/* this is used in calculating WCPU -- calculate it ahead of time */
logcpu = log(loaddouble(ccpu));
pbase = NULL;
pref = NULL;
nproc = 0;
onproc = -1;
/* get the page size with "getpagesize" and calculate pageshift from it */
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1)
{
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* fill in the statics information */
statics->procstate_names = procstatenames;
statics->cpustate_names = cpustatenames;
statics->memory_names = memorynames;
statics->order_names = ordernames;
/* all done! */
return(0);
}
char *
format_header(uname_field)
char *uname_field;
{
char *ptr;
ptr = header + UNAME_START;
while (*uname_field != '\0')
{
*ptr++ = *uname_field++;
}
return(header);
}
void
get_system_info(si)
struct system_info *si;
{
long total;
#if defined(UVM)
size_t usize;
int mib[2];
struct uvmexp uvmexp;
#else
struct vmmeter sum;
#endif
struct swapent *sep, *seporig;
int totalsize, size, totalinuse, inuse, ncounted;
int rnswap, nswap;
/* get the cp_time array */
(void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
nlst[X_CP_TIME].n_name);
if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) {
int i;
warn("can't getloadavg");
for (i = 0; i < NUM_AVERAGES; i++)
si->load_avg[i] = 0.0;
}
/* convert cp_time counts to percentages */
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
#if defined(UVM)
mib[0] = CTL_VM;
mib[1] = VM_UVMEXP;
usize = sizeof(uvmexp);
if (sysctl(mib, 2, &uvmexp, &usize, NULL, 0) < 0) {
fprintf(stderr, "top: sysctl vm.uvmexp failed: %s\n",
strerror(errno));
quit(23);
}
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(uvmexp.active);
memory_stats[1] = pagetok(uvmexp.inactive);
memory_stats[2] = pagetok(uvmexp.wired);
memory_stats[3] = pagetok(uvmexp.free);
#else
/* sum memory statistics */
(void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), "_cnt");
/* convert memory stats to Kbytes */
memory_stats[0] = pagetok(sum.v_active_count);
memory_stats[1] = pagetok(sum.v_inactive_count);
memory_stats[2] = pagetok(sum.v_wire_count);
memory_stats[3] = pagetok(sum.v_free_count);
#endif
memory_stats[4] = memory_stats[5] = 0;
seporig = NULL;
do {
nswap = swapctl(SWAP_NSWAP, 0, 0);
if (nswap < 1)
break;
/* Use seporig to keep track of the malloc'd memory
* base, as sep will be incremented in the for loop
* below. */
seporig = sep = (struct swapent *)malloc(nswap * sizeof(*sep));
if (sep == NULL)
break;
rnswap = swapctl(SWAP_STATS, (void *)sep, nswap);
if (nswap != rnswap)
break;
totalsize = totalinuse = ncounted = 0;
for (; rnswap-- > 0; sep++) {
ncounted++;
size = sep->se_nblks;
inuse = sep->se_inuse;
totalsize += size;
totalinuse += inuse;
}
memory_stats[4] = dbtob(totalinuse) / 1024;
memory_stats[5] = dbtob(totalsize) / 1024 - memory_stats[4];
/* Free here, before we malloc again in the next
* iteration of this loop. */
if (seporig)
free(seporig);
} while (0);
/* Catch the case where we malloc'd, but then exited the
* loop due to nswap != rnswap. */
if (seporig)
free(seporig);
memory_stats[6] = -1;
/* set arrays and strings */
si->cpustates = cpu_states;
si->memory = memory_stats;
si->last_pid = -1;
}
static struct handle handle;
caddr_t
get_process_info(si, sel, compare)
struct system_info *si;
struct process_select *sel;
int (*compare) __P((struct proc **, struct proc **));
{
int i;
int total_procs;
int active_procs;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
/* these are copied out of sel for speed */
int show_idle;
int show_system;
int show_uid;
int show_command;
pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
if (nproc > onproc)
pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
* (onproc = nproc));
if (pref == NULL || pbase == NULL) {
(void) fprintf(stderr, "top: Out of memory.\n");
quit(23);
}
/* get a pointer to the states summary array */
si->procstates = process_states;
/* set up flags which define what we are going to select */
show_idle = sel->idle;
show_system = sel->system;
show_uid = sel->uid != -1;
show_command = sel->command != NULL;
/* count up process states and get pointers to interesting procs */
total_procs = 0;
active_procs = 0;
memset((char *)process_states, 0, sizeof(process_states));
prefp = pref;
for (pp = pbase, i = 0; i < nproc; pp++, i++)
{
/*
* Place pointers to each valid proc structure in pref[].
* Process slots that are actually in use have a non-zero
* status field. Processes with P_SYSTEM set are system
* processes---these get ignored unless show_sysprocs is set.
*/
if (PP(pp, p_stat) != 0 &&
(show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
{
total_procs++;
process_states[(unsigned char) PP(pp, p_stat)]++;
if ((PP(pp, p_stat) != SZOMB) &&
(show_idle || (PP(pp, p_pctcpu) != 0) ||
(PP(pp, p_stat) == SRUN)) &&
(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
{
*prefp++ = pp;
active_procs++;
}
}
}
/* if requested, sort the "interesting" processes */
if (compare != NULL)
{
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
(int (*) __P((const void *, const void *)))compare);
}
/* remember active and total counts */
si->p_total = total_procs;
si->p_active = pref_len = active_procs;
/* pass back a handle */
handle.next_proc = pref;
handle.remaining = active_procs;
return((caddr_t)&handle);
}
char fmt[128]; /* static area where result is built */
char *
format_next_process(handle, get_userid)
caddr_t handle;
char *(*get_userid) __P((int));
{
struct kinfo_proc *pp;
long cputime;
double pct;
struct handle *hp;
/* find and remember the next proc structure */
hp = (struct handle *)handle;
pp = *(hp->next_proc++);
hp->remaining--;
/* get the process's user struct and set cputime */
if ((PP(pp, p_flag) & P_INMEM) == 0) {
/*
* Print swapped processes as <pname>
*/
char *comm = PP(pp, p_comm);
#define COMSIZ sizeof(PP(pp, p_comm))
char buf[COMSIZ];
(void) strncpy(buf, comm, COMSIZ);
comm[0] = '<';
(void) strncpy(&comm[1], buf, COMSIZ - 2);
comm[COMSIZ - 2] = '\0';
(void) strncat(comm, ">", COMSIZ - 1);
comm[COMSIZ - 1] = '\0';
}
#if 0
/* This does not produce the correct results */
cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
#endif
cputime = PP(pp, p_rtime).tv_sec; /* This does not count interrupts */
/* calculate the base for cpu percentages */
pct = pctdouble(PP(pp, p_pctcpu));
#define Proc_format \
"%5d %-8.8s %3d %4d%7s %5s %-5s%7s %5.2f%% %5.2f%% %.14s"
/* format this entry */
sprintf(fmt,
Proc_format,
PP(pp, p_pid),
(*get_userid)(EP(pp, e_pcred.p_ruid)),
PP(pp, p_priority) - PZERO,
PP(pp, p_nice) - NZERO,
format_k(pagetok(PROCSIZE(pp))),
format_k(pagetok(VP(pp, vm_rssize))),
state_abbrev[(unsigned char) PP(pp, p_stat)],
format_time(cputime),
100.0 * weighted_cpu(pct, pp),
100.0 * pct,
printable(PP(pp, p_comm)));
/* return the result */
return(fmt);
}
/*
* check_nlist(nlst) - checks the nlist to see if any symbols were not
* found. For every symbol that was not found, a one-line
* message is printed to stderr. The routine returns the
* number of symbols NOT found.
*/
static int
check_nlist(nlst)
struct nlist *nlst;
{
int i;
/* check to see if we got ALL the symbols we requested */
/* this will write one line to stderr for every symbol not found */
i = 0;
while (nlst->n_name != NULL)
{
if (nlst->n_type == 0)
{
/* this one wasn't found */
(void) fprintf(stderr, "kernel: no symbol named `%s'\n",
nlst->n_name);
i = 1;
}
nlst++;
}
return(i);
}
/*
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
* "offset" is the byte offset into the kernel for the desired value,
* "ptr" points to a buffer into which the value is retrieved,
* "size" is the size of the buffer (and the object to retrieve),
* "refstr" is a reference string used when printing error meessages,
* if "refstr" starts with a '!', then a failure on read will not
* be fatal (this may seem like a silly way to do things, but I
* really didn't want the overhead of another argument).
*
*/
static int
getkval(offset, ptr, size, refstr)
unsigned long offset;
int *ptr;
int size;
char *refstr;
{
if (kvm_read(kd, offset, (char *) ptr, size) != size)
{
if (*refstr == '!')
{
return(0);
}
else
{
fprintf(stderr, "top: kvm_read for %s: %s\n",
refstr, strerror(errno));
quit(23);
}
}
return(1);
}
/* comparison routines for qsort */
/*
* There are currently four possible comparison routines. main selects
* one of these by indexing in to the array proc_compares.
*
* Possible keys are defined as macros below. Currently these keys are
* defined: percent cpu, cpu ticks, process state, resident set size,
* total virtual memory usage. The process states are ordered as follows
* (from least to most important): WAIT, zombie, sleep, stop, start, run.
* The array declaration below maps a process state index into a number
* that reflects this ordering.
*/
/*
* First, the possible comparison keys. These are defined in such a way
* that they can be merely listed in the source code to define the actual
* desired ordering.
*/
#define ORDERKEY_PCTCPU \
if (lresult = (pctcpu)PP(p2, p_pctcpu) - (pctcpu)PP(p1, p_pctcpu),\
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
#define ORDERKEY_CPTICKS \
if (lresult = (pctcpu)PP(p2, p_rtime).tv_sec \
- (pctcpu)PP(p1, p_rtime).tv_sec,\
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
#define ORDERKEY_STATE \
if ((result = sorted_state[(int)PP(p2, p_stat)] - \
sorted_state[(int)PP(p1, p_stat)] ) == 0)
#define ORDERKEY_PRIO \
if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
#define ORDERKEY_RSSIZE \
if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
#define ORDERKEY_MEM \
if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0)
/*
* Now the array that maps process state to a weight.
* The order of the elements should match those in state_abbrev[]
*/
static int sorted_state[] = {
0, /* (not used) ? */
4, /* "start" SIDL */
5, /* "run" SRUN */
2, /* "sleep" SSLEEP */
3, /* "stop" SSTOP */
1, /* "zomb" SZOMB */
};
/* compare_cpu - the comparison function for sorting by cpu percentage */
int
compare_cpu(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
/* compare_prio - the comparison function for sorting by process priority */
int
compare_prio(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_PRIO
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
/* compare_res - the comparison function for sorting by resident set size */
int
compare_res(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_RSSIZE
ORDERKEY_MEM
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return (result);
}
/* compare_size - the comparison function for sorting by total memory usage */
int
compare_size(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_MEM
ORDERKEY_RSSIZE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_STATE
ORDERKEY_PRIO
;
return (result);
}
/* compare_state - the comparison function for sorting by process state */
int
compare_state(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_STATE
ORDERKEY_PCTCPU
ORDERKEY_CPTICKS
ORDERKEY_PRIO
ORDERKEY_RSSIZE
ORDERKEY_MEM
;
return (result);
}
/* compare_time - the comparison function for sorting by total cpu time */
int
compare_time(pp1, pp2)
struct proc **pp1, **pp2;
{
struct kinfo_proc *p1;
struct kinfo_proc *p2;
int result;
pctcpu lresult;
/* remove one level of indirection */
p1 = *(struct kinfo_proc **) pp1;
p2 = *(struct kinfo_proc **) pp2;
ORDERKEY_CPTICKS
ORDERKEY_PCTCPU
ORDERKEY_STATE
ORDERKEY_PRIO
ORDERKEY_MEM
ORDERKEY_RSSIZE
;
return (result);
}
/*
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
* the process does not exist.
* It is EXTREMLY IMPORTANT that this function work correctly.
* If top runs setuid root (as in SVR4), then this function
* is the only thing that stands in the way of a serious
* security problem. It validates requests for the "kill"
* and "renice" commands.
*/
int
proc_owner(pid)
int pid;
{
int cnt;
struct kinfo_proc **prefp;
struct kinfo_proc *pp;
prefp = pref;
cnt = pref_len;
while (--cnt >= 0)
{
pp = *prefp++;
if (PP(pp, p_pid) == (pid_t)pid)
{
return((int)EP(pp, e_pcred.p_ruid));
}
}
return(-1);
}