885 lines
21 KiB
C
885 lines
21 KiB
C
/* $NetBSD: m_netbsd13.c,v 1.4 1999/04/12 06:02:27 ross Exp $ */
|
|
|
|
/*
|
|
* top - a top users display for Unix
|
|
*
|
|
* SYNOPSIS: For a NetBSD-1.3 (or later) system
|
|
*
|
|
* DESCRIPTION:
|
|
* Originally written for BSD4.4 system by Christos Zoulas.
|
|
* Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider.
|
|
* NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn.
|
|
* NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green.
|
|
* NetBSD-1.4/UVM port by matthew green.
|
|
* -
|
|
* This is the machine-dependent module for NetBSD-1.3 and later
|
|
* works for:
|
|
* NetBSD-1.3
|
|
* NetBSD-1.3.1
|
|
* NetBSD-1.3.2
|
|
* NetBSD-1.3.3
|
|
* NetBSD-1.3.4 (beta)
|
|
* and should work for:
|
|
* NetBSD-1.4 (when released)
|
|
*
|
|
* LIBS: -lkvm
|
|
*
|
|
* CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR `printf ".include <bsd.own.mk>\nxxx:\n.if defined(UVM)\n\techo -DUVM\n.endif\n" | make -s -f-`
|
|
*
|
|
* AUTHORS: Christos Zoulas <christos@ee.cornell.edu>
|
|
* Steven Wallace <swallace@freebsd.org>
|
|
* Wolfram Schneider <wosch@cs.tu-berlin.de>
|
|
* Arne Helme <arne@acm.org>
|
|
* Luke Mewburn <lukem@netbsd.org>
|
|
* matthew green <mrg@eterna.com.au>
|
|
*
|
|
*
|
|
* $Id: m_netbsd13.c,v 1.4 1999/04/12 06:02:27 ross Exp $
|
|
*/
|
|
#define UVM
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/signal.h>
|
|
#include <sys/param.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/dir.h>
|
|
#include <sys/dkstat.h>
|
|
#include <sys/file.h>
|
|
#include <sys/time.h>
|
|
|
|
#include <vm/vm_swap.h>
|
|
|
|
#if defined(UVM)
|
|
#include <uvm/uvm_extern.h>
|
|
#endif
|
|
|
|
#include "os.h"
|
|
#include <err.h>
|
|
#include <errno.h>
|
|
#include <kvm.h>
|
|
#include <math.h>
|
|
#include <nlist.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
static int check_nlist __P((struct nlist *));
|
|
static int getkval __P((unsigned long, int *, int, char *));
|
|
extern char* printable __P((char *));
|
|
|
|
#include "top.h"
|
|
#include "machine.h"
|
|
#include "utils.h"
|
|
|
|
|
|
/* get_process_info passes back a handle. This is what it looks like: */
|
|
|
|
struct handle
|
|
{
|
|
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
|
|
int remaining; /* number of pointers remaining */
|
|
};
|
|
|
|
/* declarations for load_avg */
|
|
#include "loadavg.h"
|
|
|
|
#define PP(pp, field) ((pp)->kp_proc . field)
|
|
#define EP(pp, field) ((pp)->kp_eproc . field)
|
|
#define VP(pp, field) ((pp)->kp_eproc.e_vm . field)
|
|
|
|
/* define what weighted cpu is. */
|
|
#define weighted_cpu(pct, pp) (PP((pp), p_swtime) == 0 ? 0.0 : \
|
|
((pct) / (1.0 - exp(PP((pp), p_swtime) * logcpu))))
|
|
|
|
/* what we consider to be process size: */
|
|
#define PROCSIZE(pp) \
|
|
(VP((pp), vm_tsize) + VP((pp), vm_dsize) + VP((pp), vm_ssize))
|
|
|
|
/* definitions for indices in the nlist array */
|
|
|
|
|
|
static struct nlist nlst[] = {
|
|
#define X_CCPU 0
|
|
{ "_ccpu" }, /* 0 */
|
|
#define X_CP_TIME 1
|
|
{ "_cp_time" }, /* 1 */
|
|
#define X_HZ 2
|
|
{ "_hz" }, /* 2 */
|
|
#define X_STATHZ 3
|
|
{ "_stathz" }, /* 3 */
|
|
#define X_AVENRUN 4
|
|
{ "_averunnable" }, /* 4 */
|
|
#if !defined(UVM)
|
|
#define X_CNT 5
|
|
{ "_cnt" },
|
|
#endif
|
|
|
|
{ 0 }
|
|
};
|
|
|
|
/*
|
|
* These definitions control the format of the per-process area
|
|
*/
|
|
|
|
static char header[] =
|
|
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
|
|
/* 0123456 -- field to fill in starts at header+6 */
|
|
#define UNAME_START 6
|
|
|
|
#define Proc_format \
|
|
"%5d %-8.8s %3d %4d%7s %5s %-5s%7s %5.2f%% %5.2f%% %.14s"
|
|
|
|
|
|
/* process state names for the "STATE" column of the display */
|
|
/* the extra nulls in the string "run" are for adding a slash and
|
|
the processor number when needed */
|
|
|
|
char *state_abbrev[] =
|
|
{
|
|
"", "start", "run\0\0\0", "sleep", "stop", "zomb"
|
|
};
|
|
|
|
|
|
static kvm_t *kd;
|
|
|
|
/* values that we stash away in _init and use in later routines */
|
|
|
|
static double logcpu;
|
|
|
|
/* these are retrieved from the kernel in _init */
|
|
|
|
static int hz;
|
|
static int ccpu;
|
|
|
|
/* these are offsets obtained via nlist and used in the get_ functions */
|
|
|
|
static unsigned long cp_time_offset;
|
|
static unsigned long avenrun_offset;
|
|
#if !defined(UVM)
|
|
static unsigned long cnt_offset;
|
|
#endif
|
|
/* these are for calculating cpu state percentages */
|
|
|
|
static long cp_time[CPUSTATES];
|
|
static long cp_old[CPUSTATES];
|
|
static long cp_diff[CPUSTATES];
|
|
|
|
/* these are for detailing the process states */
|
|
|
|
int process_states[7];
|
|
char *procstatenames[] = {
|
|
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
|
|
" zombie, ", " ABANDONED, ",
|
|
NULL
|
|
};
|
|
|
|
/* these are for detailing the cpu states */
|
|
|
|
int cpu_states[CPUSTATES];
|
|
char *cpustatenames[] = {
|
|
"user", "nice", "system", "interrupt", "idle", NULL
|
|
};
|
|
|
|
/* these are for detailing the memory statistics */
|
|
|
|
int memory_stats[7];
|
|
char *memorynames[] = {
|
|
"K Act ", "K Inact ", "K Wired ", "K Free ",
|
|
"K Swap ", "K Swap free ",
|
|
NULL
|
|
};
|
|
|
|
|
|
/* these are names given to allowed sorting orders -- first is default */
|
|
char *ordernames[] = {
|
|
"cpu",
|
|
"pri",
|
|
"res",
|
|
"size",
|
|
"state",
|
|
"time",
|
|
NULL
|
|
};
|
|
|
|
/* forward definitions for comparison functions */
|
|
int (*proc_compares[]) __P((struct proc **, struct proc **)) = {
|
|
compare_cpu,
|
|
compare_prio,
|
|
compare_res,
|
|
compare_size,
|
|
compare_state,
|
|
compare_time,
|
|
NULL
|
|
};
|
|
|
|
|
|
/* these are for keeping track of the proc array */
|
|
|
|
static int nproc;
|
|
static int onproc = -1;
|
|
static int pref_len;
|
|
static struct kinfo_proc *pbase;
|
|
static struct kinfo_proc **pref;
|
|
|
|
/* these are for getting the memory statistics */
|
|
|
|
static int pageshift; /* log base 2 of the pagesize */
|
|
|
|
/* define pagetok in terms of pageshift */
|
|
|
|
#define pagetok(size) ((size) << pageshift)
|
|
|
|
int
|
|
machine_init(statics)
|
|
struct statics *statics;
|
|
{
|
|
int i = 0;
|
|
int pagesize;
|
|
|
|
if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL)
|
|
return -1;
|
|
|
|
|
|
/* get the list of symbols we want to access in the kernel */
|
|
(void) kvm_nlist(kd, nlst);
|
|
if (nlst[0].n_type == 0)
|
|
{
|
|
fprintf(stderr, "top: nlist failed\n");
|
|
return(-1);
|
|
}
|
|
|
|
/* make sure they were all found */
|
|
if (i > 0 && check_nlist(nlst) > 0)
|
|
{
|
|
return(-1);
|
|
}
|
|
|
|
/* get the symbol values out of kmem */
|
|
(void) getkval(nlst[X_STATHZ].n_value, (int *)(&hz), sizeof(hz), "!");
|
|
if (!hz) {
|
|
(void) getkval(nlst[X_HZ].n_value, (int *)(&hz), sizeof(hz),
|
|
nlst[X_HZ].n_name);
|
|
}
|
|
|
|
|
|
(void) getkval(nlst[X_CCPU].n_value, (int *)(&ccpu), sizeof(ccpu),
|
|
nlst[X_CCPU].n_name);
|
|
|
|
/* stash away certain offsets for later use */
|
|
cp_time_offset = nlst[X_CP_TIME].n_value;
|
|
avenrun_offset = nlst[X_AVENRUN].n_value;
|
|
#if !defined(UVM)
|
|
cnt_offset = nlst[X_CNT].n_value;
|
|
#endif
|
|
|
|
/* this is used in calculating WCPU -- calculate it ahead of time */
|
|
logcpu = log(loaddouble(ccpu));
|
|
|
|
pbase = NULL;
|
|
pref = NULL;
|
|
nproc = 0;
|
|
onproc = -1;
|
|
/* get the page size with "getpagesize" and calculate pageshift from it */
|
|
pagesize = getpagesize();
|
|
pageshift = 0;
|
|
while (pagesize > 1)
|
|
{
|
|
pageshift++;
|
|
pagesize >>= 1;
|
|
}
|
|
|
|
/* we only need the amount of log(2)1024 for our conversion */
|
|
pageshift -= LOG1024;
|
|
|
|
/* fill in the statics information */
|
|
statics->procstate_names = procstatenames;
|
|
statics->cpustate_names = cpustatenames;
|
|
statics->memory_names = memorynames;
|
|
statics->order_names = ordernames;
|
|
|
|
/* all done! */
|
|
return(0);
|
|
}
|
|
|
|
char *
|
|
format_header(uname_field)
|
|
char *uname_field;
|
|
{
|
|
char *ptr;
|
|
|
|
ptr = header + UNAME_START;
|
|
while (*uname_field != '\0')
|
|
{
|
|
*ptr++ = *uname_field++;
|
|
}
|
|
|
|
return(header);
|
|
}
|
|
|
|
void
|
|
get_system_info(si)
|
|
struct system_info *si;
|
|
{
|
|
long total;
|
|
#if defined(UVM)
|
|
size_t usize;
|
|
int mib[2];
|
|
struct uvmexp uvmexp;
|
|
#else
|
|
struct vmmeter sum;
|
|
#endif
|
|
struct swapent *sep, *seporig;
|
|
int totalsize, size, totalinuse, inuse, ncounted;
|
|
int rnswap, nswap;
|
|
|
|
/* get the cp_time array */
|
|
(void) getkval(cp_time_offset, (int *)cp_time, sizeof(cp_time),
|
|
nlst[X_CP_TIME].n_name);
|
|
|
|
if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) {
|
|
int i;
|
|
|
|
warn("can't getloadavg");
|
|
for (i = 0; i < NUM_AVERAGES; i++)
|
|
si->load_avg[i] = 0.0;
|
|
}
|
|
|
|
/* convert cp_time counts to percentages */
|
|
total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
|
|
|
|
#if defined(UVM)
|
|
mib[0] = CTL_VM;
|
|
mib[1] = VM_UVMEXP;
|
|
usize = sizeof(uvmexp);
|
|
if (sysctl(mib, 2, &uvmexp, &usize, NULL, 0) < 0) {
|
|
fprintf(stderr, "top: sysctl vm.uvmexp failed: %s\n",
|
|
strerror(errno));
|
|
quit(23);
|
|
}
|
|
|
|
/* convert memory stats to Kbytes */
|
|
memory_stats[0] = pagetok(uvmexp.active);
|
|
memory_stats[1] = pagetok(uvmexp.inactive);
|
|
memory_stats[2] = pagetok(uvmexp.wired);
|
|
memory_stats[3] = pagetok(uvmexp.free);
|
|
#else
|
|
/* sum memory statistics */
|
|
(void) getkval(cnt_offset, (int *)(&sum), sizeof(sum), "_cnt");
|
|
|
|
/* convert memory stats to Kbytes */
|
|
memory_stats[0] = pagetok(sum.v_active_count);
|
|
memory_stats[1] = pagetok(sum.v_inactive_count);
|
|
memory_stats[2] = pagetok(sum.v_wire_count);
|
|
memory_stats[3] = pagetok(sum.v_free_count);
|
|
#endif
|
|
|
|
memory_stats[4] = memory_stats[5] = 0;
|
|
|
|
seporig = NULL;
|
|
do {
|
|
nswap = swapctl(SWAP_NSWAP, 0, 0);
|
|
if (nswap < 1)
|
|
break;
|
|
/* Use seporig to keep track of the malloc'd memory
|
|
* base, as sep will be incremented in the for loop
|
|
* below. */
|
|
seporig = sep = (struct swapent *)malloc(nswap * sizeof(*sep));
|
|
if (sep == NULL)
|
|
break;
|
|
rnswap = swapctl(SWAP_STATS, (void *)sep, nswap);
|
|
if (nswap != rnswap)
|
|
break;
|
|
|
|
totalsize = totalinuse = ncounted = 0;
|
|
for (; rnswap-- > 0; sep++) {
|
|
ncounted++;
|
|
size = sep->se_nblks;
|
|
inuse = sep->se_inuse;
|
|
totalsize += size;
|
|
totalinuse += inuse;
|
|
}
|
|
memory_stats[4] = dbtob(totalinuse) / 1024;
|
|
memory_stats[5] = dbtob(totalsize) / 1024 - memory_stats[4];
|
|
/* Free here, before we malloc again in the next
|
|
* iteration of this loop. */
|
|
if (seporig)
|
|
free(seporig);
|
|
} while (0);
|
|
/* Catch the case where we malloc'd, but then exited the
|
|
* loop due to nswap != rnswap. */
|
|
if (seporig)
|
|
free(seporig);
|
|
|
|
memory_stats[6] = -1;
|
|
|
|
/* set arrays and strings */
|
|
si->cpustates = cpu_states;
|
|
si->memory = memory_stats;
|
|
si->last_pid = -1;
|
|
}
|
|
|
|
static struct handle handle;
|
|
|
|
caddr_t
|
|
get_process_info(si, sel, compare)
|
|
struct system_info *si;
|
|
struct process_select *sel;
|
|
int (*compare) __P((struct proc **, struct proc **));
|
|
{
|
|
int i;
|
|
int total_procs;
|
|
int active_procs;
|
|
struct kinfo_proc **prefp;
|
|
struct kinfo_proc *pp;
|
|
|
|
/* these are copied out of sel for speed */
|
|
int show_idle;
|
|
int show_system;
|
|
int show_uid;
|
|
int show_command;
|
|
|
|
|
|
pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
|
|
if (nproc > onproc)
|
|
pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *)
|
|
* (onproc = nproc));
|
|
if (pref == NULL || pbase == NULL) {
|
|
(void) fprintf(stderr, "top: Out of memory.\n");
|
|
quit(23);
|
|
}
|
|
/* get a pointer to the states summary array */
|
|
si->procstates = process_states;
|
|
|
|
/* set up flags which define what we are going to select */
|
|
show_idle = sel->idle;
|
|
show_system = sel->system;
|
|
show_uid = sel->uid != -1;
|
|
show_command = sel->command != NULL;
|
|
|
|
/* count up process states and get pointers to interesting procs */
|
|
total_procs = 0;
|
|
active_procs = 0;
|
|
memset((char *)process_states, 0, sizeof(process_states));
|
|
prefp = pref;
|
|
for (pp = pbase, i = 0; i < nproc; pp++, i++)
|
|
{
|
|
/*
|
|
* Place pointers to each valid proc structure in pref[].
|
|
* Process slots that are actually in use have a non-zero
|
|
* status field. Processes with P_SYSTEM set are system
|
|
* processes---these get ignored unless show_sysprocs is set.
|
|
*/
|
|
if (PP(pp, p_stat) != 0 &&
|
|
(show_system || ((PP(pp, p_flag) & P_SYSTEM) == 0)))
|
|
{
|
|
total_procs++;
|
|
process_states[(unsigned char) PP(pp, p_stat)]++;
|
|
if ((PP(pp, p_stat) != SZOMB) &&
|
|
(show_idle || (PP(pp, p_pctcpu) != 0) ||
|
|
(PP(pp, p_stat) == SRUN)) &&
|
|
(!show_uid || EP(pp, e_pcred.p_ruid) == (uid_t)sel->uid))
|
|
{
|
|
*prefp++ = pp;
|
|
active_procs++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if requested, sort the "interesting" processes */
|
|
if (compare != NULL)
|
|
{
|
|
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
|
|
(int (*) __P((const void *, const void *)))compare);
|
|
}
|
|
|
|
/* remember active and total counts */
|
|
si->p_total = total_procs;
|
|
si->p_active = pref_len = active_procs;
|
|
|
|
/* pass back a handle */
|
|
handle.next_proc = pref;
|
|
handle.remaining = active_procs;
|
|
return((caddr_t)&handle);
|
|
}
|
|
|
|
char fmt[128]; /* static area where result is built */
|
|
|
|
char *
|
|
format_next_process(handle, get_userid)
|
|
caddr_t handle;
|
|
char *(*get_userid) __P((int));
|
|
{
|
|
struct kinfo_proc *pp;
|
|
long cputime;
|
|
double pct;
|
|
struct handle *hp;
|
|
|
|
/* find and remember the next proc structure */
|
|
hp = (struct handle *)handle;
|
|
pp = *(hp->next_proc++);
|
|
hp->remaining--;
|
|
|
|
|
|
/* get the process's user struct and set cputime */
|
|
if ((PP(pp, p_flag) & P_INMEM) == 0) {
|
|
/*
|
|
* Print swapped processes as <pname>
|
|
*/
|
|
char *comm = PP(pp, p_comm);
|
|
#define COMSIZ sizeof(PP(pp, p_comm))
|
|
char buf[COMSIZ];
|
|
(void) strncpy(buf, comm, COMSIZ);
|
|
comm[0] = '<';
|
|
(void) strncpy(&comm[1], buf, COMSIZ - 2);
|
|
comm[COMSIZ - 2] = '\0';
|
|
(void) strncat(comm, ">", COMSIZ - 1);
|
|
comm[COMSIZ - 1] = '\0';
|
|
}
|
|
|
|
#if 0
|
|
/* This does not produce the correct results */
|
|
cputime = PP(pp, p_uticks) + PP(pp, p_sticks) + PP(pp, p_iticks);
|
|
#endif
|
|
cputime = PP(pp, p_rtime).tv_sec; /* This does not count interrupts */
|
|
|
|
/* calculate the base for cpu percentages */
|
|
pct = pctdouble(PP(pp, p_pctcpu));
|
|
|
|
#define Proc_format \
|
|
"%5d %-8.8s %3d %4d%7s %5s %-5s%7s %5.2f%% %5.2f%% %.14s"
|
|
|
|
/* format this entry */
|
|
sprintf(fmt,
|
|
Proc_format,
|
|
PP(pp, p_pid),
|
|
(*get_userid)(EP(pp, e_pcred.p_ruid)),
|
|
PP(pp, p_priority) - PZERO,
|
|
PP(pp, p_nice) - NZERO,
|
|
format_k(pagetok(PROCSIZE(pp))),
|
|
format_k(pagetok(VP(pp, vm_rssize))),
|
|
state_abbrev[(unsigned char) PP(pp, p_stat)],
|
|
format_time(cputime),
|
|
100.0 * weighted_cpu(pct, pp),
|
|
100.0 * pct,
|
|
printable(PP(pp, p_comm)));
|
|
|
|
/* return the result */
|
|
return(fmt);
|
|
}
|
|
|
|
|
|
/*
|
|
* check_nlist(nlst) - checks the nlist to see if any symbols were not
|
|
* found. For every symbol that was not found, a one-line
|
|
* message is printed to stderr. The routine returns the
|
|
* number of symbols NOT found.
|
|
*/
|
|
|
|
static int
|
|
check_nlist(nlst)
|
|
struct nlist *nlst;
|
|
{
|
|
int i;
|
|
|
|
/* check to see if we got ALL the symbols we requested */
|
|
/* this will write one line to stderr for every symbol not found */
|
|
|
|
i = 0;
|
|
while (nlst->n_name != NULL)
|
|
{
|
|
if (nlst->n_type == 0)
|
|
{
|
|
/* this one wasn't found */
|
|
(void) fprintf(stderr, "kernel: no symbol named `%s'\n",
|
|
nlst->n_name);
|
|
i = 1;
|
|
}
|
|
nlst++;
|
|
}
|
|
|
|
return(i);
|
|
}
|
|
|
|
|
|
/*
|
|
* getkval(offset, ptr, size, refstr) - get a value out of the kernel.
|
|
* "offset" is the byte offset into the kernel for the desired value,
|
|
* "ptr" points to a buffer into which the value is retrieved,
|
|
* "size" is the size of the buffer (and the object to retrieve),
|
|
* "refstr" is a reference string used when printing error meessages,
|
|
* if "refstr" starts with a '!', then a failure on read will not
|
|
* be fatal (this may seem like a silly way to do things, but I
|
|
* really didn't want the overhead of another argument).
|
|
*
|
|
*/
|
|
|
|
static int
|
|
getkval(offset, ptr, size, refstr)
|
|
unsigned long offset;
|
|
int *ptr;
|
|
int size;
|
|
char *refstr;
|
|
{
|
|
if (kvm_read(kd, offset, (char *) ptr, size) != size)
|
|
{
|
|
if (*refstr == '!')
|
|
{
|
|
return(0);
|
|
}
|
|
else
|
|
{
|
|
fprintf(stderr, "top: kvm_read for %s: %s\n",
|
|
refstr, strerror(errno));
|
|
quit(23);
|
|
}
|
|
}
|
|
return(1);
|
|
}
|
|
|
|
/* comparison routines for qsort */
|
|
|
|
/*
|
|
* There are currently four possible comparison routines. main selects
|
|
* one of these by indexing in to the array proc_compares.
|
|
*
|
|
* Possible keys are defined as macros below. Currently these keys are
|
|
* defined: percent cpu, cpu ticks, process state, resident set size,
|
|
* total virtual memory usage. The process states are ordered as follows
|
|
* (from least to most important): WAIT, zombie, sleep, stop, start, run.
|
|
* The array declaration below maps a process state index into a number
|
|
* that reflects this ordering.
|
|
*/
|
|
|
|
/*
|
|
* First, the possible comparison keys. These are defined in such a way
|
|
* that they can be merely listed in the source code to define the actual
|
|
* desired ordering.
|
|
*/
|
|
|
|
#define ORDERKEY_PCTCPU \
|
|
if (lresult = (pctcpu)PP(p2, p_pctcpu) - (pctcpu)PP(p1, p_pctcpu),\
|
|
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
|
|
|
|
#define ORDERKEY_CPTICKS \
|
|
if (lresult = (pctcpu)PP(p2, p_rtime).tv_sec \
|
|
- (pctcpu)PP(p1, p_rtime).tv_sec,\
|
|
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
|
|
|
|
#define ORDERKEY_STATE \
|
|
if ((result = sorted_state[(int)PP(p2, p_stat)] - \
|
|
sorted_state[(int)PP(p1, p_stat)] ) == 0)
|
|
|
|
#define ORDERKEY_PRIO \
|
|
if ((result = PP(p2, p_priority) - PP(p1, p_priority)) == 0)
|
|
|
|
#define ORDERKEY_RSSIZE \
|
|
if ((result = VP(p2, vm_rssize) - VP(p1, vm_rssize)) == 0)
|
|
|
|
#define ORDERKEY_MEM \
|
|
if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0)
|
|
|
|
/*
|
|
* Now the array that maps process state to a weight.
|
|
* The order of the elements should match those in state_abbrev[]
|
|
*/
|
|
|
|
static int sorted_state[] = {
|
|
0, /* (not used) ? */
|
|
4, /* "start" SIDL */
|
|
5, /* "run" SRUN */
|
|
2, /* "sleep" SSLEEP */
|
|
3, /* "stop" SSTOP */
|
|
1, /* "zomb" SZOMB */
|
|
};
|
|
|
|
/* compare_cpu - the comparison function for sorting by cpu percentage */
|
|
|
|
int
|
|
compare_cpu(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
;
|
|
|
|
return (result);
|
|
}
|
|
|
|
/* compare_prio - the comparison function for sorting by process priority */
|
|
|
|
int
|
|
compare_prio(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
;
|
|
|
|
return (result);
|
|
}
|
|
|
|
/* compare_res - the comparison function for sorting by resident set size */
|
|
|
|
int
|
|
compare_res(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
;
|
|
|
|
return (result);
|
|
}
|
|
|
|
/* compare_size - the comparison function for sorting by total memory usage */
|
|
|
|
int
|
|
compare_size(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_MEM
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
;
|
|
|
|
return (result);
|
|
}
|
|
|
|
/* compare_state - the comparison function for sorting by process state */
|
|
|
|
int
|
|
compare_state(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
;
|
|
|
|
return (result);
|
|
}
|
|
|
|
/* compare_time - the comparison function for sorting by total cpu time */
|
|
|
|
int
|
|
compare_time(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
struct kinfo_proc *p1;
|
|
struct kinfo_proc *p2;
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
/* remove one level of indirection */
|
|
p1 = *(struct kinfo_proc **) pp1;
|
|
p2 = *(struct kinfo_proc **) pp2;
|
|
|
|
ORDERKEY_CPTICKS
|
|
ORDERKEY_PCTCPU
|
|
ORDERKEY_STATE
|
|
ORDERKEY_PRIO
|
|
ORDERKEY_MEM
|
|
ORDERKEY_RSSIZE
|
|
;
|
|
|
|
return (result);
|
|
}
|
|
|
|
|
|
/*
|
|
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
|
|
* the process does not exist.
|
|
* It is EXTREMLY IMPORTANT that this function work correctly.
|
|
* If top runs setuid root (as in SVR4), then this function
|
|
* is the only thing that stands in the way of a serious
|
|
* security problem. It validates requests for the "kill"
|
|
* and "renice" commands.
|
|
*/
|
|
|
|
int
|
|
proc_owner(pid)
|
|
int pid;
|
|
{
|
|
int cnt;
|
|
struct kinfo_proc **prefp;
|
|
struct kinfo_proc *pp;
|
|
|
|
prefp = pref;
|
|
cnt = pref_len;
|
|
while (--cnt >= 0)
|
|
{
|
|
pp = *prefp++;
|
|
if (PP(pp, p_pid) == (pid_t)pid)
|
|
{
|
|
return((int)EP(pp, e_pcred.p_ruid));
|
|
}
|
|
}
|
|
return(-1);
|
|
}
|