NetBSD/sys/dev/usb/if_kue.c

1149 lines
30 KiB
C

/* $NetBSD: if_kue.c,v 1.92 2018/06/26 06:48:02 msaitoh Exp $ */
/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/usb/if_kue.c,v 1.14 2000/01/14 01:36:15 wpaul Exp $
*/
/*
* Kawasaki LSI KL5KUSB101B USB to ethernet adapter driver.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The KLSI USB to ethernet adapter chip contains an USB serial interface,
* ethernet MAC and embedded microcontroller (called the QT Engine).
* The chip must have firmware loaded into it before it will operate.
* Packets are passed between the chip and host via bulk transfers.
* There is an interrupt endpoint mentioned in the software spec, however
* it's currently unused. This device is 10Mbps half-duplex only, hence
* there is no media selection logic. The MAC supports a 128 entry
* multicast filter, though the exact size of the filter can depend
* on the firmware. Curiously, while the software spec describes various
* ethernet statistics counters, my sample adapter and firmware combination
* claims not to support any statistics counters at all.
*
* Note that once we load the firmware in the device, we have to be
* careful not to load it again: if you restart your computer but
* leave the adapter attached to the USB controller, it may remain
* powered on and retain its firmware. In this case, we don't need
* to load the firmware a second time.
*
* Special thanks to Rob Furr for providing an ADS Technologies
* adapter for development and testing. No monkeys were harmed during
* the development of this driver.
*/
/*
* Ported to NetBSD and somewhat rewritten by Lennart Augustsson.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_kue.c,v 1.92 2018/06/26 06:48:02 msaitoh Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kmem.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/rndsource.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/bpf.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_kuereg.h>
#include <dev/usb/kue_fw.h>
#ifdef KUE_DEBUG
#define DPRINTF(x) if (kuedebug) printf x
#define DPRINTFN(n,x) if (kuedebug >= (n)) printf x
int kuedebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
/*
* Various supported device vendors/products.
*/
static const struct usb_devno kue_devs[] = {
{ USB_VENDOR_3COM, USB_PRODUCT_3COM_3C19250 },
{ USB_VENDOR_3COM, USB_PRODUCT_3COM_3C460 },
{ USB_VENDOR_ABOCOM, USB_PRODUCT_ABOCOM_URE450 },
{ USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BT },
{ USB_VENDOR_ADS, USB_PRODUCT_ADS_UBS10BTX },
{ USB_VENDOR_AOX, USB_PRODUCT_AOX_USB101 },
{ USB_VENDOR_ASANTE, USB_PRODUCT_ASANTE_EA },
{ USB_VENDOR_ATEN, USB_PRODUCT_ATEN_UC10T },
{ USB_VENDOR_ATEN, USB_PRODUCT_ATEN_DSB650C },
{ USB_VENDOR_COREGA, USB_PRODUCT_COREGA_ETHER_USB_T },
{ USB_VENDOR_DLINK, USB_PRODUCT_DLINK_DSB650C },
{ USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_E45 },
{ USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX1 },
{ USB_VENDOR_ENTREGA, USB_PRODUCT_ENTREGA_XX2 },
{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_USBETT },
{ USB_VENDOR_JATON, USB_PRODUCT_JATON_EDA },
{ USB_VENDOR_KINGSTON, USB_PRODUCT_KINGSTON_XX1 },
{ USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BT },
{ USB_VENDOR_KLSI, USB_PRODUCT_KLSI_DUH3E10BTN },
{ USB_VENDOR_LINKSYS, USB_PRODUCT_LINKSYS_USB10T },
{ USB_VENDOR_MOBILITY, USB_PRODUCT_MOBILITY_EA },
{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101 },
{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_EA101X },
{ USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET },
{ USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET2 },
{ USB_VENDOR_PERACOM, USB_PRODUCT_PERACOM_ENET3 },
{ USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA8 },
{ USB_VENDOR_PORTGEAR, USB_PRODUCT_PORTGEAR_EA9 },
{ USB_VENDOR_PORTSMITH, USB_PRODUCT_PORTSMITH_EEA },
{ USB_VENDOR_SHARK, USB_PRODUCT_SHARK_PA },
{ USB_VENDOR_SILICOM, USB_PRODUCT_SILICOM_U2E },
{ USB_VENDOR_SMC, USB_PRODUCT_SMC_2102USB },
};
#define kue_lookup(v, p) (usb_lookup(kue_devs, v, p))
int kue_match(device_t, cfdata_t, void *);
void kue_attach(device_t, device_t, void *);
int kue_detach(device_t, int);
int kue_activate(device_t, enum devact);
extern struct cfdriver kue_cd;
CFATTACH_DECL_NEW(kue, sizeof(struct kue_softc), kue_match, kue_attach,
kue_detach, kue_activate);
static int kue_tx_list_init(struct kue_softc *);
static int kue_rx_list_init(struct kue_softc *);
static int kue_send(struct kue_softc *, struct mbuf *, int);
static int kue_open_pipes(struct kue_softc *);
static void kue_rxeof(struct usbd_xfer *, void *, usbd_status);
static void kue_txeof(struct usbd_xfer *, void *, usbd_status);
static void kue_start(struct ifnet *);
static int kue_ioctl(struct ifnet *, u_long, void *);
static void kue_init(void *);
static void kue_stop(struct kue_softc *);
static void kue_watchdog(struct ifnet *);
static void kue_setmulti(struct kue_softc *);
static void kue_reset(struct kue_softc *);
static usbd_status kue_ctl(struct kue_softc *, int, uint8_t,
uint16_t, void *, uint32_t);
static usbd_status kue_setword(struct kue_softc *, uint8_t, uint16_t);
static int kue_load_fw(struct kue_softc *);
static usbd_status
kue_setword(struct kue_softc *sc, uint8_t breq, uint16_t word)
{
usb_device_request_t req;
DPRINTFN(10,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__));
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = breq;
USETW(req.wValue, word);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
return usbd_do_request(sc->kue_udev, &req, NULL);
}
static usbd_status
kue_ctl(struct kue_softc *sc, int rw, uint8_t breq, uint16_t val,
void *data, uint32_t len)
{
usb_device_request_t req;
DPRINTFN(10,("%s: %s: enter, len=%d\n", device_xname(sc->kue_dev),
__func__, len));
if (rw == KUE_CTL_WRITE)
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
else
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = breq;
USETW(req.wValue, val);
USETW(req.wIndex, 0);
USETW(req.wLength, len);
return usbd_do_request(sc->kue_udev, &req, data);
}
static int
kue_load_fw(struct kue_softc *sc)
{
usb_device_descriptor_t dd;
usbd_status err;
DPRINTFN(1,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__));
/*
* First, check if we even need to load the firmware.
* If the device was still attached when the system was
* rebooted, it may already have firmware loaded in it.
* If this is the case, we don't need to do it again.
* And in fact, if we try to load it again, we'll hang,
* so we have to avoid this condition if we don't want
* to look stupid.
*
* We can test this quickly by checking the bcdRevision
* code. The NIC will return a different revision code if
* it's probed while the firmware is still loaded and
* running.
*/
if (usbd_get_device_desc(sc->kue_udev, &dd))
return EIO;
if (UGETW(dd.bcdDevice) == KUE_WARM_REV) {
printf("%s: warm boot, no firmware download\n",
device_xname(sc->kue_dev));
return 0;
}
printf("%s: cold boot, downloading firmware\n",
device_xname(sc->kue_dev));
/* Load code segment */
DPRINTFN(1,("%s: kue_load_fw: download code_seg\n",
device_xname(sc->kue_dev)));
/*XXXUNCONST*/
err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN,
0, __UNCONST(kue_code_seg), sizeof(kue_code_seg));
if (err) {
printf("%s: failed to load code segment: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
return EIO;
}
/* Load fixup segment */
DPRINTFN(1,("%s: kue_load_fw: download fix_seg\n",
device_xname(sc->kue_dev)));
/*XXXUNCONST*/
err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN,
0, __UNCONST(kue_fix_seg), sizeof(kue_fix_seg));
if (err) {
printf("%s: failed to load fixup segment: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
return EIO;
}
/* Send trigger command. */
DPRINTFN(1,("%s: kue_load_fw: download trig_seg\n",
device_xname(sc->kue_dev)));
/*XXXUNCONST*/
err = kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SEND_SCAN,
0, __UNCONST(kue_trig_seg), sizeof(kue_trig_seg));
if (err) {
printf("%s: failed to load trigger segment: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
return EIO;
}
usbd_delay_ms(sc->kue_udev, 10);
/*
* Reload device descriptor.
* Why? The chip without the firmware loaded returns
* one revision code. The chip with the firmware
* loaded and running returns a *different* revision
* code. This confuses the quirk mechanism, which is
* dependent on the revision data.
*/
(void)usbd_reload_device_desc(sc->kue_udev);
DPRINTFN(1,("%s: %s: done\n", device_xname(sc->kue_dev), __func__));
/* Reset the adapter. */
kue_reset(sc);
return 0;
}
static void
kue_setmulti(struct kue_softc *sc)
{
struct ifnet *ifp = GET_IFP(sc);
struct ether_multi *enm;
struct ether_multistep step;
int i;
DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__));
if (ifp->if_flags & IFF_PROMISC) {
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->kue_rxfilt |= KUE_RXFILT_ALLMULTI;
sc->kue_rxfilt &= ~KUE_RXFILT_MULTICAST;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt);
return;
}
sc->kue_rxfilt &= ~KUE_RXFILT_ALLMULTI;
i = 0;
ETHER_FIRST_MULTI(step, &sc->kue_ec, enm);
while (enm != NULL) {
if (i == KUE_MCFILTCNT(sc) ||
memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto allmulti;
memcpy(KUE_MCFILT(sc, i), enm->enm_addrlo, ETHER_ADDR_LEN);
ETHER_NEXT_MULTI(step, enm);
i++;
}
ifp->if_flags &= ~IFF_ALLMULTI;
sc->kue_rxfilt |= KUE_RXFILT_MULTICAST;
kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MCAST_FILTERS,
i, sc->kue_mcfilters, i * ETHER_ADDR_LEN);
kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt);
}
/*
* Issue a SET_CONFIGURATION command to reset the MAC. This should be
* done after the firmware is loaded into the adapter in order to
* bring it into proper operation.
*/
static void
kue_reset(struct kue_softc *sc)
{
DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__));
if (usbd_set_config_no(sc->kue_udev, KUE_CONFIG_NO, 1) ||
usbd_device2interface_handle(sc->kue_udev, KUE_IFACE_IDX,
&sc->kue_iface))
printf("%s: reset failed\n", device_xname(sc->kue_dev));
/* Wait a little while for the chip to get its brains in order. */
usbd_delay_ms(sc->kue_udev, 10);
}
/*
* Probe for a KLSI chip.
*/
int
kue_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
DPRINTFN(25,("kue_match: enter\n"));
return kue_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
/*
* Attach the interface. Allocate softc structures, do
* setup and ethernet/BPF attach.
*/
void
kue_attach(device_t parent, device_t self, void *aux)
{
struct kue_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
char *devinfop;
int s;
struct ifnet *ifp;
struct usbd_device * dev = uaa->uaa_device;
struct usbd_interface * iface;
usbd_status err;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i;
DPRINTFN(5,(" : kue_attach: sc=%p, dev=%p", sc, dev));
sc->kue_dev = self;
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(dev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
err = usbd_set_config_no(dev, KUE_CONFIG_NO, 1);
if (err) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(err));
return;
}
sc->kue_udev = dev;
sc->kue_product = uaa->uaa_product;
sc->kue_vendor = uaa->uaa_vendor;
/* Load the firmware into the NIC. */
if (kue_load_fw(sc)) {
aprint_error_dev(self, "loading firmware failed\n");
return;
}
err = usbd_device2interface_handle(dev, KUE_IFACE_IDX, &iface);
if (err) {
aprint_error_dev(self, "getting interface handle failed\n");
return;
}
sc->kue_iface = iface;
id = usbd_get_interface_descriptor(iface);
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(iface, i);
if (ed == NULL) {
aprint_error_dev(self, "couldn't get ep %d\n", i);
return;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
sc->kue_ed[KUE_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
sc->kue_ed[KUE_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
sc->kue_ed[KUE_ENDPT_INTR] = ed->bEndpointAddress;
}
}
if (sc->kue_ed[KUE_ENDPT_RX] == 0 || sc->kue_ed[KUE_ENDPT_TX] == 0) {
aprint_error_dev(self, "missing endpoint\n");
return;
}
/* Read ethernet descriptor */
err = kue_ctl(sc, KUE_CTL_READ, KUE_CMD_GET_ETHER_DESCRIPTOR,
0, &sc->kue_desc, sizeof(sc->kue_desc));
if (err) {
aprint_error_dev(self, "could not read Ethernet descriptor\n");
return;
}
sc->kue_mcfilters = kmem_alloc(KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN,
KM_SLEEP);
s = splnet();
/*
* A KLSI chip was detected. Inform the world.
*/
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->kue_desc.kue_macaddr));
/* Initialize interface info.*/
ifp = GET_IFP(sc);
ifp->if_softc = sc;
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = kue_ioctl;
ifp->if_start = kue_start;
ifp->if_watchdog = kue_watchdog;
strlcpy(ifp->if_xname, device_xname(sc->kue_dev), IFNAMSIZ);
IFQ_SET_READY(&ifp->if_snd);
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp, sc->kue_desc.kue_macaddr);
rnd_attach_source(&sc->rnd_source, device_xname(sc->kue_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
sc->kue_attached = true;
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->kue_udev, sc->kue_dev);
return;
}
int
kue_detach(device_t self, int flags)
{
struct kue_softc *sc = device_private(self);
struct ifnet *ifp = GET_IFP(sc);
int s;
s = splusb(); /* XXX why? */
if (sc->kue_mcfilters != NULL) {
kmem_free(sc->kue_mcfilters,
KUE_MCFILTCNT(sc) * ETHER_ADDR_LEN);
sc->kue_mcfilters = NULL;
}
if (!sc->kue_attached) {
/* Detached before attached finished, so just bail out. */
splx(s);
return 0;
}
if (ifp->if_flags & IFF_RUNNING)
kue_stop(sc);
rnd_detach_source(&sc->rnd_source);
ether_ifdetach(ifp);
if_detach(ifp);
#ifdef DIAGNOSTIC
if (sc->kue_ep[KUE_ENDPT_TX] != NULL ||
sc->kue_ep[KUE_ENDPT_RX] != NULL ||
sc->kue_ep[KUE_ENDPT_INTR] != NULL)
aprint_debug_dev(self, "detach has active endpoints\n");
#endif
sc->kue_attached = false;
splx(s);
return 0;
}
int
kue_activate(device_t self, enum devact act)
{
struct kue_softc *sc = device_private(self);
DPRINTFN(2,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__));
switch (act) {
case DVACT_DEACTIVATE:
/* Deactivate the interface. */
if_deactivate(&sc->kue_ec.ec_if);
sc->kue_dying = true;
return 0;
default:
return EOPNOTSUPP;
}
}
static int
kue_rx_list_init(struct kue_softc *sc)
{
struct kue_cdata *cd;
struct kue_chain *c;
int i;
DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__));
cd = &sc->kue_cdata;
for (i = 0; i < KUE_RX_LIST_CNT; i++) {
c = &cd->kue_rx_chain[i];
c->kue_sc = sc;
c->kue_idx = i;
if (c->kue_xfer == NULL) {
int error = usbd_create_xfer(sc->kue_ep[KUE_ENDPT_RX],
KUE_BUFSZ, 0, 0, &c->kue_xfer);
if (error)
return error;
c->kue_buf = usbd_get_buffer(c->kue_xfer);
}
}
return 0;
}
static int
kue_tx_list_init(struct kue_softc *sc)
{
struct kue_cdata *cd;
struct kue_chain *c;
int i;
DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev), __func__));
cd = &sc->kue_cdata;
for (i = 0; i < KUE_TX_LIST_CNT; i++) {
c = &cd->kue_tx_chain[i];
c->kue_sc = sc;
c->kue_idx = i;
if (c->kue_xfer == NULL) {
int error = usbd_create_xfer(sc->kue_ep[KUE_ENDPT_TX],
KUE_BUFSZ, 0, 0, &c->kue_xfer);
if (error)
return error;
c->kue_buf = usbd_get_buffer(c->kue_xfer);
}
}
return 0;
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
kue_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct kue_chain *c = priv;
struct kue_softc *sc = c->kue_sc;
struct ifnet *ifp = GET_IFP(sc);
struct mbuf *m;
int total_len, pktlen;
int s;
DPRINTFN(10,("%s: %s: enter status=%d\n", device_xname(sc->kue_dev),
__func__, status));
if (sc->kue_dying)
return;
if (!(ifp->if_flags & IFF_RUNNING))
return;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
sc->kue_rx_errs++;
if (usbd_ratecheck(&sc->kue_rx_notice)) {
printf("%s: %u usb errors on rx: %s\n",
device_xname(sc->kue_dev), sc->kue_rx_errs,
usbd_errstr(status));
sc->kue_rx_errs = 0;
}
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->kue_ep[KUE_ENDPT_RX]);
goto done;
}
usbd_get_xfer_status(xfer, NULL, NULL, &total_len, NULL);
DPRINTFN(10,("%s: %s: total_len=%d len=%d\n", device_xname(sc->kue_dev),
__func__, total_len,
le16dec(c->kue_buf)));
if (total_len <= 1)
goto done;
pktlen = le16dec(c->kue_buf);
if (pktlen > total_len - 2)
pktlen = total_len - 2;
if (pktlen < ETHER_MIN_LEN - ETHER_CRC_LEN ||
pktlen > MCLBYTES - ETHER_ALIGN) {
ifp->if_ierrors++;
goto done;
}
/* No errors; receive the packet. */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
goto done;
}
if (pktlen > MHLEN - ETHER_ALIGN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
ifp->if_ierrors++;
goto done;
}
}
m->m_data += ETHER_ALIGN;
/* copy data to mbuf */
memcpy(mtod(m, uint8_t *), c->kue_buf + 2, pktlen);
m->m_pkthdr.len = m->m_len = pktlen;
m_set_rcvif(m, ifp);
s = splnet();
DPRINTFN(10,("%s: %s: deliver %d\n", device_xname(sc->kue_dev),
__func__, m->m_len));
if_percpuq_enqueue(ifp->if_percpuq, m);
splx(s);
done:
/* Setup new transfer. */
usbd_setup_xfer(c->kue_xfer, c, c->kue_buf, KUE_BUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof);
usbd_transfer(c->kue_xfer);
DPRINTFN(10,("%s: %s: start rx\n", device_xname(sc->kue_dev),
__func__));
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
kue_txeof(struct usbd_xfer *xfer, void *priv,
usbd_status status)
{
struct kue_chain *c = priv;
struct kue_softc *sc = c->kue_sc;
struct ifnet *ifp = GET_IFP(sc);
int s;
if (sc->kue_dying)
return;
s = splnet();
DPRINTFN(10,("%s: %s: enter status=%d\n", device_xname(sc->kue_dev),
__func__, status));
ifp->if_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) {
splx(s);
return;
}
ifp->if_oerrors++;
printf("%s: usb error on tx: %s\n", device_xname(sc->kue_dev),
usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->kue_ep[KUE_ENDPT_TX]);
splx(s);
return;
}
ifp->if_opackets++;
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
kue_start(ifp);
splx(s);
}
static int
kue_send(struct kue_softc *sc, struct mbuf *m, int idx)
{
int total_len;
struct kue_chain *c;
usbd_status err;
DPRINTFN(10,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__));
c = &sc->kue_cdata.kue_tx_chain[idx];
/* Frame length is specified in the first 2 bytes of the buffer. */
le16enc(c->kue_buf, (uint16_t)m->m_pkthdr.len);
/*
* Copy the mbuf data into a contiguous buffer, leaving two
* bytes at the beginning to hold the frame length.
*/
m_copydata(m, 0, m->m_pkthdr.len, c->kue_buf + 2);
total_len = 2 + m->m_pkthdr.len;
total_len = roundup2(total_len, 64);
usbd_setup_xfer(c->kue_xfer, c, c->kue_buf, total_len, 0,
USBD_DEFAULT_TIMEOUT, kue_txeof);
/* Transmit */
err = usbd_transfer(c->kue_xfer);
if (err != USBD_IN_PROGRESS) {
printf("%s: kue_send error=%s\n", device_xname(sc->kue_dev),
usbd_errstr(err));
kue_stop(sc);
return EIO;
}
sc->kue_cdata.kue_tx_cnt++;
return 0;
}
static void
kue_start(struct ifnet *ifp)
{
struct kue_softc *sc = ifp->if_softc;
struct mbuf *m;
DPRINTFN(10,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__));
if (sc->kue_dying)
return;
if (ifp->if_flags & IFF_OACTIVE)
return;
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
return;
if (kue_send(sc, m, 0)) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
IFQ_DEQUEUE(&ifp->if_snd, m);
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m, BPF_D_OUT);
m_freem(m);
ifp->if_flags |= IFF_OACTIVE;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 6;
}
static void
kue_init(void *xsc)
{
struct kue_softc *sc = xsc;
struct ifnet *ifp = GET_IFP(sc);
int s;
uint8_t eaddr[ETHER_ADDR_LEN];
DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__));
if (ifp->if_flags & IFF_RUNNING)
return;
s = splnet();
memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
/* Set MAC address */
kue_ctl(sc, KUE_CTL_WRITE, KUE_CMD_SET_MAC, 0, eaddr, ETHER_ADDR_LEN);
sc->kue_rxfilt = KUE_RXFILT_UNICAST | KUE_RXFILT_BROADCAST;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
sc->kue_rxfilt |= KUE_RXFILT_PROMISC;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER, sc->kue_rxfilt);
/* I'm not sure how to tune these. */
#if 0
/*
* Leave this one alone for now; setting it
* wrong causes lockups on some machines/controllers.
*/
kue_setword(sc, KUE_CMD_SET_SOFS, 1);
#endif
kue_setword(sc, KUE_CMD_SET_URB_SIZE, 64);
/* Load the multicast filter. */
kue_setmulti(sc);
if (sc->kue_ep[KUE_ENDPT_RX] == NULL) {
if (kue_open_pipes(sc)) {
splx(s);
return;
}
}
/* Init TX ring. */
if (kue_tx_list_init(sc)) {
printf("%s: tx list init failed\n", device_xname(sc->kue_dev));
splx(s);
return;
}
/* Init RX ring. */
if (kue_rx_list_init(sc)) {
printf("%s: rx list init failed\n", device_xname(sc->kue_dev));
splx(s);
return;
}
/* Start up the receive pipe. */
for (size_t i = 0; i < KUE_RX_LIST_CNT; i++) {
struct kue_chain *c = &sc->kue_cdata.kue_rx_chain[i];
usbd_setup_xfer(c->kue_xfer, c, c->kue_buf, KUE_BUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, kue_rxeof);
DPRINTFN(5,("%s: %s: start read\n", device_xname(sc->kue_dev),
__func__));
usbd_transfer(c->kue_xfer);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
}
static int
kue_open_pipes(struct kue_softc *sc)
{
usbd_status err;
DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__));
/* Open RX and TX pipes. */
err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_RX],
USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_RX]);
if (err) {
printf("%s: open rx pipe failed: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
return EIO;
}
err = usbd_open_pipe(sc->kue_iface, sc->kue_ed[KUE_ENDPT_TX],
USBD_EXCLUSIVE_USE, &sc->kue_ep[KUE_ENDPT_TX]);
if (err) {
printf("%s: open tx pipe failed: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
return EIO;
}
return 0;
}
static int
kue_ioctl(struct ifnet *ifp, u_long command, void *data)
{
struct kue_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__));
if (sc->kue_dying)
return EIO;
s = splnet();
switch(command) {
case SIOCINITIFADDR:
ifp->if_flags |= IFF_UP;
kue_init(sc);
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
arp_ifinit(ifp, ifa);
break;
#endif /* INET */
}
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU)
error = EINVAL;
else if ((error = ifioctl_common(ifp, command, data)) == ENETRESET)
error = 0;
break;
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, command, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc->kue_if_flags & IFF_PROMISC)) {
sc->kue_rxfilt |= KUE_RXFILT_PROMISC;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER,
sc->kue_rxfilt);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc->kue_if_flags & IFF_PROMISC) {
sc->kue_rxfilt &= ~KUE_RXFILT_PROMISC;
kue_setword(sc, KUE_CMD_SET_PKT_FILTER,
sc->kue_rxfilt);
} else if (!(ifp->if_flags & IFF_RUNNING))
kue_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
kue_stop(sc);
}
sc->kue_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = ether_ioctl(ifp, command, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
kue_setmulti(sc);
error = 0;
}
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
splx(s);
return error;
}
static void
kue_watchdog(struct ifnet *ifp)
{
struct kue_softc *sc = ifp->if_softc;
struct kue_chain *c;
usbd_status stat;
int s;
DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__));
if (sc->kue_dying)
return;
ifp->if_oerrors++;
printf("%s: watchdog timeout\n", device_xname(sc->kue_dev));
s = splusb();
c = &sc->kue_cdata.kue_tx_chain[0];
usbd_get_xfer_status(c->kue_xfer, NULL, NULL, NULL, &stat);
kue_txeof(c->kue_xfer, c, stat);
if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
kue_start(ifp);
splx(s);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
kue_stop(struct kue_softc *sc)
{
usbd_status err;
struct ifnet *ifp;
int i;
DPRINTFN(5,("%s: %s: enter\n", device_xname(sc->kue_dev),__func__));
ifp = GET_IFP(sc);
ifp->if_timer = 0;
/* Stop transfers. */
if (sc->kue_ep[KUE_ENDPT_RX] != NULL) {
err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_RX]);
if (err) {
printf("%s: abort rx pipe failed: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
}
}
if (sc->kue_ep[KUE_ENDPT_TX] != NULL) {
err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_TX]);
if (err) {
printf("%s: abort tx pipe failed: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
}
}
if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) {
err = usbd_abort_pipe(sc->kue_ep[KUE_ENDPT_INTR]);
if (err) {
printf("%s: abort intr pipe failed: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
}
}
/* Free RX resources. */
for (i = 0; i < KUE_RX_LIST_CNT; i++) {
if (sc->kue_cdata.kue_rx_chain[i].kue_xfer != NULL) {
usbd_destroy_xfer(sc->kue_cdata.kue_rx_chain[i].kue_xfer);
sc->kue_cdata.kue_rx_chain[i].kue_xfer = NULL;
}
}
/* Free TX resources. */
for (i = 0; i < KUE_TX_LIST_CNT; i++) {
if (sc->kue_cdata.kue_tx_chain[i].kue_xfer != NULL) {
usbd_destroy_xfer(sc->kue_cdata.kue_tx_chain[i].kue_xfer);
sc->kue_cdata.kue_tx_chain[i].kue_xfer = NULL;
}
}
/* Close pipes. */
if (sc->kue_ep[KUE_ENDPT_RX] != NULL) {
err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_RX]);
if (err) {
printf("%s: close rx pipe failed: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
}
sc->kue_ep[KUE_ENDPT_RX] = NULL;
}
if (sc->kue_ep[KUE_ENDPT_TX] != NULL) {
err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_TX]);
if (err) {
printf("%s: close tx pipe failed: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
}
sc->kue_ep[KUE_ENDPT_TX] = NULL;
}
if (sc->kue_ep[KUE_ENDPT_INTR] != NULL) {
err = usbd_close_pipe(sc->kue_ep[KUE_ENDPT_INTR]);
if (err) {
printf("%s: close intr pipe failed: %s\n",
device_xname(sc->kue_dev), usbd_errstr(err));
}
sc->kue_ep[KUE_ENDPT_INTR] = NULL;
}
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
}