NetBSD/sys/dev/ic/arn9287.c
christos b787afbfb6 - remove unused variables
- move variables inside ifdef sections
- ifdef notdef unused code
- use __USE for debugging variables
2013-10-17 21:24:24 +00:00

634 lines
19 KiB
C

/* $NetBSD: arn9287.c,v 1.3 2013/10/17 21:24:24 christos Exp $ */
/* $OpenBSD: ar9287.c,v 1.17 2012/06/10 21:23:36 kettenis Exp $ */
/*-
* Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Atheros 802.11a/g/n chipsets.
* Routines for AR9227 and AR9287 chipsets.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: arn9287.c,v 1.3 2013/10/17 21:24:24 christos Exp $");
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/athnreg.h>
#include <dev/ic/athnvar.h>
#include <dev/ic/arn5008reg.h>
#include <dev/ic/arn9280reg.h>
#include <dev/ic/arn9287reg.h>
#include <dev/ic/arn5008.h>
#include <dev/ic/arn9280.h>
#include <dev/ic/arn9287.h>
#define Static static
Static void ar9287_get_pdadcs(struct athn_softc *,
struct ieee80211_channel *, int, int, uint8_t, uint8_t *,
uint8_t *);
Static const struct ar_spur_chan *
ar9287_get_spur_chans(struct athn_softc *, int);
Static void ar9287_init_from_rom(struct athn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
Static void ar9287_olpc_get_pdgain(struct athn_softc *,
struct ieee80211_channel *, int, int8_t *);
Static void ar9287_olpc_init(struct athn_softc *);
Static void ar9287_olpc_temp_compensation(struct athn_softc *);
Static void ar9287_set_power_calib(struct athn_softc *,
struct ieee80211_channel *);
Static void ar9287_set_txpower(struct athn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
Static void ar9287_setup(struct athn_softc *);
Static void ar9287_swap_rom(struct athn_softc *);
PUBLIC int
ar9287_attach(struct athn_softc *sc)
{
sc->sc_eep_base = AR9287_EEP_START_LOC;
sc->sc_eep_size = sizeof(struct ar9287_eeprom);
sc->sc_def_nf = AR9287_PHY_CCA_MAX_GOOD_VALUE;
sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 11;
sc->sc_led_pin = 8;
sc->sc_workaround = AR9285_WA_DEFAULT;
sc->sc_ops.setup = ar9287_setup;
sc->sc_ops.swap_rom = ar9287_swap_rom;
sc->sc_ops.init_from_rom = ar9287_init_from_rom;
sc->sc_ops.set_txpower = ar9287_set_txpower;
sc->sc_ops.set_synth = ar9280_set_synth;
sc->sc_ops.spur_mitigate = ar9280_spur_mitigate;
sc->sc_ops.get_spur_chans = ar9287_get_spur_chans;
sc->sc_ops.olpc_init = ar9287_olpc_init;
sc->sc_ops.olpc_temp_compensation = ar9287_olpc_temp_compensation;
sc->sc_ini = &ar9287_1_1_ini;
sc->sc_serdes = &ar9280_2_0_serdes;
return ar5008_attach(sc);
}
Static void
ar9287_setup(struct athn_softc *sc)
{
const struct ar9287_eeprom *eep = sc->sc_eep;
/* Determine if open loop power control should be used. */
if (eep->baseEepHeader.openLoopPwrCntl)
sc->sc_flags |= ATHN_FLAG_OLPC;
sc->sc_rx_gain = &ar9287_1_1_rx_gain;
sc->sc_tx_gain = &ar9287_1_1_tx_gain;
}
Static void
ar9287_swap_rom(struct athn_softc *sc)
{
struct ar9287_eeprom *eep = sc->sc_eep;
int i;
eep->modalHeader.antCtrlCommon =
bswap32(eep->modalHeader.antCtrlCommon);
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
eep->modalHeader.antCtrlChain[i] =
bswap32(eep->modalHeader.antCtrlChain[i]);
}
for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
eep->modalHeader.spurChans[i].spurChan =
bswap16(eep->modalHeader.spurChans[i].spurChan);
}
}
Static const struct ar_spur_chan *
ar9287_get_spur_chans(struct athn_softc *sc, int is2ghz)
{
const struct ar9287_eeprom *eep = sc->sc_eep;
KASSERT(is2ghz);
return eep->modalHeader.spurChans;
}
Static void
ar9287_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
const struct ar9287_eeprom *eep = sc->sc_eep;
const struct ar9287_modal_eep_header *modal = &eep->modalHeader;
uint32_t reg, offset;
int i;
AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
offset = i * 0x1000;
AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset,
modal->antCtrlChain[i]);
reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset);
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
modal->iqCalICh[i]);
reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
modal->iqCalQCh[i]);
AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg);
reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
modal->bswMargin[i]);
reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB,
modal->bswAtten[i]);
AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN,
modal->rxTxMarginCh[i]);
reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN,
modal->txRxAttenCh[i]);
AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);
}
reg = AR_READ(sc, AR_PHY_SETTLING);
#ifndef IEEE80211_NO_HT
if (extc != NULL)
reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
else
#endif
reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
AR_WRITE(sc, AR_PHY_SETTLING, reg);
reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
AR_WRITE(sc, AR_PHY_RF_CTL4, reg);
reg = AR_READ(sc, AR_PHY_RF_CTL3);
reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
AR_WRITE(sc, AR_PHY_RF_CTL3, reg);
reg = AR_READ(sc, AR_PHY_CCA(0));
reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62);
AR_WRITE(sc, AR_PHY_CCA(0), reg);
reg = AR_READ(sc, AR_PHY_EXT_CCA0);
reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62);
AR_WRITE(sc, AR_PHY_EXT_CCA0, reg);
reg = AR_READ(sc, AR9287_AN_RF2G3_CH0);
reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1);
reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2);
reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck);
reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk);
reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam);
reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off);
AR_WRITE(sc, AR9287_AN_RF2G3_CH0, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
reg = AR_READ(sc, AR9287_AN_RF2G3_CH1);
reg = RW(reg, AR9287_AN_RF2G3_DB1, modal->db1);
reg = RW(reg, AR9287_AN_RF2G3_DB2, modal->db2);
reg = RW(reg, AR9287_AN_RF2G3_OB_CCK, modal->ob_cck);
reg = RW(reg, AR9287_AN_RF2G3_OB_PSK, modal->ob_psk);
reg = RW(reg, AR9287_AN_RF2G3_OB_QAM, modal->ob_qam);
reg = RW(reg, AR9287_AN_RF2G3_OB_PAL_OFF, modal->ob_pal_off);
AR_WRITE(sc, AR9287_AN_RF2G3_CH1, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
reg = AR_READ(sc, AR_PHY_RF_CTL2);
reg = RW(reg, AR_PHY_TX_END_DATA_START, modal->txFrameToDataStart);
reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn);
AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
reg = AR_READ(sc, AR9287_AN_TOP2);
reg = RW(reg, AR9287_AN_TOP2_XPABIAS_LVL, modal->xpaBiasLvl);
AR_WRITE(sc, AR9287_AN_TOP2, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
}
Static void
ar9287_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries,
uint8_t *pdadcs)
{
const struct ar9287_eeprom *eep = sc->sc_eep;
const struct ar9287_cal_data_per_freq *pierdata;
const uint8_t *pierfreq;
struct athn_pier lopier, hipier;
int16_t delta;
uint8_t fbin;
int i, lo, hi, npiers;
pierfreq = eep->calFreqPier2G;
pierdata = (const struct ar9287_cal_data_per_freq *)
eep->calPierData2G[chain];
npiers = AR9287_NUM_2G_CAL_PIERS;
/* Find channel in ROM pier table. */
fbin = athn_chan2fbin(c);
athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
lopier.fbin = pierfreq[lo];
hipier.fbin = pierfreq[hi];
for (i = 0; i < nxpdgains; i++) {
lopier.pwr[i] = pierdata[lo].pwrPdg[i];
lopier.vpd[i] = pierdata[lo].vpdPdg[i];
hipier.pwr[i] = pierdata[lo].pwrPdg[i];
hipier.vpd[i] = pierdata[lo].vpdPdg[i];
}
ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
AR9287_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);
delta = (eep->baseEepHeader.pwrTableOffset -
AR_PWR_TABLE_OFFSET_DB) * 2; /* In half dB. */
if (delta != 0) {
/* Shift the PDADC table to start at the new offset. */
/* XXX Our padding value differs from Linux. */
for (i = 0; i < AR_NUM_PDADC_VALUES; i++)
pdadcs[i] = pdadcs[MIN(i + delta,
AR_NUM_PDADC_VALUES - 1)];
}
}
Static void
ar9287_olpc_get_pdgain(struct athn_softc *sc, struct ieee80211_channel *c,
int chain, int8_t *pwr)
{
const struct ar9287_eeprom *eep = sc->sc_eep;
const struct ar_cal_data_per_freq_olpc *pierdata;
const uint8_t *pierfreq;
uint8_t fbin;
int lo, hi, npiers;
pierfreq = eep->calFreqPier2G;
pierdata = (const struct ar_cal_data_per_freq_olpc *)
eep->calPierData2G[chain];
npiers = AR9287_NUM_2G_CAL_PIERS;
/* Find channel in ROM pier table. */
fbin = athn_chan2fbin(c);
athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);
#if 0
*pwr = athn_interpolate(fbin,
pierfreq[lo], pierdata[lo].pwrPdg[0][0],
pierfreq[hi], pierdata[hi].pwrPdg[0][0]);
#else
*pwr = (pierdata[lo].pwrPdg[0][0] + pierdata[hi].pwrPdg[0][0]) / 2;
#endif
}
Static void
ar9287_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
{
const struct ar9287_eeprom *eep = sc->sc_eep;
uint8_t boundaries[AR_PD_GAINS_IN_MASK];
uint8_t pdadcs[AR_NUM_PDADC_VALUES];
uint8_t xpdgains[AR9287_NUM_PD_GAINS];
int8_t txpower;
uint8_t overlap;
uint32_t reg, offset;
int i, j, nxpdgains;
if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) {
overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
}
else
overlap = eep->modalHeader.pdGainOverlap;
if (sc->sc_flags & ATHN_FLAG_OLPC) {
/* XXX not here. */
sc->sc_pdadc =
((const struct ar_cal_data_per_freq_olpc *)
eep->calPierData2G[0])->vpdPdg[0][0];
}
nxpdgains = 0;
memset(xpdgains, 0, sizeof(xpdgains));
for (i = AR9287_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
if (nxpdgains >= AR9287_NUM_PD_GAINS)
break; /* Can't happen. */
if (eep->modalHeader.xpdGain & (1 << i))
xpdgains[nxpdgains++] = i;
}
reg = AR_READ(sc, AR_PHY_TPCRG1);
reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
AR_WRITE(sc, AR_PHY_TPCRG1, reg);
AR_WRITE_BARRIER(sc);
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
if (!(sc->sc_txchainmask & (1 << i)))
continue;
offset = i * 0x1000;
if (sc->sc_flags & ATHN_FLAG_OLPC) {
ar9287_olpc_get_pdgain(sc, c, i, &txpower);
reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0);
reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg);
reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1);
reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg);
/* NB: txpower is in half dB. */
reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset);
reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_PWR, txpower);
AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11 + offset, reg);
AR_WRITE_BARRIER(sc);
continue; /* That's it for open loop mode. */
}
/* Closed loop power control. */
ar9287_get_pdadcs(sc, c, i, nxpdgains, overlap,
boundaries, pdadcs);
/* Write boundaries. */
if (i == 0) {
reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP,
overlap);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1,
boundaries[0]);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2,
boundaries[1]);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3,
boundaries[2]);
reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4,
boundaries[3]);
AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg);
}
/* Write PDADC values. */
for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) {
AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j,
pdadcs[j + 0] << 0 |
pdadcs[j + 1] << 8 |
pdadcs[j + 2] << 16 |
pdadcs[j + 3] << 24);
}
AR_WRITE_BARRIER(sc);
}
}
Static void
ar9287_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
const struct ar9287_eeprom *eep = sc->sc_eep;
#ifdef notyet
const struct ar9287_modal_eep_header *modal = &eep->modalHeader;
#endif
uint8_t tpow_cck[4], tpow_ofdm[4];
#ifndef IEEE80211_NO_HT
uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
uint8_t tpow_ht20[8], tpow_ht40[8];
uint8_t ht40inc;
#endif
int16_t pwr = 0, power[ATHN_POWER_COUNT];
int i;
ar9287_set_power_calib(sc, c);
#ifdef notyet
/* Compute transmit power reduction due to antenna gain. */
uint16_t max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]);
/* XXX */
#endif
/*
* Reduce scaled power by number of active chains to get per-chain
* transmit power level.
*/
if (sc->sc_ntxchains == 2)
pwr -= AR_PWR_DECREASE_FOR_2_CHAIN;
if (pwr < 0)
pwr = 0;
/* Get CCK target powers. */
ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
AR9287_NUM_2G_CCK_TARGET_POWERS, tpow_cck);
/* Get OFDM target powers. */
ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
AR9287_NUM_2G_20_TARGET_POWERS, tpow_ofdm);
#ifndef IEEE80211_NO_HT
/* Get HT-20 target powers. */
ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20,
AR9287_NUM_2G_20_TARGET_POWERS, tpow_ht20);
if (extc != NULL) {
/* Get HT-40 target powers. */
ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
eep->calTargetPower2GHT40, AR9287_NUM_2G_40_TARGET_POWERS,
tpow_ht40);
/* Get secondary channel CCK target powers. */
ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
eep->calTargetPowerCck, AR9287_NUM_2G_CCK_TARGET_POWERS,
tpow_cck_ext);
/* Get secondary channel OFDM target powers. */
ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
eep->calTargetPower2G, AR9287_NUM_2G_20_TARGET_POWERS,
tpow_ofdm_ext);
}
#endif
memset(power, 0, sizeof(power));
/* Shuffle target powers accross transmit rates. */
power[ATHN_POWER_OFDM6 ] =
power[ATHN_POWER_OFDM9 ] =
power[ATHN_POWER_OFDM12 ] =
power[ATHN_POWER_OFDM18 ] =
power[ATHN_POWER_OFDM24 ] = tpow_ofdm[0];
power[ATHN_POWER_OFDM36 ] = tpow_ofdm[1];
power[ATHN_POWER_OFDM48 ] = tpow_ofdm[2];
power[ATHN_POWER_OFDM54 ] = tpow_ofdm[3];
power[ATHN_POWER_XR ] = tpow_ofdm[0];
power[ATHN_POWER_CCK1_LP ] = tpow_cck[0];
power[ATHN_POWER_CCK2_LP ] =
power[ATHN_POWER_CCK2_SP ] = tpow_cck[1];
power[ATHN_POWER_CCK55_LP] =
power[ATHN_POWER_CCK55_SP] = tpow_cck[2];
power[ATHN_POWER_CCK11_LP] =
power[ATHN_POWER_CCK11_SP] = tpow_cck[3];
#ifndef IEEE80211_NO_HT
for (i = 0; i < nitems(tpow_ht20); i++)
power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
if (extc != NULL) {
/* Correct PAR difference between HT40 and HT20/Legacy. */
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2)
ht40inc = modal->ht40PowerIncForPdadc;
else
ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
for (i = 0; i < nitems(tpow_ht40); i++)
power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0];
power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
if (IEEE80211_IS_CHAN_2GHZ(c))
power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0];
}
#endif
for (i = 0; i < ATHN_POWER_COUNT; i++) {
power[i] -= AR_PWR_TABLE_OFFSET_DB * 2; /* In half dB. */
if (power[i] > AR_MAX_RATE_POWER)
power[i] = AR_MAX_RATE_POWER;
}
/* Commit transmit power values to hardware. */
ar5008_write_txpower(sc, power);
}
Static void
ar9287_olpc_init(struct athn_softc *sc)
{
uint32_t reg;
AR_SETBITS(sc, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
reg = AR_READ(sc, AR9287_AN_TXPC0);
reg = RW(reg, AR9287_AN_TXPC0_TXPCMODE,
AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
AR_WRITE(sc, AR9287_AN_TXPC0, reg);
AR_WRITE_BARRIER(sc);
DELAY(100);
}
Static void
ar9287_olpc_temp_compensation(struct athn_softc *sc)
{
const struct ar9287_eeprom *eep = sc->sc_eep;
int8_t pdadc, slope, tcomp;
uint32_t reg;
reg = AR_READ(sc, AR_PHY_TX_PWRCTRL4);
pdadc = MS(reg, AR_PHY_TX_PWRCTRL_PD_AVG_OUT);
DPRINTFN(DBG_RF, sc, "PD Avg Out=%d\n", pdadc);
if (sc->sc_pdadc == 0 || pdadc == 0)
return; /* No frames transmitted yet. */
/* Compute Tx gain temperature compensation. */
if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2)
slope = eep->baseEepHeader.tempSensSlope;
else
slope = 0;
if (slope != 0) /* Prevents division by zero. */
tcomp = ((pdadc - sc->sc_pdadc) * 4) / slope;
else
tcomp = 0;
DPRINTFN(DBG_RF, sc, "OLPC temp compensation=%d\n", tcomp);
/* Write compensation value for both Tx chains. */
reg = AR_READ(sc, AR_PHY_CH0_TX_PWRCTRL11);
reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp);
AR_WRITE(sc, AR_PHY_CH0_TX_PWRCTRL11, reg);
reg = AR_READ(sc, AR_PHY_CH1_TX_PWRCTRL11);
reg = RW(reg, AR_PHY_TX_PWRCTRL_OLPC_TEMP_COMP, tcomp);
AR_WRITE(sc, AR_PHY_CH1_TX_PWRCTRL11, reg);
AR_WRITE_BARRIER(sc);
}
PUBLIC void
ar9287_1_3_enable_async_fifo(struct athn_softc *sc)
{
/* Enable ASYNC FIFO. */
AR_SETBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3,
AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
AR_SETBITS(sc, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
AR_CLRBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3,
AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
AR_SETBITS(sc, AR_MAC_PCU_ASYNC_FIFO_REG3,
AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
AR_WRITE_BARRIER(sc);
}
PUBLIC void
ar9287_1_3_setup_async_fifo(struct athn_softc *sc)
{
uint32_t reg;
/*
* MAC runs at 117MHz (instead of 88/44MHz) when ASYNC FIFO is
* enabled, so the following counters have to be changed.
*/
AR_WRITE(sc, AR_D_GBL_IFS_SIFS, AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
AR_WRITE(sc, AR_D_GBL_IFS_SLOT, AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
AR_WRITE(sc, AR_D_GBL_IFS_EIFS, AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
AR_WRITE(sc, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
AR_WRITE(sc, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
AR_SETBITS(sc, AR_MAC_PCU_LOGIC_ANALYZER,
AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
reg = AR_READ(sc, AR_AHB_MODE);
reg = RW(reg, AR_AHB_CUSTOM_BURST, AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
AR_WRITE(sc, AR_AHB_MODE, reg);
AR_SETBITS(sc, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
AR_WRITE_BARRIER(sc);
}