5a3b0bf2c9
FPU will be used and needs to be switched on next context switch. Fix "panic: npxintr: wrong process" with Xen.
730 lines
20 KiB
C
730 lines
20 KiB
C
/* $NetBSD: npx.c,v 1.134 2008/11/25 21:53:50 bouyer Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2008 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software developed for The NetBSD Foundation
|
|
* by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1991 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)npx.c 7.2 (Berkeley) 5/12/91
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1994, 1995, 1998 Charles M. Hannum. All rights reserved.
|
|
* Copyright (c) 1990 William Jolitz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)npx.c 7.2 (Berkeley) 5/12/91
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: npx.c,v 1.134 2008/11/25 21:53:50 bouyer Exp $");
|
|
|
|
#if 0
|
|
#define IPRINTF(x) printf x
|
|
#else
|
|
#define IPRINTF(x)
|
|
#endif
|
|
|
|
#include "opt_multiprocessor.h"
|
|
#include "opt_xen.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/user.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/device.h>
|
|
#include <sys/vmmeter.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <machine/cpufunc.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/trap.h>
|
|
#include <machine/specialreg.h>
|
|
#include <machine/pio.h>
|
|
#include <machine/i8259.h>
|
|
|
|
#include <dev/isa/isareg.h>
|
|
#include <dev/isa/isavar.h>
|
|
|
|
#include <i386/isa/npxvar.h>
|
|
|
|
/*
|
|
* 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
|
|
*
|
|
* We do lazy initialization and switching using the TS bit in cr0 and the
|
|
* MDL_USEDFPU bit in mdlwp.
|
|
*
|
|
* DNA exceptions are handled like this:
|
|
*
|
|
* 1) If there is no NPX, return and go to the emulator.
|
|
* 2) If someone else has used the NPX, save its state into that process's PCB.
|
|
* 3a) If MDL_USEDFPU is not set, set it and initialize the NPX.
|
|
* 3b) Otherwise, reload the process's previous NPX state.
|
|
*
|
|
* When a process is created or exec()s, its saved cr0 image has the TS bit
|
|
* set and the MDL_USEDFPU bit clear. The MDL_USEDFPU bit is set when the
|
|
* process first gets a DNA and the NPX is initialized. The TS bit is turned
|
|
* off when the NPX is used, and turned on again later when the process's NPX
|
|
* state is saved.
|
|
*/
|
|
|
|
static int x86fpflags_to_ksiginfo(uint32_t flags);
|
|
static int npxdna(struct cpu_info *);
|
|
|
|
#ifdef XEN
|
|
#define clts()
|
|
#define stts()
|
|
#endif
|
|
|
|
static enum npx_type npx_type;
|
|
volatile u_int npx_intrs_while_probing;
|
|
volatile u_int npx_traps_while_probing;
|
|
|
|
extern int i386_fpu_present;
|
|
extern int i386_fpu_exception;
|
|
extern int i386_fpu_fdivbug;
|
|
|
|
struct npx_softc *npx_softc;
|
|
|
|
static inline void
|
|
fpu_save(union savefpu *addr)
|
|
{
|
|
if (i386_use_fxsave)
|
|
{
|
|
fxsave(&addr->sv_xmm);
|
|
|
|
/* FXSAVE doesn't FNINIT like FNSAVE does -- so do it here. */
|
|
fninit();
|
|
} else
|
|
fnsave(&addr->sv_87);
|
|
}
|
|
|
|
static int
|
|
npxdna_empty(struct cpu_info *ci)
|
|
{
|
|
|
|
#ifndef XEN
|
|
panic("npxdna vector not initialized");
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
int (*npxdna_func)(struct cpu_info *) = npxdna_empty;
|
|
|
|
#ifndef XEN
|
|
/*
|
|
* This calls i8259_* directly, but currently we can count on systems
|
|
* having a i8259 compatible setup all the time. Maybe have to change
|
|
* that in the future.
|
|
*/
|
|
enum npx_type
|
|
npxprobe1(bus_space_tag_t iot, bus_space_handle_t ioh, int irq)
|
|
{
|
|
struct gate_descriptor save_idt_npxintr;
|
|
struct gate_descriptor save_idt_npxtrap;
|
|
enum npx_type rv = NPX_NONE;
|
|
u_long save_eflags;
|
|
int control;
|
|
int status;
|
|
unsigned irqmask;
|
|
|
|
if (cpu_feature & CPUID_FPU) {
|
|
i386_fpu_exception = 1;
|
|
return NPX_CPUID;
|
|
}
|
|
save_eflags = x86_read_psl();
|
|
x86_disable_intr();
|
|
save_idt_npxintr = idt[NRSVIDT + irq];
|
|
save_idt_npxtrap = idt[16];
|
|
setgate(&idt[NRSVIDT + irq], probeintr, 0, SDT_SYS386IGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
setgate(&idt[16], probetrap, 0, SDT_SYS386TGT, SEL_KPL,
|
|
GSEL(GCODE_SEL, SEL_KPL));
|
|
|
|
irqmask = i8259_setmask(~((1 << IRQ_SLAVE) | (1 << irq)));
|
|
|
|
/*
|
|
* Partially reset the coprocessor, if any. Some BIOS's don't reset
|
|
* it after a warm boot.
|
|
*/
|
|
/* full reset on some systems, NOP on others */
|
|
bus_space_write_1(iot, ioh, 1, 0);
|
|
delay(1000);
|
|
/* clear BUSY# latch */
|
|
bus_space_write_1(iot, ioh, 0, 0);
|
|
|
|
/*
|
|
* We set CR0 in locore to trap all ESC and WAIT instructions.
|
|
* We have to turn off the CR0_EM bit temporarily while probing.
|
|
*/
|
|
lcr0(rcr0() & ~(CR0_EM|CR0_TS));
|
|
x86_enable_intr();
|
|
|
|
/*
|
|
* Finish resetting the coprocessor, if any. If there is an error
|
|
* pending, then we may get a bogus IRQ13, but probeintr() will handle
|
|
* it OK. Bogus halts have never been observed, but we enabled
|
|
* IRQ13 and cleared the BUSY# latch early to handle them anyway.
|
|
*/
|
|
fninit();
|
|
delay(1000); /* wait for any IRQ13 (fwait might hang) */
|
|
|
|
/*
|
|
* Check for a status of mostly zero.
|
|
*/
|
|
status = 0x5a5a;
|
|
fnstsw(&status);
|
|
if ((status & 0xb8ff) == 0) {
|
|
/*
|
|
* Good, now check for a proper control word.
|
|
*/
|
|
control = 0x5a5a;
|
|
fnstcw(&control);
|
|
if ((control & 0x1f3f) == 0x033f) {
|
|
/*
|
|
* We have an npx, now divide by 0 to see if exception
|
|
* 16 works.
|
|
*/
|
|
control &= ~(1 << 2); /* enable divide by 0 trap */
|
|
fldcw(&control);
|
|
npx_traps_while_probing = npx_intrs_while_probing = 0;
|
|
fp_divide_by_0();
|
|
if (npx_traps_while_probing != 0) {
|
|
/*
|
|
* Good, exception 16 works.
|
|
*/
|
|
rv = NPX_EXCEPTION;
|
|
i386_fpu_exception = 1;
|
|
} else if (npx_intrs_while_probing != 0) {
|
|
/*
|
|
* Bad, we are stuck with IRQ13.
|
|
*/
|
|
rv = NPX_INTERRUPT;
|
|
} else {
|
|
/*
|
|
* Worse, even IRQ13 is broken. Use emulator.
|
|
*/
|
|
rv = NPX_BROKEN;
|
|
}
|
|
}
|
|
}
|
|
|
|
x86_disable_intr();
|
|
lcr0(rcr0() | (CR0_EM|CR0_TS));
|
|
|
|
irqmask = i8259_setmask(irqmask);
|
|
|
|
idt[NRSVIDT + irq] = save_idt_npxintr;
|
|
|
|
idt[16] = save_idt_npxtrap;
|
|
x86_write_psl(save_eflags);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
void npxinit(struct cpu_info *ci)
|
|
{
|
|
lcr0(rcr0() & ~(CR0_EM|CR0_TS));
|
|
fninit();
|
|
if (npx586bug1(4195835, 3145727) != 0) {
|
|
i386_fpu_fdivbug = 1;
|
|
aprint_normal_dev(ci->ci_dev,
|
|
"WARNING: Pentium FDIV bug detected!\n");
|
|
}
|
|
lcr0(rcr0() | (CR0_TS));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Common attach routine.
|
|
*/
|
|
void
|
|
npxattach(struct npx_softc *sc)
|
|
{
|
|
|
|
npx_softc = sc;
|
|
npx_type = sc->sc_type;
|
|
|
|
#ifndef XEN
|
|
npxinit(&cpu_info_primary);
|
|
#endif
|
|
i386_fpu_present = 1;
|
|
npxdna_func = npxdna;
|
|
|
|
if (!pmf_device_register(sc->sc_dev, NULL, NULL))
|
|
aprint_error_dev(sc->sc_dev, "couldn't establish power handler\n");
|
|
}
|
|
|
|
int
|
|
npxdetach(device_t self, int flags)
|
|
{
|
|
struct npx_softc *sc = device_private(self);
|
|
|
|
if (sc->sc_type == NPX_INTERRUPT)
|
|
return EBUSY;
|
|
|
|
pmf_device_deregister(self);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Record the FPU state and reinitialize it all except for the control word.
|
|
* Then generate a SIGFPE.
|
|
*
|
|
* Reinitializing the state allows naive SIGFPE handlers to longjmp without
|
|
* doing any fixups.
|
|
*
|
|
* XXX there is currently no way to pass the full error state to signal
|
|
* handlers, and if this is a nested interrupt there is no way to pass even
|
|
* a status code! So there is no way to have a non-naive SIGFPE handler. At
|
|
* best a handler could do an fninit followed by an fldcw of a static value.
|
|
* fnclex would be of little use because it would leave junk on the FPU stack.
|
|
* Returning from the handler would be even less safe than usual because
|
|
* IRQ13 exception handling makes exceptions even less precise than usual.
|
|
*/
|
|
int
|
|
npxintr(void *arg, struct intrframe *frame)
|
|
{
|
|
struct cpu_info *ci = curcpu();
|
|
struct lwp *l = ci->ci_fpcurlwp;
|
|
union savefpu *addr;
|
|
struct npx_softc *sc;
|
|
ksiginfo_t ksi;
|
|
|
|
sc = npx_softc;
|
|
|
|
kpreempt_disable();
|
|
#ifndef XEN
|
|
KASSERT((x86_read_psl() & PSL_I) == 0);
|
|
x86_enable_intr();
|
|
#endif
|
|
|
|
uvmexp.traps++;
|
|
IPRINTF(("%s: fp intr\n", device_xname(ci->ci_dev)));
|
|
|
|
#ifndef XEN
|
|
/*
|
|
* Clear the interrupt latch.
|
|
*/
|
|
bus_space_write_1(sc->sc_iot, sc->sc_ioh, 0, 0);
|
|
#endif
|
|
|
|
/*
|
|
* If we're saving, ignore the interrupt. The FPU will generate
|
|
* another one when we restore the state later.
|
|
*/
|
|
if (ci->ci_fpsaving) {
|
|
kpreempt_enable();
|
|
return (1);
|
|
}
|
|
|
|
if (l == NULL || npx_type == NPX_NONE) {
|
|
printf("npxintr: l = %p, curproc = %p, npx_type = %d\n",
|
|
l, curproc, npx_type);
|
|
printf("npxintr: came from nowhere");
|
|
kpreempt_enable();
|
|
return 1;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* At this point, fpcurlwp should be curlwp. If it wasn't, the TS
|
|
* bit should be set, and we should have gotten a DNA exception.
|
|
*/
|
|
if (l != curlwp)
|
|
panic("npxintr: wrong process");
|
|
#endif
|
|
|
|
/*
|
|
* Find the address of fpcurproc's saved FPU state. (Given the
|
|
* invariant above, this is always the one in curpcb.)
|
|
*/
|
|
addr = &l->l_addr->u_pcb.pcb_savefpu;
|
|
/*
|
|
* Save state. This does an implied fninit. It had better not halt
|
|
* the CPU or we'll hang.
|
|
*/
|
|
fpu_save(addr);
|
|
fwait();
|
|
if (i386_use_fxsave) {
|
|
fldcw(&addr->sv_xmm.sv_env.en_cw);
|
|
/*
|
|
* FNINIT doesn't affect MXCSR or the XMM registers;
|
|
* no need to re-load MXCSR here.
|
|
*/
|
|
} else
|
|
fldcw(&addr->sv_87.sv_env.en_cw);
|
|
fwait();
|
|
/*
|
|
* Remember the exception status word and tag word. The current
|
|
* (almost fninit'ed) fpu state is in the fpu and the exception
|
|
* state just saved will soon be junk. However, the implied fninit
|
|
* doesn't change the error pointers or register contents, and we
|
|
* preserved the control word and will copy the status and tag
|
|
* words, so the complete exception state can be recovered.
|
|
*/
|
|
if (i386_use_fxsave) {
|
|
addr->sv_xmm.sv_ex_sw = addr->sv_xmm.sv_env.en_sw;
|
|
addr->sv_xmm.sv_ex_tw = addr->sv_xmm.sv_env.en_tw;
|
|
} else {
|
|
addr->sv_87.sv_ex_sw = addr->sv_87.sv_env.en_sw;
|
|
addr->sv_87.sv_ex_tw = addr->sv_87.sv_env.en_tw;
|
|
}
|
|
/*
|
|
* Pass exception to process.
|
|
*/
|
|
if (USERMODE(frame->if_cs, frame->if_eflags)) {
|
|
/*
|
|
* Interrupt is essentially a trap, so we can afford to call
|
|
* the SIGFPE handler (if any) as soon as the interrupt
|
|
* returns.
|
|
*
|
|
* XXX little or nothing is gained from this, and plenty is
|
|
* lost - the interrupt frame has to contain the trap frame
|
|
* (this is otherwise only necessary for the rescheduling trap
|
|
* in doreti, and the frame for that could easily be set up
|
|
* just before it is used).
|
|
*/
|
|
l->l_md.md_regs = (struct trapframe *)&frame->if_gs;
|
|
|
|
KSI_INIT_TRAP(&ksi);
|
|
ksi.ksi_signo = SIGFPE;
|
|
ksi.ksi_addr = (void *)frame->if_eip;
|
|
|
|
/*
|
|
* Encode the appropriate code for detailed information on
|
|
* this exception.
|
|
*/
|
|
|
|
if (i386_use_fxsave) {
|
|
ksi.ksi_code =
|
|
x86fpflags_to_ksiginfo(addr->sv_xmm.sv_ex_sw);
|
|
ksi.ksi_trap = (int)addr->sv_xmm.sv_ex_sw;
|
|
} else {
|
|
ksi.ksi_code =
|
|
x86fpflags_to_ksiginfo(addr->sv_87.sv_ex_sw);
|
|
ksi.ksi_trap = (int)addr->sv_87.sv_ex_sw;
|
|
}
|
|
|
|
trapsignal(l, &ksi);
|
|
} else {
|
|
/*
|
|
* This is a nested interrupt. This should only happen when
|
|
* an IRQ13 occurs at the same time as a higher-priority
|
|
* interrupt.
|
|
*
|
|
* XXX
|
|
* Currently, we treat this like an asynchronous interrupt, but
|
|
* this has disadvantages.
|
|
*/
|
|
psignal(l->l_proc, SIGFPE);
|
|
}
|
|
|
|
kpreempt_enable();
|
|
return (1);
|
|
}
|
|
|
|
/* map x86 fp flags to ksiginfo fp codes */
|
|
/* see table 8-4 of the IA-32 Intel Architecture */
|
|
/* Software Developer's Manual, Volume 1 */
|
|
/* XXX punting on the stack fault with FLTINV */
|
|
static int
|
|
x86fpflags_to_ksiginfo(uint32_t flags)
|
|
{
|
|
int i;
|
|
static int x86fp_ksiginfo_table[] = {
|
|
FPE_FLTINV, /* bit 0 - invalid operation */
|
|
FPE_FLTRES, /* bit 1 - denormal operand */
|
|
FPE_FLTDIV, /* bit 2 - divide by zero */
|
|
FPE_FLTOVF, /* bit 3 - fp overflow */
|
|
FPE_FLTUND, /* bit 4 - fp underflow */
|
|
FPE_FLTRES, /* bit 5 - fp precision */
|
|
FPE_FLTINV, /* bit 6 - stack fault */
|
|
};
|
|
|
|
for(i=0;i < sizeof(x86fp_ksiginfo_table)/sizeof(int); i++) {
|
|
if (flags & (1 << i))
|
|
return(x86fp_ksiginfo_table[i]);
|
|
}
|
|
/* punt if flags not set */
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Implement device not available (DNA) exception
|
|
*
|
|
* If we were the last lwp to use the FPU, we can simply return.
|
|
* Otherwise, we save the previous state, if necessary, and restore
|
|
* our last saved state.
|
|
*/
|
|
static int
|
|
npxdna(struct cpu_info *ci)
|
|
{
|
|
struct lwp *l, *fl;
|
|
int s;
|
|
|
|
if (ci->ci_fpsaving) {
|
|
/* Recursive trap. */
|
|
return 1;
|
|
}
|
|
|
|
/* Lock out IPIs and disable preemption. */
|
|
s = splhigh();
|
|
#ifndef XEN
|
|
x86_enable_intr();
|
|
#endif
|
|
|
|
/* Save state on current CPU. */
|
|
l = ci->ci_curlwp;
|
|
fl = ci->ci_fpcurlwp;
|
|
if (fl != NULL) {
|
|
/*
|
|
* It seems we can get here on Xen even if we didn't
|
|
* switch lwp. In this case do nothing
|
|
*/
|
|
if (fl == l) {
|
|
KASSERT(l->l_addr->u_pcb.pcb_fpcpu == ci);
|
|
ci->ci_fpused = 1;
|
|
clts();
|
|
splx(s);
|
|
return 1;
|
|
}
|
|
KASSERT(fl != l);
|
|
npxsave_cpu(true);
|
|
KASSERT(ci->ci_fpcurlwp == NULL);
|
|
}
|
|
|
|
/* Save our state if on a remote CPU. */
|
|
if (l->l_addr->u_pcb.pcb_fpcpu != NULL) {
|
|
/* Explicitly disable preemption before dropping spl. */
|
|
KPREEMPT_DISABLE(l);
|
|
splx(s);
|
|
npxsave_lwp(l, true);
|
|
KASSERT(l->l_addr->u_pcb.pcb_fpcpu == NULL);
|
|
s = splhigh();
|
|
KPREEMPT_ENABLE(l);
|
|
}
|
|
|
|
/*
|
|
* Restore state on this CPU, or initialize. Ensure that
|
|
* the entire update is atomic with respect to FPU-sync IPIs.
|
|
*/
|
|
clts();
|
|
ci->ci_fpcurlwp = l;
|
|
l->l_addr->u_pcb.pcb_fpcpu = ci;
|
|
ci->ci_fpused = 1;
|
|
|
|
if ((l->l_md.md_flags & MDL_USEDFPU) == 0) {
|
|
fninit();
|
|
if (i386_use_fxsave) {
|
|
fldcw(&l->l_addr->u_pcb.pcb_savefpu.
|
|
sv_xmm.sv_env.en_cw);
|
|
} else {
|
|
fldcw(&l->l_addr->u_pcb.pcb_savefpu.
|
|
sv_87.sv_env.en_cw);
|
|
}
|
|
l->l_md.md_flags |= MDL_USEDFPU;
|
|
} else if (i386_use_fxsave) {
|
|
/*
|
|
* AMD FPU's do not restore FIP, FDP, and FOP on fxrstor,
|
|
* leaking other process's execution history. Clear them
|
|
* manually.
|
|
*/
|
|
static const double zero = 0.0;
|
|
int status;
|
|
/*
|
|
* Clear the ES bit in the x87 status word if it is currently
|
|
* set, in order to avoid causing a fault in the upcoming load.
|
|
*/
|
|
fnstsw(&status);
|
|
if (status & 0x80)
|
|
fnclex();
|
|
/*
|
|
* Load the dummy variable into the x87 stack. This mangles
|
|
* the x87 stack, but we don't care since we're about to call
|
|
* fxrstor() anyway.
|
|
*/
|
|
fldummy(&zero);
|
|
fxrstor(&l->l_addr->u_pcb.pcb_savefpu.sv_xmm);
|
|
} else {
|
|
frstor(&l->l_addr->u_pcb.pcb_savefpu.sv_87);
|
|
}
|
|
|
|
KASSERT(ci == curcpu());
|
|
splx(s);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Save current CPU's FPU state. Must be called at IPL_HIGH.
|
|
*/
|
|
void
|
|
npxsave_cpu(bool save)
|
|
{
|
|
struct cpu_info *ci;
|
|
struct lwp *l;
|
|
|
|
KASSERT(curcpu()->ci_ilevel == IPL_HIGH);
|
|
|
|
ci = curcpu();
|
|
l = ci->ci_fpcurlwp;
|
|
if (l == NULL)
|
|
return;
|
|
|
|
if (save) {
|
|
/*
|
|
* Set ci->ci_fpsaving, so that any pending exception will
|
|
* be thrown away. It will be caught again if/when the
|
|
* FPU state is restored.
|
|
*/
|
|
KASSERT(ci->ci_fpsaving == 0);
|
|
clts();
|
|
ci->ci_fpsaving = 1;
|
|
if (i386_use_fxsave) {
|
|
fxsave(&l->l_addr->u_pcb.pcb_savefpu.sv_xmm);
|
|
} else {
|
|
fnsave(&l->l_addr->u_pcb.pcb_savefpu.sv_87);
|
|
}
|
|
ci->ci_fpsaving = 0;
|
|
}
|
|
|
|
stts();
|
|
l->l_addr->u_pcb.pcb_fpcpu = NULL;
|
|
ci->ci_fpcurlwp = NULL;
|
|
ci->ci_fpused = 1;
|
|
}
|
|
|
|
/*
|
|
* Save l's FPU state, which may be on this processor or another processor.
|
|
* It may take some time, so we avoid disabling preemption where possible.
|
|
* Caller must know that the target LWP is stopped, otherwise this routine
|
|
* may race against it.
|
|
*/
|
|
void
|
|
npxsave_lwp(struct lwp *l, bool save)
|
|
{
|
|
struct cpu_info *oci;
|
|
int s, spins, ticks;
|
|
|
|
spins = 0;
|
|
ticks = hardclock_ticks;
|
|
for (;;) {
|
|
s = splhigh();
|
|
oci = l->l_addr->u_pcb.pcb_fpcpu;
|
|
if (oci == NULL) {
|
|
splx(s);
|
|
break;
|
|
}
|
|
if (oci == curcpu()) {
|
|
KASSERT(oci->ci_fpcurlwp == l);
|
|
npxsave_cpu(save);
|
|
splx(s);
|
|
break;
|
|
}
|
|
splx(s);
|
|
x86_send_ipi(oci, X86_IPI_SYNCH_FPU);
|
|
while (l->l_addr->u_pcb.pcb_fpcpu == oci &&
|
|
ticks == hardclock_ticks) {
|
|
x86_pause();
|
|
spins++;
|
|
}
|
|
if (spins > 100000000) {
|
|
panic("npxsave_lwp: did not");
|
|
}
|
|
}
|
|
|
|
if (!save) {
|
|
/* Ensure we restart with a clean slate. */
|
|
l->l_md.md_flags &= ~MDL_USEDFPU;
|
|
}
|
|
}
|