NetBSD/sys/netinet/ip_input.c

1176 lines
29 KiB
C

/* $NetBSD: ip_input.c,v 1.27 1996/01/16 04:17:37 thorpej Exp $ */
/*
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_input.c 8.2 (Berkeley) 1/4/94
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>
#ifndef IPFORWARDING
#ifdef GATEWAY
#define IPFORWARDING 1 /* forward IP packets not for us */
#else /* GATEWAY */
#define IPFORWARDING 0 /* don't forward IP packets not for us */
#endif /* GATEWAY */
#endif /* IPFORWARDING */
#ifndef IPSENDREDIRECTS
#define IPSENDREDIRECTS 1
#endif
#ifndef IPFORWSRCRT
#define IPFORWSRCRT 1 /* allow source-routed packets */
#endif
/*
* Note: DIRECTED_BROADCAST is handled this way so that previous
* configuration using this option will Just Work.
*/
#ifndef IPDIRECTEDBCAST
#ifdef DIRECTED_BROADCAST
#define IPDIRECTEDBCAST 1
#else
#define IPDIRECTEDBCAST 0
#endif /* DIRECTED_BROADCAST */
#endif /* IPDIRECTEDBCAST */
int ipforwarding = IPFORWARDING;
int ipsendredirects = IPSENDREDIRECTS;
int ip_defttl = IPDEFTTL;
int ip_forwsrcrt = IPFORWSRCRT;
int ip_directedbcast = IPDIRECTEDBCAST;
#ifdef DIAGNOSTIC
int ipprintfs = 0;
#endif
extern struct domain inetdomain;
extern struct protosw inetsw[];
u_char ip_protox[IPPROTO_MAX];
int ipqmaxlen = IFQ_MAXLEN;
struct in_ifaddrhead in_ifaddr;
struct ifqueue ipintrq;
/*
* We need to save the IP options in case a protocol wants to respond
* to an incoming packet over the same route if the packet got here
* using IP source routing. This allows connection establishment and
* maintenance when the remote end is on a network that is not known
* to us.
*/
int ip_nhops = 0;
static struct ip_srcrt {
struct in_addr dst; /* final destination */
char nop; /* one NOP to align */
char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
} ip_srcrt;
static void save_rte __P((u_char *, struct in_addr));
/*
* IP initialization: fill in IP protocol switch table.
* All protocols not implemented in kernel go to raw IP protocol handler.
*/
void
ip_init()
{
register struct protosw *pr;
register int i;
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
if (pr == 0)
panic("ip_init");
for (i = 0; i < IPPROTO_MAX; i++)
ip_protox[i] = pr - inetsw;
for (pr = inetdomain.dom_protosw;
pr < inetdomain.dom_protoswNPROTOSW; pr++)
if (pr->pr_domain->dom_family == PF_INET &&
pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
ip_protox[pr->pr_protocol] = pr - inetsw;
LIST_INIT(&ipq);
ip_id = time.tv_sec & 0xffff;
ipintrq.ifq_maxlen = ipqmaxlen;
TAILQ_INIT(&in_ifaddr);
}
struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
struct route ipforward_rt;
/*
* Ip input routine. Checksum and byte swap header. If fragmented
* try to reassemble. Process options. Pass to next level.
*/
void
ipintr()
{
register struct ip *ip;
register struct mbuf *m;
register struct ipq *fp;
register struct in_ifaddr *ia;
struct ipqent *ipqe;
int hlen, mff, s;
next:
/*
* Get next datagram off input queue and get IP header
* in first mbuf.
*/
s = splimp();
IF_DEQUEUE(&ipintrq, m);
splx(s);
if (m == 0)
return;
#ifdef DIAGNOSTIC
if ((m->m_flags & M_PKTHDR) == 0)
panic("ipintr no HDR");
#endif
/*
* If no IP addresses have been set yet but the interfaces
* are receiving, can't do anything with incoming packets yet.
*/
if (in_ifaddr.tqh_first == 0)
goto bad;
ipstat.ips_total++;
if (m->m_len < sizeof (struct ip) &&
(m = m_pullup(m, sizeof (struct ip))) == 0) {
ipstat.ips_toosmall++;
goto next;
}
ip = mtod(m, struct ip *);
if (ip->ip_v != IPVERSION) {
ipstat.ips_badvers++;
goto bad;
}
hlen = ip->ip_hl << 2;
if (hlen < sizeof(struct ip)) { /* minimum header length */
ipstat.ips_badhlen++;
goto bad;
}
if (hlen > m->m_len) {
if ((m = m_pullup(m, hlen)) == 0) {
ipstat.ips_badhlen++;
goto next;
}
ip = mtod(m, struct ip *);
}
if (ip->ip_sum = in_cksum(m, hlen)) {
ipstat.ips_badsum++;
goto bad;
}
/*
* Convert fields to host representation.
*/
NTOHS(ip->ip_len);
if (ip->ip_len < hlen) {
ipstat.ips_badlen++;
goto bad;
}
NTOHS(ip->ip_id);
NTOHS(ip->ip_off);
/*
* Check that the amount of data in the buffers
* is as at least much as the IP header would have us expect.
* Trim mbufs if longer than we expect.
* Drop packet if shorter than we expect.
*/
if (m->m_pkthdr.len < ip->ip_len) {
ipstat.ips_tooshort++;
goto bad;
}
if (m->m_pkthdr.len > ip->ip_len) {
if (m->m_len == m->m_pkthdr.len) {
m->m_len = ip->ip_len;
m->m_pkthdr.len = ip->ip_len;
} else
m_adj(m, ip->ip_len - m->m_pkthdr.len);
}
/*
* Process options and, if not destined for us,
* ship it on. ip_dooptions returns 1 when an
* error was detected (causing an icmp message
* to be sent and the original packet to be freed).
*/
ip_nhops = 0; /* for source routed packets */
if (hlen > sizeof (struct ip) && ip_dooptions(m))
goto next;
/*
* Check our list of addresses, to see if the packet is for us.
*/
for (ia = in_ifaddr.tqh_first; ia; ia = ia->ia_list.tqe_next) {
if (ip->ip_dst.s_addr == ia->ia_addr.sin_addr.s_addr)
goto ours;
if (((ip_directedbcast == 0) || (ip_directedbcast &&
ia->ia_ifp == m->m_pkthdr.rcvif)) &&
(ia->ia_ifp->if_flags & IFF_BROADCAST)) {
if (ip->ip_dst.s_addr == ia->ia_broadaddr.sin_addr.s_addr ||
ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr ||
/*
* Look for all-0's host part (old broadcast addr),
* either for subnet or net.
*/
ip->ip_dst.s_addr == ia->ia_subnet ||
ip->ip_dst.s_addr == ia->ia_net)
goto ours;
}
}
if (IN_MULTICAST(ip->ip_dst.s_addr)) {
struct in_multi *inm;
#ifdef MROUTING
extern struct socket *ip_mrouter;
if (m->m_flags & M_EXT) {
if ((m = m_pullup(m, hlen)) == 0) {
ipstat.ips_toosmall++;
goto next;
}
ip = mtod(m, struct ip *);
}
if (ip_mrouter) {
/*
* If we are acting as a multicast router, all
* incoming multicast packets are passed to the
* kernel-level multicast forwarding function.
* The packet is returned (relatively) intact; if
* ip_mforward() returns a non-zero value, the packet
* must be discarded, else it may be accepted below.
*
* (The IP ident field is put in the same byte order
* as expected when ip_mforward() is called from
* ip_output().)
*/
ip->ip_id = htons(ip->ip_id);
if (ip_mforward(m, m->m_pkthdr.rcvif) != 0) {
ipstat.ips_cantforward++;
m_freem(m);
goto next;
}
ip->ip_id = ntohs(ip->ip_id);
/*
* The process-level routing demon needs to receive
* all multicast IGMP packets, whether or not this
* host belongs to their destination groups.
*/
if (ip->ip_p == IPPROTO_IGMP)
goto ours;
ipstat.ips_forward++;
}
#endif
/*
* See if we belong to the destination multicast group on the
* arrival interface.
*/
IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
if (inm == NULL) {
ipstat.ips_cantforward++;
m_freem(m);
goto next;
}
goto ours;
}
if (ip->ip_dst.s_addr == INADDR_BROADCAST ||
ip->ip_dst.s_addr == INADDR_ANY)
goto ours;
/*
* Not for us; forward if possible and desirable.
*/
if (ipforwarding == 0) {
ipstat.ips_cantforward++;
m_freem(m);
} else
ip_forward(m, 0);
goto next;
ours:
/*
* If offset or IP_MF are set, must reassemble.
* Otherwise, nothing need be done.
* (We could look in the reassembly queue to see
* if the packet was previously fragmented,
* but it's not worth the time; just let them time out.)
*/
if (ip->ip_off &~ IP_DF) {
if (m->m_flags & M_EXT) { /* XXX */
if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
ipstat.ips_toosmall++;
goto next;
}
ip = mtod(m, struct ip *);
}
/*
* Look for queue of fragments
* of this datagram.
*/
for (fp = ipq.lh_first; fp != NULL; fp = fp->ipq_q.le_next)
if (ip->ip_id == fp->ipq_id &&
ip->ip_src.s_addr == fp->ipq_src.s_addr &&
ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
ip->ip_p == fp->ipq_p)
goto found;
fp = 0;
found:
/*
* Adjust ip_len to not reflect header,
* set ipqe_mff if more fragments are expected,
* convert offset of this to bytes.
*/
ip->ip_len -= hlen;
mff = (ip->ip_off & IP_MF) != 0;
if (mff) {
/*
* Make sure that fragments have a data length
* that's a non-zero multiple of 8 bytes.
*/
if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
ipstat.ips_badfrags++;
goto bad;
}
}
ip->ip_off <<= 3;
/*
* If datagram marked as having more fragments
* or if this is not the first fragment,
* attempt reassembly; if it succeeds, proceed.
*/
if (mff || ip->ip_off) {
ipstat.ips_fragments++;
MALLOC(ipqe, struct ipqent *, sizeof (struct ipqent),
M_IPQ, M_NOWAIT);
if (ipqe == NULL) {
ipstat.ips_rcvmemdrop++;
goto bad;
}
ipqe->ipqe_mff = mff;
ipqe->ipqe_ip = ip;
ip = ip_reass(ipqe, fp);
if (ip == 0)
goto next;
ipstat.ips_reassembled++;
m = dtom(ip);
} else
if (fp)
ip_freef(fp);
} else
ip->ip_len -= hlen;
/*
* Switch out to protocol's input routine.
*/
ipstat.ips_delivered++;
(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
goto next;
bad:
m_freem(m);
goto next;
}
/*
* Take incoming datagram fragment and try to
* reassemble it into whole datagram. If a chain for
* reassembly of this datagram already exists, then it
* is given as fp; otherwise have to make a chain.
*/
struct ip *
ip_reass(ipqe, fp)
register struct ipqent *ipqe;
register struct ipq *fp;
{
register struct mbuf *m = dtom(ipqe->ipqe_ip);
register struct ipqent *nq, *p, *q;
struct ip *ip;
struct mbuf *t;
int hlen = ipqe->ipqe_ip->ip_hl << 2;
int i, next;
/*
* Presence of header sizes in mbufs
* would confuse code below.
*/
m->m_data += hlen;
m->m_len -= hlen;
/*
* If first fragment to arrive, create a reassembly queue.
*/
if (fp == 0) {
if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
goto dropfrag;
fp = mtod(t, struct ipq *);
LIST_INSERT_HEAD(&ipq, fp, ipq_q);
fp->ipq_ttl = IPFRAGTTL;
fp->ipq_p = ipqe->ipqe_ip->ip_p;
fp->ipq_id = ipqe->ipqe_ip->ip_id;
LIST_INIT(&fp->ipq_fragq);
fp->ipq_src = ipqe->ipqe_ip->ip_src;
fp->ipq_dst = ipqe->ipqe_ip->ip_dst;
p = NULL;
goto insert;
}
/*
* Find a segment which begins after this one does.
*/
for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
p = q, q = q->ipqe_q.le_next)
if (q->ipqe_ip->ip_off > ipqe->ipqe_ip->ip_off)
break;
/*
* If there is a preceding segment, it may provide some of
* our data already. If so, drop the data from the incoming
* segment. If it provides all of our data, drop us.
*/
if (p != NULL) {
i = p->ipqe_ip->ip_off + p->ipqe_ip->ip_len -
ipqe->ipqe_ip->ip_off;
if (i > 0) {
if (i >= ipqe->ipqe_ip->ip_len)
goto dropfrag;
m_adj(dtom(ipqe->ipqe_ip), i);
ipqe->ipqe_ip->ip_off += i;
ipqe->ipqe_ip->ip_len -= i;
}
}
/*
* While we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/
for (; q != NULL && ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len >
q->ipqe_ip->ip_off; q = nq) {
i = (ipqe->ipqe_ip->ip_off + ipqe->ipqe_ip->ip_len) -
q->ipqe_ip->ip_off;
if (i < q->ipqe_ip->ip_len) {
q->ipqe_ip->ip_len -= i;
q->ipqe_ip->ip_off += i;
m_adj(dtom(q->ipqe_ip), i);
break;
}
nq = q->ipqe_q.le_next;
m_freem(dtom(q->ipqe_ip));
LIST_REMOVE(q, ipqe_q);
FREE(q, M_IPQ);
}
insert:
/*
* Stick new segment in its place;
* check for complete reassembly.
*/
if (p == NULL) {
LIST_INSERT_HEAD(&fp->ipq_fragq, ipqe, ipqe_q);
} else {
LIST_INSERT_AFTER(p, ipqe, ipqe_q);
}
next = 0;
for (p = NULL, q = fp->ipq_fragq.lh_first; q != NULL;
p = q, q = q->ipqe_q.le_next) {
if (q->ipqe_ip->ip_off != next)
return (0);
next += q->ipqe_ip->ip_len;
}
if (p->ipqe_mff)
return (0);
/*
* Reassembly is complete; concatenate fragments.
*/
q = fp->ipq_fragq.lh_first;
ip = q->ipqe_ip;
m = dtom(q->ipqe_ip);
t = m->m_next;
m->m_next = 0;
m_cat(m, t);
nq = q->ipqe_q.le_next;
FREE(q, M_IPQ);
for (q = nq; q != NULL; q = nq) {
t = dtom(q->ipqe_ip);
nq = q->ipqe_q.le_next;
FREE(q, M_IPQ);
m_cat(m, t);
}
/*
* Create header for new ip packet by
* modifying header of first packet;
* dequeue and discard fragment reassembly header.
* Make header visible.
*/
ip->ip_len = next;
ip->ip_src = fp->ipq_src;
ip->ip_dst = fp->ipq_dst;
LIST_REMOVE(fp, ipq_q);
(void) m_free(dtom(fp));
m->m_len += (ip->ip_hl << 2);
m->m_data -= (ip->ip_hl << 2);
/* some debugging cruft by sklower, below, will go away soon */
if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
register int plen = 0;
for (t = m; m; m = m->m_next)
plen += m->m_len;
t->m_pkthdr.len = plen;
}
return (ip);
dropfrag:
ipstat.ips_fragdropped++;
m_freem(m);
FREE(ipqe, M_IPQ);
return (0);
}
/*
* Free a fragment reassembly header and all
* associated datagrams.
*/
void
ip_freef(fp)
struct ipq *fp;
{
register struct ipqent *q, *p;
for (q = fp->ipq_fragq.lh_first; q != NULL; q = p) {
p = q->ipqe_q.le_next;
m_freem(dtom(q->ipqe_ip));
LIST_REMOVE(q, ipqe_q);
FREE(q, M_IPQ);
}
LIST_REMOVE(fp, ipq_q);
(void) m_free(dtom(fp));
}
/*
* IP timer processing;
* if a timer expires on a reassembly
* queue, discard it.
*/
void
ip_slowtimo()
{
register struct ipq *fp, *nfp;
int s = splsoftnet();
for (fp = ipq.lh_first; fp != NULL; fp = nfp) {
nfp = fp->ipq_q.le_next;
if (--fp->ipq_ttl == 0) {
ipstat.ips_fragtimeout++;
ip_freef(fp);
}
}
splx(s);
}
/*
* Drain off all datagram fragments.
*/
void
ip_drain()
{
while (ipq.lh_first != NULL) {
ipstat.ips_fragdropped++;
ip_freef(ipq.lh_first);
}
}
/*
* Do option processing on a datagram,
* possibly discarding it if bad options are encountered,
* or forwarding it if source-routed.
* Returns 1 if packet has been forwarded/freed,
* 0 if the packet should be processed further.
*/
int
ip_dooptions(m)
struct mbuf *m;
{
register struct ip *ip = mtod(m, struct ip *);
register u_char *cp;
register struct ip_timestamp *ipt;
register struct in_ifaddr *ia;
int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
struct in_addr *sin, dst;
n_time ntime;
dst = ip->ip_dst;
cp = (u_char *)(ip + 1);
cnt = (ip->ip_hl << 2) - sizeof (struct ip);
for (; cnt > 0; cnt -= optlen, cp += optlen) {
opt = cp[IPOPT_OPTVAL];
if (opt == IPOPT_EOL)
break;
if (opt == IPOPT_NOP)
optlen = 1;
else {
optlen = cp[IPOPT_OLEN];
if (optlen <= 0 || optlen > cnt) {
code = &cp[IPOPT_OLEN] - (u_char *)ip;
goto bad;
}
}
switch (opt) {
default:
break;
/*
* Source routing with record.
* Find interface with current destination address.
* If none on this machine then drop if strictly routed,
* or do nothing if loosely routed.
* Record interface address and bring up next address
* component. If strictly routed make sure next
* address is on directly accessible net.
*/
case IPOPT_LSRR:
case IPOPT_SSRR:
if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
code = &cp[IPOPT_OFFSET] - (u_char *)ip;
goto bad;
}
ipaddr.sin_addr = ip->ip_dst;
ia = ifatoia(ifa_ifwithaddr(sintosa(&ipaddr)));
if (ia == 0) {
if (opt == IPOPT_SSRR) {
type = ICMP_UNREACH;
code = ICMP_UNREACH_SRCFAIL;
goto bad;
}
/*
* Loose routing, and not at next destination
* yet; nothing to do except forward.
*/
break;
}
off--; /* 0 origin */
if (off > optlen - sizeof(struct in_addr)) {
/*
* End of source route. Should be for us.
*/
save_rte(cp, ip->ip_src);
break;
}
/*
* locate outgoing interface
*/
bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
sizeof(ipaddr.sin_addr));
if (opt == IPOPT_SSRR) {
#define INA struct in_ifaddr *
#define SA struct sockaddr *
if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
ia = (INA)ifa_ifwithnet((SA)&ipaddr);
} else
ia = ip_rtaddr(ipaddr.sin_addr);
if (ia == 0) {
type = ICMP_UNREACH;
code = ICMP_UNREACH_SRCFAIL;
goto bad;
}
ip->ip_dst = ipaddr.sin_addr;
bcopy((caddr_t)&ia->ia_addr.sin_addr,
(caddr_t)(cp + off), sizeof(struct in_addr));
cp[IPOPT_OFFSET] += sizeof(struct in_addr);
/*
* Let ip_intr's mcast routing check handle mcast pkts
*/
forward = !IN_MULTICAST(ip->ip_dst.s_addr);
break;
case IPOPT_RR:
if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
code = &cp[IPOPT_OFFSET] - (u_char *)ip;
goto bad;
}
/*
* If no space remains, ignore.
*/
off--; /* 0 origin */
if (off > optlen - sizeof(struct in_addr))
break;
bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
sizeof(ipaddr.sin_addr));
/*
* locate outgoing interface; if we're the destination,
* use the incoming interface (should be same).
*/
if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
(ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
type = ICMP_UNREACH;
code = ICMP_UNREACH_HOST;
goto bad;
}
bcopy((caddr_t)&ia->ia_addr.sin_addr,
(caddr_t)(cp + off), sizeof(struct in_addr));
cp[IPOPT_OFFSET] += sizeof(struct in_addr);
break;
case IPOPT_TS:
code = cp - (u_char *)ip;
ipt = (struct ip_timestamp *)cp;
if (ipt->ipt_len < 5)
goto bad;
if (ipt->ipt_ptr > ipt->ipt_len - sizeof (int32_t)) {
if (++ipt->ipt_oflw == 0)
goto bad;
break;
}
sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
switch (ipt->ipt_flg) {
case IPOPT_TS_TSONLY:
break;
case IPOPT_TS_TSANDADDR:
if (ipt->ipt_ptr + sizeof(n_time) +
sizeof(struct in_addr) > ipt->ipt_len)
goto bad;
ipaddr.sin_addr = dst;
ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
m->m_pkthdr.rcvif);
if (ia == 0)
continue;
bcopy((caddr_t)&ia->ia_addr.sin_addr,
(caddr_t)sin, sizeof(struct in_addr));
ipt->ipt_ptr += sizeof(struct in_addr);
break;
case IPOPT_TS_PRESPEC:
if (ipt->ipt_ptr + sizeof(n_time) +
sizeof(struct in_addr) > ipt->ipt_len)
goto bad;
bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
sizeof(struct in_addr));
if (ifa_ifwithaddr((SA)&ipaddr) == 0)
continue;
ipt->ipt_ptr += sizeof(struct in_addr);
break;
default:
goto bad;
}
ntime = iptime();
bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
sizeof(n_time));
ipt->ipt_ptr += sizeof(n_time);
}
}
if (forward) {
if (ip_forwsrcrt == 0) {
type = ICMP_UNREACH;
code = ICMP_UNREACH_SRCFAIL;
goto bad;
}
ip_forward(m, 1);
return (1);
}
return (0);
bad:
ip->ip_len -= ip->ip_hl << 2; /* XXX icmp_error adds in hdr length */
icmp_error(m, type, code, 0, 0);
ipstat.ips_badoptions++;
return (1);
}
/*
* Given address of next destination (final or next hop),
* return internet address info of interface to be used to get there.
*/
struct in_ifaddr *
ip_rtaddr(dst)
struct in_addr dst;
{
register struct sockaddr_in *sin;
sin = satosin(&ipforward_rt.ro_dst);
if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
if (ipforward_rt.ro_rt) {
RTFREE(ipforward_rt.ro_rt);
ipforward_rt.ro_rt = 0;
}
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = dst;
rtalloc(&ipforward_rt);
}
if (ipforward_rt.ro_rt == 0)
return ((struct in_ifaddr *)0);
return (ifatoia(ipforward_rt.ro_rt->rt_ifa));
}
/*
* Save incoming source route for use in replies,
* to be picked up later by ip_srcroute if the receiver is interested.
*/
void
save_rte(option, dst)
u_char *option;
struct in_addr dst;
{
unsigned olen;
olen = option[IPOPT_OLEN];
#ifdef DIAGNOSTIC
if (ipprintfs)
printf("save_rte: olen %d\n", olen);
#endif
if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
return;
bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
ip_srcrt.dst = dst;
}
/*
* Retrieve incoming source route for use in replies,
* in the same form used by setsockopt.
* The first hop is placed before the options, will be removed later.
*/
struct mbuf *
ip_srcroute()
{
register struct in_addr *p, *q;
register struct mbuf *m;
if (ip_nhops == 0)
return ((struct mbuf *)0);
m = m_get(M_DONTWAIT, MT_SOOPTS);
if (m == 0)
return ((struct mbuf *)0);
#define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
OPTSIZ;
#ifdef DIAGNOSTIC
if (ipprintfs)
printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
#endif
/*
* First save first hop for return route
*/
p = &ip_srcrt.route[ip_nhops - 1];
*(mtod(m, struct in_addr *)) = *p--;
#ifdef DIAGNOSTIC
if (ipprintfs)
printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
#endif
/*
* Copy option fields and padding (nop) to mbuf.
*/
ip_srcrt.nop = IPOPT_NOP;
ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
bcopy((caddr_t)&ip_srcrt.nop,
mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
q = (struct in_addr *)(mtod(m, caddr_t) +
sizeof(struct in_addr) + OPTSIZ);
#undef OPTSIZ
/*
* Record return path as an IP source route,
* reversing the path (pointers are now aligned).
*/
while (p >= ip_srcrt.route) {
#ifdef DIAGNOSTIC
if (ipprintfs)
printf(" %lx", ntohl(q->s_addr));
#endif
*q++ = *p--;
}
/*
* Last hop goes to final destination.
*/
*q = ip_srcrt.dst;
#ifdef DIAGNOSTIC
if (ipprintfs)
printf(" %lx\n", ntohl(q->s_addr));
#endif
return (m);
}
/*
* Strip out IP options, at higher
* level protocol in the kernel.
* Second argument is buffer to which options
* will be moved, and return value is their length.
* XXX should be deleted; last arg currently ignored.
*/
void
ip_stripoptions(m, mopt)
register struct mbuf *m;
struct mbuf *mopt;
{
register int i;
struct ip *ip = mtod(m, struct ip *);
register caddr_t opts;
int olen;
olen = (ip->ip_hl<<2) - sizeof (struct ip);
opts = (caddr_t)(ip + 1);
i = m->m_len - (sizeof (struct ip) + olen);
bcopy(opts + olen, opts, (unsigned)i);
m->m_len -= olen;
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len -= olen;
ip->ip_hl = sizeof(struct ip) >> 2;
}
int inetctlerrmap[PRC_NCMDS] = {
0, 0, 0, 0,
0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
EMSGSIZE, EHOSTUNREACH, 0, 0,
0, 0, 0, 0,
ENOPROTOOPT
};
/*
* Forward a packet. If some error occurs return the sender
* an icmp packet. Note we can't always generate a meaningful
* icmp message because icmp doesn't have a large enough repertoire
* of codes and types.
*
* If not forwarding, just drop the packet. This could be confusing
* if ipforwarding was zero but some routing protocol was advancing
* us as a gateway to somewhere. However, we must let the routing
* protocol deal with that.
*
* The srcrt parameter indicates whether the packet is being forwarded
* via a source route.
*/
void
ip_forward(m, srcrt)
struct mbuf *m;
int srcrt;
{
register struct ip *ip = mtod(m, struct ip *);
register struct sockaddr_in *sin;
register struct rtentry *rt;
int error, type = 0, code;
struct mbuf *mcopy;
n_long dest;
struct ifnet *destifp;
dest = 0;
#ifdef DIAGNOSTIC
if (ipprintfs)
printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
ip->ip_dst, ip->ip_ttl);
#endif
if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
ipstat.ips_cantforward++;
m_freem(m);
return;
}
HTONS(ip->ip_id);
if (ip->ip_ttl <= IPTTLDEC) {
icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
return;
}
ip->ip_ttl -= IPTTLDEC;
sin = satosin(&ipforward_rt.ro_dst);
if ((rt = ipforward_rt.ro_rt) == 0 ||
ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
if (ipforward_rt.ro_rt) {
RTFREE(ipforward_rt.ro_rt);
ipforward_rt.ro_rt = 0;
}
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = ip->ip_dst;
rtalloc(&ipforward_rt);
if (ipforward_rt.ro_rt == 0) {
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
return;
}
rt = ipforward_rt.ro_rt;
}
/*
* Save at most 64 bytes of the packet in case
* we need to generate an ICMP message to the src.
*/
mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
/*
* If forwarding packet using same interface that it came in on,
* perhaps should send a redirect to sender to shortcut a hop.
* Only send redirect if source is sending directly to us,
* and if packet was not source routed (or has any options).
* Also, don't send redirect if forwarding using a default route
* or a route modified by a redirect.
*/
if (rt->rt_ifp == m->m_pkthdr.rcvif &&
(rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
ipsendredirects && !srcrt) {
if (rt->rt_ifa &&
(ip->ip_src.s_addr & ifatoia(rt->rt_ifa)->ia_subnetmask) ==
ifatoia(rt->rt_ifa)->ia_subnet) {
if (rt->rt_flags & RTF_GATEWAY)
dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
else
dest = ip->ip_dst.s_addr;
/* Router requirements says to only send host redirects */
type = ICMP_REDIRECT;
code = ICMP_REDIRECT_HOST;
#ifdef DIAGNOSTIC
if (ipprintfs)
printf("redirect (%d) to %lx\n", code, (u_int32_t)dest);
#endif
}
}
error = ip_output(m, (struct mbuf *)0, &ipforward_rt,
(IP_FORWARDING | (ip_directedbcast ? IP_ALLOWBROADCAST : 0)), 0);
if (error)
ipstat.ips_cantforward++;
else {
ipstat.ips_forward++;
if (type)
ipstat.ips_redirectsent++;
else {
if (mcopy)
m_freem(mcopy);
return;
}
}
if (mcopy == NULL)
return;
destifp = NULL;
switch (error) {
case 0: /* forwarded, but need redirect */
/* type, code set above */
break;
case ENETUNREACH: /* shouldn't happen, checked above */
case EHOSTUNREACH:
case ENETDOWN:
case EHOSTDOWN:
default:
type = ICMP_UNREACH;
code = ICMP_UNREACH_HOST;
break;
case EMSGSIZE:
type = ICMP_UNREACH;
code = ICMP_UNREACH_NEEDFRAG;
if (ipforward_rt.ro_rt)
destifp = ipforward_rt.ro_rt->rt_ifp;
ipstat.ips_cantfrag++;
break;
case ENOBUFS:
type = ICMP_SOURCEQUENCH;
code = 0;
break;
}
icmp_error(mcopy, type, code, dest, destifp);
}
int
ip_sysctl(name, namelen, oldp, oldlenp, newp, newlen)
int *name;
u_int namelen;
void *oldp;
size_t *oldlenp;
void *newp;
size_t newlen;
{
int temp;
/* All sysctl names at this level are terminal. */
if (namelen != 1)
return (ENOTDIR);
switch (name[0]) {
case IPCTL_FORWARDING:
return (sysctl_int(oldp, oldlenp, newp, newlen, &ipforwarding));
case IPCTL_SENDREDIRECTS:
return (sysctl_int(oldp, oldlenp, newp, newlen,
&ipsendredirects));
case IPCTL_DEFTTL:
return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_defttl));
#ifdef notyet
case IPCTL_DEFMTU:
return (sysctl_int(oldp, oldlenp, newp, newlen, &ip_mtu));
#endif
case IPCTL_FORWSRCRT:
/*
* Don't allow this to change in a secure environment.
*/
if (securelevel > 0)
return (EPERM);
return (sysctl_int(oldp, oldlenp, newp, newlen,
&ip_forwsrcrt));
case IPCTL_DIRECTEDBCAST:
return (sysctl_int(oldp, oldlenp, newp, newlen,
&ip_directedbcast));
default:
return (EOPNOTSUPP);
}
/* NOTREACHED */
}