NetBSD/sys/ufs/ffs/ffs_inode.c

570 lines
16 KiB
C

/* $NetBSD: ffs_inode.c,v 1.35 2000/05/30 17:23:52 mycroft Exp $ */
/*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_inode.c 8.13 (Berkeley) 4/21/95
*/
#if defined(_KERNEL) && !defined(_LKM)
#include "opt_ffs.h"
#include "opt_quota.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/file.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/trace.h>
#include <sys/resourcevar.h>
#include <vm/vm.h>
#include <uvm/uvm_extern.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufs_bswap.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
static int ffs_indirtrunc __P((struct inode *, ufs_daddr_t, ufs_daddr_t,
ufs_daddr_t, int, long *));
/*
* Update the access, modified, and inode change times as specified
* by the IN_ACCESS, IN_UPDATE, and IN_CHANGE flags respectively.
* The IN_MODIFIED flag is used to specify that the inode needs to be
* updated but that the times have already been set. The access
* and modified times are taken from the second and third parameters;
* the inode change time is always taken from the current time. If
* UPDATE_WAIT flag is set, or UPDATE_DIROP is set and we are not doing
* softupdates, then wait for the disk write of the inode to complete.
*/
int
ffs_update(v)
void *v;
{
struct vop_update_args /* {
struct vnode *a_vp;
struct timespec *a_access;
struct timespec *a_modify;
int a_flags;
} */ *ap = v;
struct fs *fs;
struct buf *bp;
struct inode *ip;
int error;
struct timespec ts;
caddr_t cp;
int waitfor, flags;
if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
return (0);
ip = VTOI(ap->a_vp);
TIMEVAL_TO_TIMESPEC(&time, &ts);
FFS_ITIMES(ip,
ap->a_access ? ap->a_access : &ts,
ap->a_modify ? ap->a_modify : &ts, &ts);
flags = ip->i_flag & (IN_MODIFIED | IN_ACCESSED);
if (flags == 0)
return (0);
fs = ip->i_fs;
if ((flags & IN_MODIFIED) != 0 &&
(ap->a_vp->v_mount->mnt_flag & MNT_ASYNC) == 0) {
waitfor = ap->a_flags & UPDATE_WAIT;
if ((ap->a_flags & UPDATE_DIROP) && !DOINGSOFTDEP(ap->a_vp))
waitfor |= UPDATE_WAIT;
} else
waitfor = 0;
/*
* Ensure that uid and gid are correct. This is a temporary
* fix until fsck has been changed to do the update.
*/
if (fs->fs_inodefmt < FS_44INODEFMT) { /* XXX */
ip->i_din.ffs_din.di_ouid = ip->i_ffs_uid; /* XXX */
ip->i_din.ffs_din.di_ogid = ip->i_ffs_gid; /* XXX */
} /* XXX */
error = bread(ip->i_devvp,
fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, NOCRED, &bp);
if (error) {
brelse(bp);
return (error);
}
ip->i_flag &= ~(IN_MODIFIED | IN_ACCESSED);
if (DOINGSOFTDEP(ap->a_vp))
softdep_update_inodeblock(ip, bp, waitfor);
else if (ip->i_ffs_effnlink != ip->i_ffs_nlink)
panic("ffs_update: bad link cnt");
cp = (caddr_t)bp->b_data +
(ino_to_fsbo(fs, ip->i_number) * DINODE_SIZE);
#ifdef FFS_EI
if (UFS_FSNEEDSWAP(fs))
ffs_dinode_swap(&ip->i_din.ffs_din, (struct dinode *)cp);
else
#endif
memcpy(cp, &ip->i_din.ffs_din, DINODE_SIZE);
if (waitfor) {
return (bwrite(bp));
} else {
bdwrite(bp);
return (0);
}
}
#define SINGLE 0 /* index of single indirect block */
#define DOUBLE 1 /* index of double indirect block */
#define TRIPLE 2 /* index of triple indirect block */
/*
* Truncate the inode oip to at most length size, freeing the
* disk blocks.
*/
int
ffs_truncate(v)
void *v;
{
struct vop_truncate_args /* {
struct vnode *a_vp;
off_t a_length;
int a_flags;
struct ucred *a_cred;
struct proc *a_p;
} */ *ap = v;
struct vnode *ovp = ap->a_vp;
ufs_daddr_t lastblock;
struct inode *oip;
ufs_daddr_t bn, lbn, lastiblock[NIADDR], indir_lbn[NIADDR];
ufs_daddr_t oldblks[NDADDR + NIADDR], newblks[NDADDR + NIADDR];
off_t length = ap->a_length;
struct fs *fs;
struct buf *bp;
int offset, size, level;
long count, nblocks, blocksreleased = 0;
int i;
int aflags, error, allerror = 0;
off_t osize;
if (length < 0)
return (EINVAL);
oip = VTOI(ovp);
#if 1
/*
* XXX. Was in Kirk's patches. Is it good behavior to just
* return and not update modification times?
*/
if (oip->i_ffs_size == length)
return (0);
#endif
if (ovp->v_type == VLNK &&
(oip->i_ffs_size < ovp->v_mount->mnt_maxsymlinklen ||
(ovp->v_mount->mnt_maxsymlinklen == 0 &&
oip->i_din.ffs_din.di_blocks == 0))) {
#ifdef DIAGNOSTIC
if (length != 0)
panic("ffs_truncate: partial truncate of symlink");
#endif
memset((char *)&oip->i_ffs_shortlink, 0, (u_int)oip->i_ffs_size);
oip->i_ffs_size = 0;
oip->i_flag |= IN_CHANGE | IN_UPDATE;
return (VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT));
}
if (oip->i_ffs_size == length) {
oip->i_flag |= IN_CHANGE | IN_UPDATE;
return (VOP_UPDATE(ovp, NULL, NULL, 0));
}
#ifdef QUOTA
if ((error = getinoquota(oip)) != 0)
return (error);
#endif
fs = oip->i_fs;
osize = oip->i_ffs_size;
ovp->v_lasta = ovp->v_clen = ovp->v_cstart = ovp->v_lastw = 0;
if (DOINGSOFTDEP(ovp)) {
uvm_vnp_setsize(ovp, length);
(void) uvm_vnp_uncache(ovp);
if (length > 0) {
/*
* If a file is only partially truncated, then
* we have to clean up the data structures
* describing the allocation past the truncation
* point. Finding and deallocating those structures
* is a lot of work. Since partial truncation occurs
* rarely, we solve the problem by syncing the file
* so that it will have no data structures left.
*/
if ((error = VOP_FSYNC(ovp, ap->a_cred, FSYNC_WAIT,
ap->a_p)) != 0)
return (error);
} else {
#ifdef QUOTA
(void) chkdq(oip, -oip->i_ffs_blocks, NOCRED, 0);
#endif
softdep_setup_freeblocks(oip, length);
(void) vinvalbuf(ovp, 0, ap->a_cred, ap->a_p, 0, 0);
oip->i_flag |= IN_CHANGE | IN_UPDATE;
return (VOP_UPDATE(ovp, NULL, NULL, 0));
}
}
/*
* Lengthen the size of the file. We must ensure that the
* last byte of the file is allocated. Since the smallest
* value of osize is 0, length will be at least 1.
*/
if (osize < length) {
if (length > fs->fs_maxfilesize)
return (EFBIG);
aflags = B_CLRBUF;
if (ap->a_flags & IO_SYNC)
aflags |= B_SYNC;
error = VOP_BALLOC(ovp, length - 1, 1, ap->a_cred, aflags, &bp);
if (error)
return (error);
oip->i_ffs_size = length;
uvm_vnp_setsize(ovp, length);
(void) uvm_vnp_uncache(ovp);
if (aflags & B_SYNC)
bwrite(bp);
else
bawrite(bp);
oip->i_flag |= IN_CHANGE | IN_UPDATE;
return (VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT));
}
/*
* Shorten the size of the file. If the file is not being
* truncated to a block boundary, the contents of the
* partial block following the end of the file must be
* zero'ed in case it ever becomes accessible again because
* of subsequent file growth. Directories however are not
* zero'ed as they should grow back initialized to empty.
*/
offset = blkoff(fs, length);
if (offset == 0) {
oip->i_ffs_size = length;
} else {
lbn = lblkno(fs, length);
aflags = B_CLRBUF;
if (ap->a_flags & IO_SYNC)
aflags |= B_SYNC;
error = VOP_BALLOC(ovp, length - 1, 1, ap->a_cred, aflags, &bp);
if (error)
return (error);
oip->i_ffs_size = length;
size = blksize(fs, oip, lbn);
(void) uvm_vnp_uncache(ovp);
if (ovp->v_type != VDIR)
memset((char *)bp->b_data + offset, 0,
(u_int)(size - offset));
allocbuf(bp, size);
if (aflags & B_SYNC)
bwrite(bp);
else
bawrite(bp);
}
uvm_vnp_setsize(ovp, length);
/*
* Calculate index into inode's block list of
* last direct and indirect blocks (if any)
* which we want to keep. Lastblock is -1 when
* the file is truncated to 0.
*/
lastblock = lblkno(fs, length + fs->fs_bsize - 1) - 1;
lastiblock[SINGLE] = lastblock - NDADDR;
lastiblock[DOUBLE] = lastiblock[SINGLE] - NINDIR(fs);
lastiblock[TRIPLE] = lastiblock[DOUBLE] - NINDIR(fs) * NINDIR(fs);
nblocks = btodb(fs->fs_bsize);
/*
* Update file and block pointers on disk before we start freeing
* blocks. If we crash before free'ing blocks below, the blocks
* will be returned to the free list. lastiblock values are also
* normalized to -1 for calls to ffs_indirtrunc below.
*/
memcpy((caddr_t)oldblks, (caddr_t)&oip->i_ffs_db[0], sizeof oldblks);
for (level = TRIPLE; level >= SINGLE; level--)
if (lastiblock[level] < 0) {
oip->i_ffs_ib[level] = 0;
lastiblock[level] = -1;
}
for (i = NDADDR - 1; i > lastblock; i--)
oip->i_ffs_db[i] = 0;
oip->i_flag |= IN_CHANGE | IN_UPDATE;
error = VOP_UPDATE(ovp, NULL, NULL, UPDATE_WAIT);
if (error && !allerror)
allerror = error;
/*
* Having written the new inode to disk, save its new configuration
* and put back the old block pointers long enough to process them.
* Note that we save the new block configuration so we can check it
* when we are done.
*/
memcpy((caddr_t)newblks, (caddr_t)&oip->i_ffs_db[0], sizeof newblks);
memcpy((caddr_t)&oip->i_ffs_db[0], (caddr_t)oldblks, sizeof oldblks);
oip->i_ffs_size = osize;
error = vtruncbuf(ovp, lastblock + 1, 0, 0);
if (error && !allerror)
allerror = error;
/*
* Indirect blocks first.
*/
indir_lbn[SINGLE] = -NDADDR;
indir_lbn[DOUBLE] = indir_lbn[SINGLE] - NINDIR(fs) - 1;
indir_lbn[TRIPLE] = indir_lbn[DOUBLE] - NINDIR(fs) * NINDIR(fs) - 1;
for (level = TRIPLE; level >= SINGLE; level--) {
bn = ufs_rw32(oip->i_ffs_ib[level], UFS_FSNEEDSWAP(fs));
if (bn != 0) {
error = ffs_indirtrunc(oip, indir_lbn[level],
fsbtodb(fs, bn), lastiblock[level], level, &count);
if (error)
allerror = error;
blocksreleased += count;
if (lastiblock[level] < 0) {
oip->i_ffs_ib[level] = 0;
ffs_blkfree(oip, bn, fs->fs_bsize);
blocksreleased += nblocks;
}
}
if (lastiblock[level] >= 0)
goto done;
}
/*
* All whole direct blocks or frags.
*/
for (i = NDADDR - 1; i > lastblock; i--) {
long bsize;
bn = ufs_rw32(oip->i_ffs_db[i], UFS_FSNEEDSWAP(fs));
if (bn == 0)
continue;
oip->i_ffs_db[i] = 0;
bsize = blksize(fs, oip, i);
ffs_blkfree(oip, bn, bsize);
blocksreleased += btodb(bsize);
}
if (lastblock < 0)
goto done;
/*
* Finally, look for a change in size of the
* last direct block; release any frags.
*/
bn = ufs_rw32(oip->i_ffs_db[lastblock], UFS_FSNEEDSWAP(fs));
if (bn != 0) {
long oldspace, newspace;
/*
* Calculate amount of space we're giving
* back as old block size minus new block size.
*/
oldspace = blksize(fs, oip, lastblock);
oip->i_ffs_size = length;
newspace = blksize(fs, oip, lastblock);
if (newspace == 0)
panic("itrunc: newspace");
if (oldspace - newspace > 0) {
/*
* Block number of space to be free'd is
* the old block # plus the number of frags
* required for the storage we're keeping.
*/
bn += numfrags(fs, newspace);
ffs_blkfree(oip, bn, oldspace - newspace);
blocksreleased += btodb(oldspace - newspace);
}
}
done:
#ifdef DIAGNOSTIC
for (level = SINGLE; level <= TRIPLE; level++)
if (newblks[NDADDR + level] != oip->i_ffs_ib[level])
panic("itrunc1");
for (i = 0; i < NDADDR; i++)
if (newblks[i] != oip->i_ffs_db[i])
panic("itrunc2");
if (length == 0 &&
(!LIST_EMPTY(&ovp->v_cleanblkhd) || !LIST_EMPTY(&ovp->v_dirtyblkhd)))
panic("itrunc3");
#endif /* DIAGNOSTIC */
/*
* Put back the real size.
*/
oip->i_ffs_size = length;
oip->i_ffs_blocks -= blocksreleased;
if (oip->i_ffs_blocks < 0) /* sanity */
oip->i_ffs_blocks = 0;
oip->i_flag |= IN_CHANGE;
#ifdef QUOTA
(void) chkdq(oip, -blocksreleased, NOCRED, 0);
#endif
return (allerror);
}
/*
* Release blocks associated with the inode ip and stored in the indirect
* block bn. Blocks are free'd in LIFO order up to (but not including)
* lastbn. If level is greater than SINGLE, the block is an indirect block
* and recursive calls to indirtrunc must be used to cleanse other indirect
* blocks.
*
* NB: triple indirect blocks are untested.
*/
static int
ffs_indirtrunc(ip, lbn, dbn, lastbn, level, countp)
struct inode *ip;
ufs_daddr_t lbn, lastbn;
ufs_daddr_t dbn;
int level;
long *countp;
{
int i;
struct buf *bp;
struct fs *fs = ip->i_fs;
ufs_daddr_t *bap;
struct vnode *vp;
ufs_daddr_t *copy = NULL, nb, nlbn, last;
long blkcount, factor;
int nblocks, blocksreleased = 0;
int error = 0, allerror = 0;
/*
* Calculate index in current block of last
* block to be kept. -1 indicates the entire
* block so we need not calculate the index.
*/
factor = 1;
for (i = SINGLE; i < level; i++)
factor *= NINDIR(fs);
last = lastbn;
if (lastbn > 0)
last /= factor;
nblocks = btodb(fs->fs_bsize);
/*
* Get buffer of block pointers, zero those entries corresponding
* to blocks to be free'd, and update on disk copy first. Since
* double(triple) indirect before single(double) indirect, calls
* to bmap on these blocks will fail. However, we already have
* the on disk address, so we have to set the b_blkno field
* explicitly instead of letting bread do everything for us.
*/
vp = ITOV(ip);
bp = getblk(vp, lbn, (int)fs->fs_bsize, 0, 0);
if (bp->b_flags & (B_DONE | B_DELWRI)) {
/* Braces must be here in case trace evaluates to nothing. */
trace(TR_BREADHIT, pack(vp, fs->fs_bsize), lbn);
} else {
trace(TR_BREADMISS, pack(vp, fs->fs_bsize), lbn);
curproc->p_stats->p_ru.ru_inblock++; /* pay for read */
bp->b_flags |= B_READ;
if (bp->b_bcount > bp->b_bufsize)
panic("ffs_indirtrunc: bad buffer size");
bp->b_blkno = dbn;
VOP_STRATEGY(bp);
error = biowait(bp);
}
if (error) {
brelse(bp);
*countp = 0;
return (error);
}
bap = (ufs_daddr_t *)bp->b_data;
if (lastbn >= 0) {
MALLOC(copy, ufs_daddr_t *, fs->fs_bsize, M_TEMP, M_WAITOK);
memcpy((caddr_t)copy, (caddr_t)bap, (u_int)fs->fs_bsize);
memset((caddr_t)&bap[last + 1], 0,
(u_int)(NINDIR(fs) - (last + 1)) * sizeof (ufs_daddr_t));
error = bwrite(bp);
if (error)
allerror = error;
bap = copy;
}
/*
* Recursively free totally unused blocks.
*/
for (i = NINDIR(fs) - 1, nlbn = lbn + 1 - i * factor; i > last;
i--, nlbn += factor) {
nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs));
if (nb == 0)
continue;
if (level > SINGLE) {
error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
(ufs_daddr_t)-1, level - 1,
&blkcount);
if (error)
allerror = error;
blocksreleased += blkcount;
}
ffs_blkfree(ip, nb, fs->fs_bsize);
blocksreleased += nblocks;
}
/*
* Recursively free last partial block.
*/
if (level > SINGLE && lastbn >= 0) {
last = lastbn % factor;
nb = ufs_rw32(bap[i], UFS_FSNEEDSWAP(fs));
if (nb != 0) {
error = ffs_indirtrunc(ip, nlbn, fsbtodb(fs, nb),
last, level - 1, &blkcount);
if (error)
allerror = error;
blocksreleased += blkcount;
}
}
if (copy != NULL) {
FREE(copy, M_TEMP);
} else {
bp->b_flags |= B_INVAL;
brelse(bp);
}
*countp = blocksreleased;
return (allerror);
}