NetBSD/sys/arch/sparc/dev/vme_machdep.c
chs cbab9cadce split device_t/softc for all remaining drivers.
replace "struct device *" with "device_t".
use device_xname(), device_unit(), etc.
2012-10-27 17:17:22 +00:00

1075 lines
27 KiB
C

/* $NetBSD: vme_machdep.c,v 1.68 2012/10/27 17:18:11 chs Exp $ */
/*-
* Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vme_machdep.c,v 1.68 2012/10/27 17:18:11 chs Exp $");
#include <sys/param.h>
#include <sys/extent.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <sys/syslog.h>
#include <uvm/uvm_extern.h>
#define _SPARC_BUS_DMA_PRIVATE
#include <sys/bus.h>
#include <sparc/sparc/iommuvar.h>
#include <machine/autoconf.h>
#include <machine/oldmon.h>
#include <machine/cpu.h>
#include <machine/ctlreg.h>
#include <machine/pcb.h>
#include <dev/vme/vmereg.h>
#include <dev/vme/vmevar.h>
#include <sparc/sparc/asm.h>
#include <sparc/sparc/vaddrs.h>
#include <sparc/sparc/cpuvar.h>
#include <sparc/dev/vmereg.h>
struct sparcvme_softc {
bus_space_tag_t sc_bustag;
bus_dma_tag_t sc_dmatag;
struct vmebusreg *sc_reg; /* VME control registers */
struct vmebusvec *sc_vec; /* VME interrupt vector */
struct rom_range *sc_range; /* ROM range property */
int sc_nrange;
volatile uint32_t *sc_ioctags; /* VME IO-cache tag registers */
volatile uint32_t *sc_iocflush;/* VME IO-cache flush registers */
int (*sc_vmeintr)(void *);
};
struct sparcvme_softc *sparcvme_sc;/*XXX*/
/* autoconfiguration driver */
static int vmematch_iommu(device_t, cfdata_t, void *);
static void vmeattach_iommu(device_t, device_t, void *);
static int vmematch_mainbus(device_t, cfdata_t, void *);
static void vmeattach_mainbus(device_t, device_t, void *);
#if defined(SUN4)
int vmeintr4(void *);
#endif
#if defined(SUN4M)
int vmeintr4m(void *);
static int sparc_vme_error(void);
#endif
static int sparc_vme_probe(void *, vme_addr_t, vme_size_t,
vme_am_t, vme_datasize_t,
int (*)(void *,
bus_space_tag_t, bus_space_handle_t),
void *);
static int sparc_vme_map(void *, vme_addr_t, vme_size_t, vme_am_t,
vme_datasize_t, vme_swap_t,
bus_space_tag_t *, bus_space_handle_t *,
vme_mapresc_t *);
static void sparc_vme_unmap(void *, vme_mapresc_t);
static int sparc_vme_intr_map(void *, int, int, vme_intr_handle_t *);
static const struct evcnt *sparc_vme_intr_evcnt(void *, vme_intr_handle_t);
static void * sparc_vme_intr_establish(void *, vme_intr_handle_t, int,
int (*)(void *), void *);
static void sparc_vme_intr_disestablish(void *, void *);
static int vmebus_translate(struct sparcvme_softc *, vme_am_t,
vme_addr_t, bus_addr_t *);
#ifdef notyet
#if defined(SUN4M)
static void sparc_vme_iommu_barrier(bus_space_tag_t, bus_space_handle_t,
bus_size_t, bus_size_t, int);
#endif /* SUN4M */
#endif
/*
* DMA functions.
*/
#if defined(SUN4) || defined(SUN4M)
static void sparc_vct_dmamap_destroy(void *, bus_dmamap_t);
#endif
#if defined(SUN4)
static int sparc_vct4_dmamap_create(void *, vme_size_t, vme_am_t,
vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
int, bus_dmamap_t *);
static int sparc_vme4_dmamap_load(bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int);
static void sparc_vme4_dmamap_unload(bus_dma_tag_t, bus_dmamap_t);
static void sparc_vme4_dmamap_sync(bus_dma_tag_t, bus_dmamap_t,
bus_addr_t, bus_size_t, int);
#endif /* SUN4 */
#if defined(SUN4M)
static int sparc_vct_iommu_dmamap_create(void *, vme_size_t, vme_am_t,
vme_datasize_t, vme_swap_t, int, vme_size_t, vme_addr_t,
int, bus_dmamap_t *);
static int sparc_vme_iommu_dmamap_create(bus_dma_tag_t, bus_size_t,
int, bus_size_t, bus_size_t, int, bus_dmamap_t *);
static int sparc_vme_iommu_dmamap_load(bus_dma_tag_t, bus_dmamap_t,
void *, bus_size_t, struct proc *, int);
static void sparc_vme_iommu_dmamap_unload(bus_dma_tag_t, bus_dmamap_t);
static void sparc_vme_iommu_dmamap_sync(bus_dma_tag_t, bus_dmamap_t,
bus_addr_t, bus_size_t, int);
#endif /* SUN4M */
#if defined(SUN4) || defined(SUN4M)
static int sparc_vme_dmamem_map(bus_dma_tag_t, bus_dma_segment_t *,
int, size_t, void **, int);
#endif
#if 0
static void sparc_vme_dmamap_destroy(bus_dma_tag_t, bus_dmamap_t);
static void sparc_vme_dmamem_unmap(bus_dma_tag_t, void *, size_t);
static paddr_t sparc_vme_dmamem_mmap(bus_dma_tag_t,
bus_dma_segment_t *, int, off_t, int, int);
#endif
int sparc_vme_mmap_cookie(vme_addr_t, vme_am_t, bus_space_handle_t *);
CFATTACH_DECL_NEW(vme_mainbus, sizeof(struct sparcvme_softc),
vmematch_mainbus, vmeattach_mainbus, NULL, NULL);
CFATTACH_DECL_NEW(vme_iommu, sizeof(struct sparcvme_softc),
vmematch_iommu, vmeattach_iommu, NULL, NULL);
static int vme_attached;
extern int (*vmeerr_handler)(void);
#define VMEMOD_D32 0x40 /* ??? */
/* If the PROM does not provide the `ranges' property, we make up our own */
struct rom_range vmebus_translations[] = {
#define _DS (VME_AM_MBO | VME_AM_SUPER | VME_AM_DATA)
{ VME_AM_A16|_DS, 0, PMAP_VME16, 0xffff0000, 0 },
{ VME_AM_A24|_DS, 0, PMAP_VME16, 0xff000000, 0 },
{ VME_AM_A32|_DS, 0, PMAP_VME16, 0x00000000, 0 },
{ VME_AM_A16|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xffff0000, 0 },
{ VME_AM_A24|VMEMOD_D32|_DS, 0, PMAP_VME32, 0xff000000, 0 },
{ VME_AM_A32|VMEMOD_D32|_DS, 0, PMAP_VME32, 0x00000000, 0 }
#undef _DS
};
/*
* The VME bus logic on sun4 machines maps DMA requests in the first MB
* of VME space to the last MB of DVMA space. `vme_dvmamap' is used
* for DVMA space allocations. The DMA addresses returned by
* bus_dmamap_load*() must be relocated by -VME4_DVMA_BASE.
*/
struct extent *vme_dvmamap;
/*
* The VME hardware on the sun4m IOMMU maps the first 8MB of 32-bit
* VME space to the last 8MB of DVMA space and the first 1MB of
* 24-bit VME space to the first 1MB of the last 8MB of DVMA space
* (thus 24-bit VME space overlaps the first 1MB of of 32-bit space).
* The following constants define subregions in the IOMMU DVMA map
* for VME DVMA allocations. The DMA addresses returned by
* bus_dmamap_load*() must be relocated by -VME_IOMMU_DVMA_BASE.
*/
#define VME_IOMMU_DVMA_BASE 0xff800000
#define VME_IOMMU_DVMA_AM24_BASE VME_IOMMU_DVMA_BASE
#define VME_IOMMU_DVMA_AM24_END 0xff900000
#define VME_IOMMU_DVMA_AM32_BASE VME_IOMMU_DVMA_BASE
#define VME_IOMMU_DVMA_AM32_END IOMMU_DVMA_END
struct vme_chipset_tag sparc_vme_chipset_tag = {
NULL,
sparc_vme_map,
sparc_vme_unmap,
sparc_vme_probe,
sparc_vme_intr_map,
sparc_vme_intr_evcnt,
sparc_vme_intr_establish,
sparc_vme_intr_disestablish,
0, 0, 0 /* bus specific DMA stuff */
};
#if defined(SUN4)
struct sparc_bus_dma_tag sparc_vme4_dma_tag = {
NULL, /* cookie */
_bus_dmamap_create,
_bus_dmamap_destroy,
sparc_vme4_dmamap_load,
_bus_dmamap_load_mbuf,
_bus_dmamap_load_uio,
_bus_dmamap_load_raw,
sparc_vme4_dmamap_unload,
sparc_vme4_dmamap_sync,
_bus_dmamem_alloc,
_bus_dmamem_free,
sparc_vme_dmamem_map,
_bus_dmamem_unmap,
_bus_dmamem_mmap
};
#endif
#if defined(SUN4M)
struct sparc_bus_dma_tag sparc_vme_iommu_dma_tag = {
NULL, /* cookie */
sparc_vme_iommu_dmamap_create,
_bus_dmamap_destroy,
sparc_vme_iommu_dmamap_load,
_bus_dmamap_load_mbuf,
_bus_dmamap_load_uio,
_bus_dmamap_load_raw,
sparc_vme_iommu_dmamap_unload,
sparc_vme_iommu_dmamap_sync,
_bus_dmamem_alloc,
_bus_dmamem_free,
sparc_vme_dmamem_map,
_bus_dmamem_unmap,
_bus_dmamem_mmap
};
#endif
static int
vmematch_mainbus(device_t parent, cfdata_t cf, void *aux)
{
struct mainbus_attach_args *ma = aux;
if (!CPU_ISSUN4 || vme_attached)
return (0);
return (strcmp("vme", ma->ma_name) == 0);
}
static int
vmematch_iommu(device_t parent, cfdata_t cf, void *aux)
{
struct iommu_attach_args *ia = aux;
if (vme_attached)
return 0;
return (strcmp("vme", ia->iom_name) == 0);
}
static void
vmeattach_mainbus(device_t parent, device_t self, void *aux)
{
#if defined(SUN4)
struct mainbus_attach_args *ma = aux;
struct sparcvme_softc *sc = device_private(self);
struct vmebus_attach_args vba;
vme_attached = 1;
sc->sc_bustag = ma->ma_bustag;
sc->sc_dmatag = ma->ma_dmatag;
/* VME interrupt entry point */
sc->sc_vmeintr = vmeintr4;
/*XXX*/ sparc_vme_chipset_tag.cookie = sc;
/*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct4_dmamap_create;
/*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
/*XXX*/ sparc_vme4_dma_tag._cookie = sc;
vba.va_vct = &sparc_vme_chipset_tag;
vba.va_bdt = &sparc_vme4_dma_tag;
vba.va_slaveconfig = 0;
/* Fall back to our own `range' construction */
sc->sc_range = vmebus_translations;
sc->sc_nrange =
sizeof(vmebus_translations)/sizeof(vmebus_translations[0]);
vme_dvmamap = extent_create("vmedvma", VME4_DVMA_BASE, VME4_DVMA_END,
0, 0, EX_NOWAIT);
if (vme_dvmamap == NULL)
panic("vme: unable to allocate DVMA map");
printf("\n");
(void)config_found(self, &vba, 0);
#endif /* SUN4 */
return;
}
/* sun4m vmebus */
static void
vmeattach_iommu(device_t parent, device_t self, void *aux)
{
#if defined(SUN4M)
struct sparcvme_softc *sc = device_private(self);
struct iommu_attach_args *ia = aux;
struct vmebus_attach_args vba;
bus_space_handle_t bh;
int node;
int cline;
sc->sc_bustag = ia->iom_bustag;
sc->sc_dmatag = ia->iom_dmatag;
/* VME interrupt entry point */
sc->sc_vmeintr = vmeintr4m;
/*XXX*/ sparc_vme_chipset_tag.cookie = sc;
/*XXX*/ sparc_vme_chipset_tag.vct_dmamap_create = sparc_vct_iommu_dmamap_create;
/*XXX*/ sparc_vme_chipset_tag.vct_dmamap_destroy = sparc_vct_dmamap_destroy;
/*XXX*/ sparc_vme_iommu_dma_tag._cookie = sc;
vba.va_vct = &sparc_vme_chipset_tag;
vba.va_bdt = &sparc_vme_iommu_dma_tag;
vba.va_slaveconfig = 0;
node = ia->iom_node;
/*
* Map VME control space
*/
if (ia->iom_nreg < 2) {
printf("%s: only %d register sets\n", device_xname(self),
ia->iom_nreg);
return;
}
if (bus_space_map(ia->iom_bustag,
(bus_addr_t) BUS_ADDR(ia->iom_reg[0].oa_space,
ia->iom_reg[0].oa_base),
(bus_size_t)ia->iom_reg[0].oa_size,
BUS_SPACE_MAP_LINEAR,
&bh) != 0) {
panic("%s: can't map vmebusreg", device_xname(self));
}
sc->sc_reg = (struct vmebusreg *)bh;
if (bus_space_map(ia->iom_bustag,
(bus_addr_t) BUS_ADDR(ia->iom_reg[1].oa_space,
ia->iom_reg[1].oa_base),
(bus_size_t)ia->iom_reg[1].oa_size,
BUS_SPACE_MAP_LINEAR,
&bh) != 0) {
panic("%s: can't map vmebusvec", device_xname(self));
}
sc->sc_vec = (struct vmebusvec *)bh;
/*
* Map VME IO cache tags and flush control.
*/
if (bus_space_map(ia->iom_bustag,
(bus_addr_t) BUS_ADDR(
ia->iom_reg[1].oa_space,
ia->iom_reg[1].oa_base + VME_IOC_TAGOFFSET),
VME_IOC_SIZE,
BUS_SPACE_MAP_LINEAR,
&bh) != 0) {
panic("%s: can't map IOC tags", device_xname(self));
}
sc->sc_ioctags = (uint32_t *)bh;
if (bus_space_map(ia->iom_bustag,
(bus_addr_t) BUS_ADDR(
ia->iom_reg[1].oa_space,
ia->iom_reg[1].oa_base + VME_IOC_FLUSHOFFSET),
VME_IOC_SIZE,
BUS_SPACE_MAP_LINEAR,
&bh) != 0) {
panic("%s: can't map IOC flush registers", device_xname(self));
}
sc->sc_iocflush = (uint32_t *)bh;
/*
* Get "range" property.
*/
if (prom_getprop(node, "ranges", sizeof(struct rom_range),
&sc->sc_nrange, &sc->sc_range) != 0) {
panic("%s: can't get ranges property", device_xname(self));
}
sparcvme_sc = sc;
vmeerr_handler = sparc_vme_error;
/*
* Invalidate all IO-cache entries.
*/
for (cline = VME_IOC_SIZE/VME_IOC_LINESZ; cline > 0;) {
sc->sc_ioctags[--cline] = 0;
}
/* Enable IO-cache */
sc->sc_reg->vmebus_cr |= VMEBUS_CR_C;
printf(": version 0x%x\n",
sc->sc_reg->vmebus_cr & VMEBUS_CR_IMPL);
(void)config_found(self, &vba, 0);
#endif /* SUN4M */
}
#if defined(SUN4M)
static int
sparc_vme_error(void)
{
struct sparcvme_softc *sc = sparcvme_sc;
uint32_t afsr, afpa;
char bits[64];
afsr = sc->sc_reg->vmebus_afsr;
afpa = sc->sc_reg->vmebus_afar;
snprintb(bits, sizeof(bits), VMEBUS_AFSR_BITS, afsr);
printf("VME error:\n\tAFSR %s\n", bits);
printf("\taddress: 0x%x%x\n", afsr, afpa);
return (0);
}
#endif
static int
vmebus_translate(struct sparcvme_softc *sc, vme_am_t mod, vme_addr_t addr,
bus_addr_t *bap)
{
int i;
for (i = 0; i < sc->sc_nrange; i++) {
struct rom_range *rp = &sc->sc_range[i];
if (rp->cspace != mod)
continue;
/* We've found the connection to the parent bus */
*bap = BUS_ADDR(rp->pspace, rp->poffset + addr);
return (0);
}
return (ENOENT);
}
struct vmeprobe_myarg {
int (*cb)(void *, bus_space_tag_t, bus_space_handle_t);
void *cbarg;
bus_space_tag_t tag;
int res; /* backwards */
};
static int vmeprobe_mycb(void *, void *);
static int
vmeprobe_mycb(void *bh, void *arg)
{
struct vmeprobe_myarg *a = arg;
a->res = (*a->cb)(a->cbarg, a->tag, (bus_space_handle_t)bh);
return (!a->res);
}
static int
sparc_vme_probe(void *cookie, vme_addr_t addr, vme_size_t len, vme_am_t mod,
vme_datasize_t datasize,
int (*callback)(void *, bus_space_tag_t, bus_space_handle_t),
void *arg)
{
struct sparcvme_softc *sc = cookie;
bus_addr_t paddr;
bus_size_t size;
struct vmeprobe_myarg myarg;
int res, i;
if (vmebus_translate(sc, mod, addr, &paddr) != 0)
return (EINVAL);
size = (datasize == VME_D8 ? 1 : (datasize == VME_D16 ? 2 : 4));
if (callback) {
myarg.cb = callback;
myarg.cbarg = arg;
myarg.tag = sc->sc_bustag;
myarg.res = 0;
res = bus_space_probe(sc->sc_bustag, paddr, size, 0,
0, vmeprobe_mycb, &myarg);
return (res ? 0 : (myarg.res ? myarg.res : EIO));
}
for (i = 0; i < len / size; i++) {
myarg.res = 0;
res = bus_space_probe(sc->sc_bustag, paddr, size, 0,
0, 0, 0);
if (res == 0)
return (EIO);
paddr += size;
}
return (0);
}
static int
sparc_vme_map(void *cookie, vme_addr_t addr, vme_size_t size, vme_am_t mod,
vme_datasize_t datasize, vme_swap_t swap,
bus_space_tag_t *tp, bus_space_handle_t *hp, vme_mapresc_t *rp)
{
struct sparcvme_softc *sc = cookie;
bus_addr_t paddr;
int error;
error = vmebus_translate(sc, mod, addr, &paddr);
if (error != 0)
return (error);
*tp = sc->sc_bustag;
return (bus_space_map(sc->sc_bustag, paddr, size, 0, hp));
}
int
sparc_vme_mmap_cookie(vme_addr_t addr, vme_am_t mod, bus_space_handle_t *hp)
{
struct sparcvme_softc *sc = sparcvme_sc;
bus_addr_t paddr;
int error;
error = vmebus_translate(sc, mod, addr, &paddr);
if (error != 0)
return (error);
return (bus_space_mmap(sc->sc_bustag, paddr, 0,
0/*prot is ignored*/, 0));
}
#ifdef notyet
#if defined(SUN4M)
static void
sparc_vme_iommu_barrier(bus_space_tag_t t, bus_space_handle_t h,
bus_size_t offset, bus_size_t size.
int flags)
{
struct vmebusreg *vbp = t->cookie;
/* Read async fault status to flush write-buffers */
(*(volatile int *)&vbp->vmebus_afsr);
}
#endif /* SUN4M */
#endif
/*
* VME Interrupt Priority Level to sparc Processor Interrupt Level.
*/
static int vme_ipl_to_pil[] = {
0,
2,
3,
5,
7,
9,
11,
13
};
/*
* All VME device interrupts go through vmeintr(). This function reads
* the VME vector from the bus, then dispatches the device interrupt
* handler. All handlers for devices that map to the same Processor
* Interrupt Level (according to the table above) are on a linked list
* of `sparc_vme_intr_handle' structures. The head of which is passed
* down as the argument to `vmeintr(void *arg)'.
*/
struct sparc_vme_intr_handle {
struct intrhand ih;
struct sparc_vme_intr_handle *next;
int vec; /* VME interrupt vector */
int pri; /* VME interrupt priority */
struct sparcvme_softc *sc;/*XXX*/
};
#if defined(SUN4)
int
vmeintr4(void *arg)
{
struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
int level, vec;
int rv = 0;
level = (ihp->pri << 1) | 1;
vec = ldcontrolb((void *)(AC_VMEINTVEC | level));
if (vec == -1) {
#ifdef DEBUG
/*
* This seems to happen only with the i82586 based
* `ie1' boards.
*/
printf("vme: spurious interrupt at VME level %d\n", ihp->pri);
#endif
return (1); /* XXX - pretend we handled it, for now */
}
for (; ihp; ihp = ihp->next)
if (ihp->vec == vec && ihp->ih.ih_fun) {
splx(ihp->ih.ih_classipl);
rv |= (ihp->ih.ih_fun)(ihp->ih.ih_arg);
}
return (rv);
}
#endif
#if defined(SUN4M)
int
vmeintr4m(void *arg)
{
struct sparc_vme_intr_handle *ihp = (vme_intr_handle_t)arg;
int level, vec;
int rv = 0;
level = (ihp->pri << 1) | 1;
#if 0
int pending;
/* Flush VME <=> Sbus write buffers */
(*(volatile int *)&ihp->sc->sc_reg->vmebus_afsr);
pending = *((int*)ICR_SI_PEND);
if ((pending & SINTR_VME(ihp->pri)) == 0) {
printf("vmeintr: non pending at pri %x(p 0x%x)\n",
ihp->pri, pending);
return (0);
}
#endif
#if 0
/* Why gives this a bus timeout sometimes? */
vec = ihp->sc->sc_vec->vmebusvec[level];
#else
/* so, arrange to catch the fault... */
{
extern int fkbyte(volatile char *, struct pcb *);
volatile char *addr = &ihp->sc->sc_vec->vmebusvec[level];
struct pcb *xpcb;
void *saveonfault;
int s;
s = splhigh();
xpcb = lwp_getpcb(curlwp);
saveonfault = xpcb->pcb_onfault;
vec = fkbyte(addr, xpcb);
xpcb->pcb_onfault = saveonfault;
splx(s);
}
#endif
if (vec == -1) {
#ifdef DEBUG
/*
* This seems to happen only with the i82586 based
* `ie1' boards.
*/
printf("vme: spurious interrupt at VME level %d\n", ihp->pri);
printf(" ICR_SI_PEND=0x%x; VME AFSR=0x%x; VME AFAR=0x%x\n",
*((int*)ICR_SI_PEND),
ihp->sc->sc_reg->vmebus_afsr,
ihp->sc->sc_reg->vmebus_afar);
#endif
return (1); /* XXX - pretend we handled it, for now */
}
for (; ihp; ihp = ihp->next)
if (ihp->vec == vec && ihp->ih.ih_fun) {
splx(ihp->ih.ih_classipl);
rv |= (ihp->ih.ih_fun)(ihp->ih.ih_arg);
}
return (rv);
}
#endif /* SUN4M */
static int
sparc_vme_intr_map(void *cookie, int level, int vec,
vme_intr_handle_t *ihp)
{
struct sparc_vme_intr_handle *ih;
ih = (vme_intr_handle_t)
malloc(sizeof(struct sparc_vme_intr_handle), M_DEVBUF, M_NOWAIT);
ih->pri = level;
ih->vec = vec;
ih->sc = cookie;/*XXX*/
*ihp = ih;
return (0);
}
static const struct evcnt *
sparc_vme_intr_evcnt(void *cookie, vme_intr_handle_t vih)
{
/* XXX for now, no evcnt parent reported */
return NULL;
}
static void *
sparc_vme_intr_establish(void *cookie, vme_intr_handle_t vih, int level,
int (*func)(void *), void *arg)
{
struct sparcvme_softc *sc = cookie;
struct sparc_vme_intr_handle *svih =
(struct sparc_vme_intr_handle *)vih;
struct intrhand *ih;
int pil;
/* Translate VME priority to processor IPL */
pil = vme_ipl_to_pil[svih->pri];
if (level < pil)
panic("vme_intr_establish: class lvl (%d) < pil (%d)\n",
level, pil);
svih->ih.ih_fun = func;
svih->ih.ih_arg = arg;
svih->ih.ih_classipl = level; /* note: used slightly differently
than in intr.c (no shift) */
svih->next = NULL;
/* ensure the interrupt subsystem will call us at this level */
for (ih = intrhand[pil]; ih != NULL; ih = ih->ih_next)
if (ih->ih_fun == sc->sc_vmeintr)
break;
if (ih == NULL) {
ih = malloc(sizeof(struct intrhand), M_DEVBUF, M_NOWAIT|M_ZERO);
if (ih == NULL)
panic("vme_addirq");
ih->ih_fun = sc->sc_vmeintr;
ih->ih_arg = vih;
intr_establish(pil, 0, ih, NULL, false);
} else {
svih->next = (vme_intr_handle_t)ih->ih_arg;
ih->ih_arg = vih;
}
return (NULL);
}
static void
sparc_vme_unmap(void *cookie, vme_mapresc_t resc)
{
/* Not implemented */
panic("sparc_vme_unmap");
}
static void
sparc_vme_intr_disestablish(void *cookie, void *a)
{
/* Not implemented */
panic("sparc_vme_intr_disestablish");
}
/*
* VME DMA functions.
*/
#if defined(SUN4) || defined(SUN4M)
static void
sparc_vct_dmamap_destroy(void *cookie, bus_dmamap_t map)
{
struct sparcvme_softc *sc = cookie;
bus_dmamap_destroy(sc->sc_dmatag, map);
}
#endif
#if defined(SUN4)
static int
sparc_vct4_dmamap_create(void *cookie, vme_size_t size, vme_am_t am,
vme_datasize_t datasize, vme_swap_t swap,
int nsegments, vme_size_t maxsegsz,
vme_addr_t boundary, int flags,
bus_dmamap_t *dmamp)
{
struct sparcvme_softc *sc = cookie;
/* Allocate a base map through parent bus ops */
return (bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
boundary, flags, dmamp));
}
static int
sparc_vme4_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map,
void *buf, bus_size_t buflen,
struct proc *p, int flags)
{
bus_addr_t dva;
bus_size_t sgsize;
u_long ldva;
vaddr_t va, voff;
pmap_t pmap;
int pagesz = PAGE_SIZE;
int error;
cache_flush(buf, buflen); /* XXX - move to bus_dma_sync */
va = (vaddr_t)buf;
voff = va & (pagesz - 1);
va &= -pagesz;
/*
* Allocate an integral number of pages from DVMA space
* covering the passed buffer.
*/
sgsize = (buflen + voff + pagesz - 1) & -pagesz;
error = extent_alloc(vme_dvmamap, sgsize, pagesz,
map->_dm_boundary,
(flags & BUS_DMA_NOWAIT) == 0
? EX_WAITOK
: EX_NOWAIT,
&ldva);
if (error != 0)
return (error);
dva = (bus_addr_t)ldva;
map->dm_mapsize = buflen;
map->dm_nsegs = 1;
/* Adjust DVMA address to VME view */
map->dm_segs[0].ds_addr = dva + voff - VME4_DVMA_BASE;
map->dm_segs[0].ds_len = buflen;
map->dm_segs[0]._ds_sgsize = sgsize;
pmap = (p == NULL) ? pmap_kernel() : p->p_vmspace->vm_map.pmap;
for (; sgsize != 0; ) {
paddr_t pa;
/*
* Get the physical address for this page.
*/
(void) pmap_extract(pmap, va, &pa);
#ifdef notyet
if (have_iocache)
pa |= PG_IOC;
#endif
pmap_enter(pmap_kernel(), dva,
pa | PMAP_NC,
VM_PROT_READ|VM_PROT_WRITE, PMAP_WIRED);
dva += pagesz;
va += pagesz;
sgsize -= pagesz;
}
pmap_update(pmap_kernel());
return (0);
}
static void
sparc_vme4_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
{
bus_dma_segment_t *segs = map->dm_segs;
int nsegs = map->dm_nsegs;
bus_addr_t dva;
bus_size_t len;
int i, s, error;
for (i = 0; i < nsegs; i++) {
/* Go from VME to CPU view */
dva = segs[i].ds_addr + VME4_DVMA_BASE;
dva &= -PAGE_SIZE;
len = segs[i]._ds_sgsize;
/* Remove double-mapping in DVMA space */
pmap_remove(pmap_kernel(), dva, dva + len);
/* Release DVMA space */
s = splhigh();
error = extent_free(vme_dvmamap, dva, len, EX_NOWAIT);
splx(s);
if (error != 0)
printf("warning: %ld of DVMA space lost\n", len);
}
pmap_update(pmap_kernel());
/* Mark the mappings as invalid. */
map->dm_mapsize = 0;
map->dm_nsegs = 0;
}
static void
sparc_vme4_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map,
bus_addr_t offset, bus_size_t len, int ops)
{
/*
* XXX Should perform cache flushes as necessary (e.g. 4/200 W/B).
* Currently the cache is flushed in bus_dma_load()...
*/
}
#endif /* SUN4 */
#if defined(SUN4M)
static int
sparc_vme_iommu_dmamap_create(bus_dma_tag_t t, bus_size_t size,
int nsegments, bus_size_t maxsegsz,
bus_size_t boundary, int flags,
bus_dmamap_t *dmamp)
{
printf("sparc_vme_dmamap_create: please use `vme_dmamap_create'\n");
return (EINVAL);
}
static int
sparc_vct_iommu_dmamap_create(void *cookie, vme_size_t size, vme_am_t am,
vme_datasize_t datasize, vme_swap_t swap,
int nsegments, vme_size_t maxsegsz,
vme_addr_t boundary, int flags,
bus_dmamap_t *dmamp)
{
struct sparcvme_softc *sc = cookie;
bus_dmamap_t map;
int error;
/* Allocate a base map through parent bus ops */
error = bus_dmamap_create(sc->sc_dmatag, size, nsegments, maxsegsz,
boundary, flags, &map);
if (error != 0)
return (error);
/*
* Each I/O cache line maps to a 8K section of VME DVMA space, so
* we must ensure that DVMA alloctions are always 8K aligned.
*/
map->_dm_align = VME_IOC_PAGESZ;
/* Set map region based on Address Modifier */
switch ((am & VME_AM_ADRSIZEMASK)) {
case VME_AM_A16:
case VME_AM_A24:
/* 1 MB of DVMA space */
map->_dm_ex_start = VME_IOMMU_DVMA_AM24_BASE;
map->_dm_ex_end = VME_IOMMU_DVMA_AM24_END;
break;
case VME_AM_A32:
/* 8 MB of DVMA space */
map->_dm_ex_start = VME_IOMMU_DVMA_AM32_BASE;
map->_dm_ex_end = VME_IOMMU_DVMA_AM32_END;
break;
}
*dmamp = map;
return (0);
}
static int
sparc_vme_iommu_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map,
void *buf, bus_size_t buflen,
struct proc *p, int flags)
{
struct sparcvme_softc *sc = t->_cookie;
volatile uint32_t *ioctags;
int error;
/* Round request to a multiple of the I/O cache size */
buflen = (buflen + VME_IOC_PAGESZ - 1) & -VME_IOC_PAGESZ;
error = bus_dmamap_load(sc->sc_dmatag, map, buf, buflen, p, flags);
if (error != 0)
return (error);
/* Allocate I/O cache entries for this range */
ioctags = sc->sc_ioctags + VME_IOC_LINE(map->dm_segs[0].ds_addr);
while (buflen > 0) {
*ioctags = VME_IOC_IC | VME_IOC_W;
ioctags += VME_IOC_LINESZ/sizeof(*ioctags);
buflen -= VME_IOC_PAGESZ;
}
/*
* Adjust DVMA address to VME view.
* Note: the DVMA base address is the same for all
* VME address spaces.
*/
map->dm_segs[0].ds_addr -= VME_IOMMU_DVMA_BASE;
return (0);
}
static void
sparc_vme_iommu_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
{
struct sparcvme_softc *sc = t->_cookie;
volatile uint32_t *flushregs;
int len;
/* Go from VME to CPU view */
map->dm_segs[0].ds_addr += VME_IOMMU_DVMA_BASE;
/* Flush VME I/O cache */
len = map->dm_segs[0]._ds_sgsize;
flushregs = sc->sc_iocflush + VME_IOC_LINE(map->dm_segs[0].ds_addr);
while (len > 0) {
*flushregs = 0;
flushregs += VME_IOC_LINESZ/sizeof(*flushregs);
len -= VME_IOC_PAGESZ;
}
/*
* Start a read from `tag space' which will not complete until
* all cache flushes have finished
*/
(*sc->sc_ioctags);
bus_dmamap_unload(sc->sc_dmatag, map);
}
static void
sparc_vme_iommu_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map,
bus_addr_t offset, bus_size_t len, int ops)
{
/*
* XXX Should perform cache flushes as necessary.
*/
}
#endif /* SUN4M */
#if defined(SUN4) || defined(SUN4M)
static int
sparc_vme_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
size_t size, void **kvap, int flags)
{
struct sparcvme_softc *sc = t->_cookie;
return (bus_dmamem_map(sc->sc_dmatag, segs, nsegs, size, kvap, flags));
}
#endif /* SUN4 || SUN4M */