NetBSD/sys/arch/sparc/fpu/fpu.c
2002-01-19 03:30:54 +00:00

618 lines
17 KiB
C

/* $NetBSD: fpu.c,v 1.15 2002/01/19 03:30:54 eeh Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)fpu.c 8.1 (Berkeley) 6/11/93
*/
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/signal.h>
#include <sys/systm.h>
#include <sys/syslog.h>
#include <sys/signalvar.h>
#include <machine/instr.h>
#include <machine/reg.h>
#include <sparc/fpu/fpu_emu.h>
#include <sparc/fpu/fpu_extern.h>
int fpe_debug = 0;
#ifdef DEBUG
/*
* Dump a `fpn' structure.
*/
void
fpu_dumpfpn(struct fpn *fp)
{
static char *class[] = {
"SNAN", "QNAN", "ZERO", "NUM", "INF"
};
printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2],
fp->fp_sign ? '-' : ' ',
fp->fp_mant[0], fp->fp_mant[1],
fp->fp_mant[2], fp->fp_mant[3],
fp->fp_exp);
}
#endif
/*
* fpu_execute returns the following error numbers (0 = no error):
*/
#define FPE 1 /* take a floating point exception */
#define NOTFPU 2 /* not an FPU instruction */
/*
* Translate current exceptions into `first' exception. The
* bits go the wrong way for ffs() (0x10 is most important, etc).
* There are only 5, so do it the obvious way.
*/
#define X1(x) x
#define X2(x) x,x
#define X4(x) x,x,x,x
#define X8(x) X4(x),X4(x)
#define X16(x) X8(x),X8(x)
static char cx_to_trapx[] = {
X1(FSR_NX),
X2(FSR_DZ),
X4(FSR_UF),
X8(FSR_OF),
X16(FSR_NV)
};
static u_char fpu_codes[] = {
X1(FPE_FLTINEX_TRAP),
X2(FPE_FLTDIV_TRAP),
X4(FPE_FLTUND_TRAP),
X8(FPE_FLTOVF_TRAP),
X16(FPE_FLTOPERR_TRAP)
};
/*
* The FPU gave us an exception. Clean up the mess. Note that the
* fp queue can only have FPops in it, never load/store FP registers
* nor FBfcc instructions. Experiments with `crashme' prove that
* unknown FPops do enter the queue, however.
*/
void
fpu_cleanup(p, fs)
register struct proc *p;
#ifndef SUN4U
register struct fpstate *fs;
#else /* SUN4U */
register struct fpstate64 *fs;
#endif /* SUN4U */
{
register int i, fsr = fs->fs_fsr, error;
union instr instr;
struct fpemu fe;
switch ((fsr >> FSR_FTT_SHIFT) & FSR_FTT_MASK) {
case FSR_TT_NONE:
panic("fpu_cleanup: No fault"); /* ??? */
break;
case FSR_TT_IEEE:
DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_IEEE\n"));
/* XXX missing trap address! */
if ((i = fsr & FSR_CX) == 0)
panic("fpu ieee trap, but no exception");
trapsignal(p, SIGFPE, fpu_codes[i - 1]);
break; /* XXX should return, but queue remains */
case FSR_TT_UNFIN:
DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_UNFIN\n"));
#ifdef SUN4U
if (fs->fs_qsize == 0) {
printf("fpu_cleanup: unfinished fpop");
/* The book sez reexecute or emulate. */
return;
}
break;
#endif /* SUN4U */
case FSR_TT_UNIMP:
DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_UNIMP\n"));
if (fs->fs_qsize == 0)
panic("fpu_cleanup: unimplemented fpop");
break;
case FSR_TT_SEQ:
panic("fpu sequence error");
/* NOTREACHED */
case FSR_TT_HWERR:
DPRINTF(FPE_INSN, ("fpu_cleanup: FSR_TT_HWERR\n"));
log(LOG_ERR, "fpu hardware error (%s[%d])\n",
p->p_comm, p->p_pid);
uprintf("%s[%d]: fpu hardware error\n", p->p_comm, p->p_pid);
trapsignal(p, SIGFPE, -1); /* ??? */
goto out;
default:
printf("fsr=0x%x\n", fsr);
panic("fpu error");
}
/* emulate the instructions left in the queue */
fe.fe_fpstate = fs;
for (i = 0; i < fs->fs_qsize; i++) {
instr.i_int = fs->fs_queue[i].fq_instr;
if (instr.i_any.i_op != IOP_reg ||
(instr.i_op3.i_op3 != IOP3_FPop1 &&
instr.i_op3.i_op3 != IOP3_FPop2))
panic("bogus fpu queue");
error = fpu_execute(&fe, instr);
switch (error) {
case 0:
continue;
case FPE:
trapsignal(p, SIGFPE,
fpu_codes[(fs->fs_fsr & FSR_CX) - 1]);
break;
case NOTFPU:
#ifdef SUN4U
#ifdef DEBUG
printf("fpu_cleanup: not an FPU error -- sending SIGILL\n");
Debugger();
#endif
#endif /* SUN4U */
trapsignal(p, SIGILL, 0); /* ??? code? */
break;
default:
panic("fpu_cleanup 3");
/* NOTREACHED */
}
/* XXX should stop here, but queue remains */
}
out:
fs->fs_qsize = 0;
}
#ifdef notyet
/*
* If we have no FPU at all (are there any machines like this out
* there!?) we have to emulate each instruction, and we need a pointer
* to the trapframe so that we can step over them and do FBfcc's.
* We know the `queue' is empty, though; we just want to emulate
* the instruction at tf->tf_pc.
*/
fpu_emulate(p, tf, fs)
struct proc *p;
register struct trapframe *tf;
#ifndef SUN4U
register struct fpstate *fs;
#else /* SUN4U */
register struct fpstate64 *fs;
#endif /* SUN4U */
{
do {
fetch instr from pc
decode
if (integer instr) {
/*
* We do this here, rather than earlier, to avoid
* losing even more badly than usual.
*/
if (p->p_addr->u_pcb.pcb_uw) {
write_user_windows();
if (rwindow_save(p))
sigexit(p, SIGILL);
}
if (loadstore) {
do_it;
pc = npc, npc += 4
} else if (fbfcc) {
do_annul_stuff;
} else
return;
} else if (fpu instr) {
fe.fe_fsr = fs->fs_fsr &= ~FSR_CX;
error = fpu_execute(&fe, fs, instr);
switch (error) {
etc;
}
} else
return;
if (want to reschedule)
return;
} while (error == 0);
}
#endif
/*
* Execute an FPU instruction (one that runs entirely in the FPU; not
* FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
* modified to reflect the setting the hardware would have left.
*
* Note that we do not catch all illegal opcodes, so you can, for instance,
* multiply two integers this way.
*/
int
fpu_execute(fe, instr)
register struct fpemu *fe;
union instr instr;
{
register struct fpn *fp;
#ifndef SUN4U
register int opf, rs1, rs2, rd, type, mask, fsr, cx;
register struct fpstate *fs;
#else /* SUN4U */
register int opf, rs1, rs2, rd, type, mask, fsr, cx, i, cond;
register struct fpstate64 *fs;
#endif /* SUN4U */
u_int space[4];
/*
* `Decode' and execute instruction. Start with no exceptions.
* The type of any i_opf opcode is in the bottom two bits, so we
* squish them out here.
*/
opf = instr.i_opf.i_opf;
/*
* The low two bits of the opf field for floating point insns usually
* correspond to the operation width:
*
* 0: Invalid
* 1: Single precision float
* 2: Double precision float
* 3: Quad precision float
*
* The exceptions are the integer to float conversion instructions.
*
* For double and quad precision, the low bit if the rs or rd field
* is actually the high bit of the register number.
*/
type = opf & 3;
mask = 0x3 >> (3 - type);
rs1 = instr.i_opf.i_rs1;
rs1 = (rs1 & ~mask) | ((rs1 & mask & 0x1) << 5);
rs2 = instr.i_opf.i_rs2;
rs2 = (rs2 & ~mask) | ((rs2 & mask & 0x1) << 5);
rd = instr.i_opf.i_rd;
rd = (rd & ~mask) | ((rd & mask & 0x1) << 5);
#ifdef DIAGNOSTIC
if ((rs1 | rs2 | rd) & mask)
/* This may be an FPU insn but it is illegal. */
return (NOTFPU);
#endif
fs = fe->fe_fpstate;
fe->fe_fsr = fs->fs_fsr & ~FSR_CX;
fe->fe_cx = 0;
#ifdef SUN4U
/*
* Check to see if we're dealing with a fancy cmove and handle
* it first.
*/
if (instr.i_op3.i_op3 == IOP3_FPop2 && (opf&0xff0) != (FCMP&0xff0)) {
switch (opf >>= 2) {
case FMVFC0 >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FMVFC0\n"));
cond = (fs->fs_fsr>>FSR_FCC_SHIFT)&FSR_FCC_MASK;
if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVFC1 >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FMVFC1\n"));
cond = (fs->fs_fsr>>FSR_FCC1_SHIFT)&FSR_FCC_MASK;
if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVFC2 >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FMVFC2\n"));
cond = (fs->fs_fsr>>FSR_FCC2_SHIFT)&FSR_FCC_MASK;
if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVFC3 >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FMVFC3\n"));
cond = (fs->fs_fsr>>FSR_FCC3_SHIFT)&FSR_FCC_MASK;
if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVIC >> 2:
/* Presume we're curproc */
DPRINTF(FPE_INSN, ("fpu_execute: FMVIC\n"));
cond = (curproc->p_md.md_tf->tf_tstate>>TSTATE_CCR_SHIFT)&PSR_ICC;
if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVXC >> 2:
/* Presume we're curproc */
DPRINTF(FPE_INSN, ("fpu_execute: FMVXC\n"));
cond = (curproc->p_md.md_tf->tf_tstate>>(TSTATE_CCR_SHIFT+XCC_SHIFT))&PSR_ICC;
if (instr.i_fmovcc.i_cond != cond) return(0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVRZ >> 2:
/* Presume we're curproc */
DPRINTF(FPE_INSN, ("fpu_execute: FMVRZ\n"));
rs1 = instr.i_fmovr.i_rs1;
if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] != 0)
return (0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVRLEZ >> 2:
/* Presume we're curproc */
DPRINTF(FPE_INSN, ("fpu_execute: FMVRLEZ\n"));
rs1 = instr.i_fmovr.i_rs1;
if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] > 0)
return (0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVRLZ >> 2:
/* Presume we're curproc */
DPRINTF(FPE_INSN, ("fpu_execute: FMVRLZ\n"));
rs1 = instr.i_fmovr.i_rs1;
if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] >= 0)
return (0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVRNZ >> 2:
/* Presume we're curproc */
DPRINTF(FPE_INSN, ("fpu_execute: FMVRNZ\n"));
rs1 = instr.i_fmovr.i_rs1;
if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] == 0)
return (0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVRGZ >> 2:
/* Presume we're curproc */
DPRINTF(FPE_INSN, ("fpu_execute: FMVRGZ\n"));
rs1 = instr.i_fmovr.i_rs1;
if (rs1 == 0 || (int64_t)curproc->p_md.md_tf->tf_global[rs1] <= 0)
return (0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
case FMVRGEZ >> 2:
/* Presume we're curproc */
DPRINTF(FPE_INSN, ("fpu_execute: FMVRGEZ\n"));
rs1 = instr.i_fmovr.i_rs1;
if (rs1 != 0 && (int64_t)curproc->p_md.md_tf->tf_global[rs1] < 0)
return (0); /* success */
rs1 = fs->fs_regs[rs2];
goto mov;
default:
DPRINTF(FPE_INSN,
("fpu_execute: unknown v9 FP inst %x opf %x\n",
instr.i_int, opf));
return (NOTFPU);
}
}
#endif /* SUN4U */
switch (opf >>= 2) {
default:
DPRINTF(FPE_INSN,
("fpu_execute: unknown basic FP inst %x opf %x\n",
instr.i_int, opf));
return (NOTFPU);
case FMOV >> 2: /* these should all be pretty obvious */
DPRINTF(FPE_INSN, ("fpu_execute: FMOV\n"));
rs1 = fs->fs_regs[rs2];
goto mov;
case FNEG >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FNEG\n"));
rs1 = fs->fs_regs[rs2] ^ (1 << 31);
goto mov;
case FABS >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
rs1 = fs->fs_regs[rs2] & ~(1 << 31);
mov:
#ifndef SUN4U
fs->fs_regs[rd] = rs1;
#else /* SUN4U */
i = 1<<(type-1);
fs->fs_regs[rd++] = rs1;
while (--i > 0)
fs->fs_regs[rd++] = fs->fs_regs[++rs2];
#endif /* SUN4U */
fs->fs_fsr = fe->fe_fsr;
return (0); /* success */
case FSQRT >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
fpu_explode(fe, &fe->fe_f1, type, rs2);
fp = fpu_sqrt(fe);
break;
case FADD >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
fpu_explode(fe, &fe->fe_f1, type, rs1);
fpu_explode(fe, &fe->fe_f2, type, rs2);
fp = fpu_add(fe);
break;
case FSUB >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
fpu_explode(fe, &fe->fe_f1, type, rs1);
fpu_explode(fe, &fe->fe_f2, type, rs2);
fp = fpu_sub(fe);
break;
case FMUL >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
fpu_explode(fe, &fe->fe_f1, type, rs1);
fpu_explode(fe, &fe->fe_f2, type, rs2);
fp = fpu_mul(fe);
break;
case FDIV >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
fpu_explode(fe, &fe->fe_f1, type, rs1);
fpu_explode(fe, &fe->fe_f2, type, rs2);
fp = fpu_div(fe);
break;
case FCMP >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FCMP\n"));
fpu_explode(fe, &fe->fe_f1, type, rs1);
fpu_explode(fe, &fe->fe_f2, type, rs2);
fpu_compare(fe, 0);
goto cmpdone;
case FCMPE >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FCMPE\n"));
fpu_explode(fe, &fe->fe_f1, type, rs1);
fpu_explode(fe, &fe->fe_f2, type, rs2);
fpu_compare(fe, 1);
cmpdone:
/*
* The only possible exception here is NV; catch it
* early and get out, as there is no result register.
*/
cx = fe->fe_cx;
fsr = fe->fe_fsr | (cx << FSR_CX_SHIFT);
if (cx != 0) {
if (fsr & (FSR_NV << FSR_TEM_SHIFT)) {
fs->fs_fsr = (fsr & ~FSR_FTT) |
(FSR_TT_IEEE << FSR_FTT_SHIFT);
return (FPE);
}
fsr |= FSR_NV << FSR_AX_SHIFT;
}
fs->fs_fsr = fsr;
return (0);
case FSMULD >> 2:
case FDMULX >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FSMULx\n"));
if (type == FTYPE_EXT)
return (NOTFPU);
fpu_explode(fe, &fe->fe_f1, type, rs1);
fpu_explode(fe, &fe->fe_f2, type, rs2);
type++; /* single to double, or double to quad */
fp = fpu_mul(fe);
break;
#ifdef SUN4U
case FXTOS >> 2:
case FXTOD >> 2:
case FXTOQ >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FXTOx\n"));
type = FTYPE_LNG;
fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
type = opf & 3; /* sneaky; depends on instruction encoding */
break;
case FTOX >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FTOX\n"));
fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
type = FTYPE_LNG;
/* Recalculate destination register */
rd = instr.i_opf.i_rd;
break;
#endif /* SUN4U */
case FTOI >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FTOI\n"));
fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
type = FTYPE_INT;
/* Recalculate destination register */
rd = instr.i_opf.i_rd;
break;
case FTOS >> 2:
case FTOD >> 2:
case FTOQ >> 2:
DPRINTF(FPE_INSN, ("fpu_execute: FTOx\n"));
fpu_explode(fe, fp = &fe->fe_f1, type, rs2);
/* Recalculate rd with correct type info. */
type = opf & 3; /* sneaky; depends on instruction encoding */
mask = 0x3 >> (3 - type);
rd = instr.i_opf.i_rd;
rd = (rd & ~mask) | ((rd & mask & 0x1) << 5);
break;
}
/*
* ALU operation is complete. Collapse the result and then check
* for exceptions. If we got any, and they are enabled, do not
* alter the destination register, just stop with an exception.
* Otherwise set new current exceptions and accrue.
*/
fpu_implode(fe, fp, type, space);
cx = fe->fe_cx;
fsr = fe->fe_fsr;
if (cx != 0) {
mask = (fsr >> FSR_TEM_SHIFT) & FSR_TEM_MASK;
if (cx & mask) {
/* not accrued??? */
fs->fs_fsr = (fsr & ~FSR_FTT) |
(FSR_TT_IEEE << FSR_FTT_SHIFT) |
(cx_to_trapx[(cx & mask) - 1] << FSR_CX_SHIFT);
return (FPE);
}
fsr |= (cx << FSR_CX_SHIFT) | (cx << FSR_AX_SHIFT);
}
fs->fs_fsr = fsr;
DPRINTF(FPE_REG, ("-> %c%d\n", (type == FTYPE_LNG) ? 'x' :
((type == FTYPE_INT) ? 'i' :
((type == FTYPE_SNG) ? 's' :
((type == FTYPE_DBL) ? 'd' :
((type == FTYPE_EXT) ? 'q' : '?')))),
rd));
fs->fs_regs[rd] = space[0];
if (type >= FTYPE_DBL || type == FTYPE_LNG) {
fs->fs_regs[rd + 1] = space[1];
if (type > FTYPE_DBL) {
fs->fs_regs[rd + 2] = space[2];
fs->fs_regs[rd + 3] = space[3];
}
}
return (0); /* success */
}