NetBSD/sys/dev/pci/if_sk.c

2657 lines
71 KiB
C

/* $NetBSD: if_sk.c,v 1.10 2004/05/24 20:12:01 kleink Exp $ */
/*-
* Copyright (c) 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* $OpenBSD: if_sk.c,v 1.33 2003/08/12 05:23:06 nate Exp $ */
/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
*/
/*
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
* the SK-984x series adapters, both single port and dual port.
* References:
* The XaQti XMAC II datasheet,
* http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
* The SysKonnect GEnesis manual, http://www.syskonnect.com
*
* Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
* XMAC II datasheet online. I have put my copy at people.freebsd.org as a
* convenience to others until Vitesse corrects this problem:
*
* http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Department of Electrical Engineering
* Columbia University, New York City
*/
/*
* The SysKonnect gigabit ethernet adapters consist of two main
* components: the SysKonnect GEnesis controller chip and the XaQti Corp.
* XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
* components and a PHY while the GEnesis controller provides a PCI
* interface with DMA support. Each card may have between 512K and
* 2MB of SRAM on board depending on the configuration.
*
* The SysKonnect GEnesis controller can have either one or two XMAC
* chips connected to it, allowing single or dual port NIC configurations.
* SysKonnect has the distinction of being the only vendor on the market
* with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
* dual DMA queues, packet/MAC/transmit arbiters and direct access to the
* XMAC registers. This driver takes advantage of these features to allow
* both XMACs to operate as independent interfaces.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#define SK_VERBOSE
/* #define SK_USEIOSPACE */
#include <dev/pci/if_skreg.h>
#include <dev/pci/if_skvar.h>
int skc_probe(struct device *, struct cfdata *, void *);
void skc_attach(struct device *, struct device *self, void *aux);
int sk_probe(struct device *, struct cfdata *, void *);
void sk_attach(struct device *, struct device *self, void *aux);
int skcprint(void *, const char *);
int sk_intr(void *);
void sk_intr_bcom(struct sk_if_softc *);
void sk_intr_xmac(struct sk_if_softc *);
void sk_intr_yukon(struct sk_if_softc *);
void sk_rxeof(struct sk_if_softc *);
void sk_txeof(struct sk_if_softc *);
int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
void sk_start(struct ifnet *);
int sk_ioctl(struct ifnet *, u_long, caddr_t);
int sk_init(struct ifnet *);
void sk_init_xmac(struct sk_if_softc *);
void sk_init_yukon(struct sk_if_softc *);
void sk_stop(struct ifnet *, int);
void sk_watchdog(struct ifnet *);
void sk_shutdown(void *);
int sk_ifmedia_upd(struct ifnet *);
void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
void sk_reset(struct sk_softc *);
int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
int sk_init_rx_ring(struct sk_if_softc *);
int sk_init_tx_ring(struct sk_if_softc *);
u_int8_t sk_vpd_readbyte(struct sk_softc *, int);
void sk_vpd_read_res(struct sk_softc *,
struct vpd_res *, int);
void sk_vpd_read(struct sk_softc *);
int sk_xmac_miibus_readreg(struct device *, int, int);
void sk_xmac_miibus_writereg(struct device *, int, int, int);
void sk_xmac_miibus_statchg(struct device *);
int sk_marv_miibus_readreg(struct device *, int, int);
void sk_marv_miibus_writereg(struct device *, int, int, int);
void sk_marv_miibus_statchg(struct device *);
u_int32_t sk_xmac_hash(caddr_t);
u_int32_t sk_yukon_hash(caddr_t);
void sk_setfilt(struct sk_if_softc *, caddr_t, int);
void sk_setmulti(struct sk_if_softc *);
void sk_tick(void *);
/* #define SK_DEBUG 2 */
#ifdef SK_DEBUG
#define DPRINTF(x) if (skdebug) printf x
#define DPRINTFN(n,x) if (skdebug >= (n)) printf x
int skdebug = SK_DEBUG;
void sk_dump_txdesc(struct sk_tx_desc *, int);
void sk_dump_mbuf(struct mbuf *);
void sk_dump_bytes(const char *, int);
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#define SK_SETBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
#define SK_CLRBIT(sc, reg, x) \
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
#define SK_WIN_SETBIT_4(sc, reg, x) \
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
#define SK_WIN_CLRBIT_4(sc, reg, x) \
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
#define SK_WIN_SETBIT_2(sc, reg, x) \
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
#define SK_WIN_CLRBIT_2(sc, reg, x) \
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
/* supported device vendors */
static const struct sk_product {
pci_vendor_id_t sk_vendor;
pci_product_id_t sk_product;
} sk_products[] = {
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940, },
{ PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T, },
{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, },
{ PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064, },
{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE, },
{ PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2, },
{ PCI_VENDOR_GALILEO, PCI_PRODUCT_GALILEO_SKNET, },
{ 0, 0, }
};
static inline u_int32_t
sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg));
#else
return CSR_READ_4(sc, reg);
#endif
}
static inline u_int16_t
sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg));
#else
return CSR_READ_2(sc, reg);
#endif
}
static inline u_int8_t
sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg));
#else
return CSR_READ_1(sc, reg);
#endif
}
static inline void
sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x);
#else
CSR_WRITE_4(sc, reg, x);
#endif
}
static inline void
sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x);
#else
CSR_WRITE_2(sc, reg, x);
#endif
}
static inline void
sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
{
#ifdef SK_USEIOSPACE
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x);
#else
CSR_WRITE_1(sc, reg, x);
#endif
}
/*
* The VPD EEPROM contains Vital Product Data, as suggested in
* the PCI 2.1 specification. The VPD data is separared into areas
* denoted by resource IDs. The SysKonnect VPD contains an ID string
* resource (the name of the adapter), a read-only area resource
* containing various key/data fields and a read/write area which
* can be used to store asset management information or log messages.
* We read the ID string and read-only into buffers attached to
* the controller softc structure for later use. At the moment,
* we only use the ID string during sk_attach().
*/
u_int8_t
sk_vpd_readbyte(struct sk_softc *sc, int addr)
{
int i;
sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (sk_win_read_2(sc,
SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG)
break;
}
if (i == SK_TIMEOUT)
return(0);
return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA)));
}
void
sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr)
{
int i;
u_int8_t *ptr;
ptr = (u_int8_t *)res;
for (i = 0; i < sizeof(struct vpd_res); i++)
ptr[i] = sk_vpd_readbyte(sc, i + addr);
}
void
sk_vpd_read(struct sk_softc *sc)
{
int pos = 0, i;
struct vpd_res res;
if (sc->sk_vpd_prodname != NULL)
free(sc->sk_vpd_prodname, M_DEVBUF);
if (sc->sk_vpd_readonly != NULL)
free(sc->sk_vpd_readonly, M_DEVBUF);
sc->sk_vpd_prodname = NULL;
sc->sk_vpd_readonly = NULL;
sk_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_ID) {
printf("%s: bad VPD resource id: expected %x got %x\n",
sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id);
return;
}
pos += sizeof(res);
sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT);
if (sc->sk_vpd_prodname == NULL)
panic("sk_vpd_read");
for (i = 0; i < res.vr_len; i++)
sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos);
sc->sk_vpd_prodname[i] = '\0';
pos += i;
sk_vpd_read_res(sc, &res, pos);
if (res.vr_id != VPD_RES_READ) {
printf("%s: bad VPD resource id: expected %x got %x\n",
sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id);
return;
}
pos += sizeof(res);
sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT);
if (sc->sk_vpd_readonly == NULL)
panic("sk_vpd_read");
for (i = 0; i < res.vr_len + 1; i++)
sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos);
}
int
sk_xmac_miibus_readreg(struct device *dev, int phy, int reg)
{
struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
int i;
DPRINTFN(9, ("sk_xmac_miibus_readreg\n"));
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0)
return(0);
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
SK_XM_READ_2(sc_if, XM_PHY_DATA);
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
XM_MMUCMD_PHYDATARDY)
break;
}
if (i == SK_TIMEOUT) {
printf("%s: phy failed to come ready\n",
sc_if->sk_dev.dv_xname);
return(0);
}
}
DELAY(1);
return(SK_XM_READ_2(sc_if, XM_PHY_DATA));
}
void
sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val)
{
struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
int i;
DPRINTFN(9, ("sk_xmac_miibus_writereg\n"));
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
for (i = 0; i < SK_TIMEOUT; i++) {
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
break;
}
if (i == SK_TIMEOUT) {
printf("%s: phy failed to come ready\n",
sc_if->sk_dev.dv_xname);
return;
}
SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
break;
}
if (i == SK_TIMEOUT)
printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname);
}
void
sk_xmac_miibus_statchg(struct device *dev)
{
struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
struct mii_data *mii = &sc_if->sk_mii;
DPRINTFN(9, ("sk_xmac_miibus_statchg\n"));
/*
* If this is a GMII PHY, manually set the XMAC's
* duplex mode accordingly.
*/
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
} else {
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
}
}
}
int
sk_marv_miibus_readreg(dev, phy, reg)
struct device *dev;
int phy, reg;
{
struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
u_int16_t val;
int i;
if (phy != 0 ||
(sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) {
DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n",
phy, reg));
return(0);
}
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
val = SK_YU_READ_2(sc_if, YUKON_SMICR);
if (val & YU_SMICR_READ_VALID)
break;
}
if (i == SK_TIMEOUT) {
printf("%s: phy failed to come ready\n",
sc_if->sk_dev.dv_xname);
return 0;
}
DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i,
SK_TIMEOUT));
val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
phy, reg, val));
return val;
}
void
sk_marv_miibus_writereg(dev, phy, reg, val)
struct device *dev;
int phy, reg, val;
{
struct sk_if_softc *sc_if = (struct sk_if_softc *)dev;
int i;
DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n",
phy, reg, val));
SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
for (i = 0; i < SK_TIMEOUT; i++) {
DELAY(1);
if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)
break;
}
}
void
sk_marv_miibus_statchg(dev)
struct device *dev;
{
DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n",
SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR)));
}
#define SK_HASH_BITS 6
u_int32_t
sk_xmac_hash(caddr_t addr)
{
u_int32_t crc;
crc = ether_crc32_le(addr,ETHER_ADDR_LEN);
crc = ~crc & ((1<< SK_HASH_BITS) - 1);
DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
return (crc);
}
u_int32_t
sk_yukon_hash(caddr_t addr)
{
u_int32_t crc;
crc = ether_crc32_be(addr,ETHER_ADDR_LEN);
crc &= ((1 << SK_HASH_BITS) - 1);
DPRINTFN(2,("multicast hash for %s is %x\n",ether_sprintf(addr),crc));
return (crc);
}
void
sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot)
{
int base = XM_RXFILT_ENTRY(slot);
SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
}
void
sk_setmulti(struct sk_if_softc *sc_if)
{
struct sk_softc *sc = sc_if->sk_softc;
struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
u_int32_t hashes[2] = { 0, 0 };
int h = 0, i;
struct ethercom *ec = &sc_if->sk_ethercom;
struct ether_multi *enm;
struct ether_multistep step;
u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 };
/* First, zot all the existing filters. */
switch(sc->sk_type) {
case SK_GENESIS:
for (i = 1; i < XM_RXFILT_MAX; i++)
sk_setfilt(sc_if, (caddr_t)&dummy, i);
SK_XM_WRITE_4(sc_if, XM_MAR0, 0);
SK_XM_WRITE_4(sc_if, XM_MAR2, 0);
break;
case SK_YUKON:
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
break;
}
/* Now program new ones. */
allmulti:
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
hashes[0] = 0xFFFFFFFF;
hashes[1] = 0xFFFFFFFF;
} else {
i = 1;
/* First find the tail of the list. */
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN)) {
ifp->if_flags |= IFF_ALLMULTI;
goto allmulti;
}
DPRINTFN(2,("multicast address %s\n",
ether_sprintf(enm->enm_addrlo)));
/*
* Program the first XM_RXFILT_MAX multicast groups
* into the perfect filter. For all others,
* use the hash table.
*/
if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) {
sk_setfilt(sc_if, enm->enm_addrlo, i);
i++;
}
else {
switch (sc->sk_type) {
case SK_GENESIS:
h = sk_xmac_hash(enm->enm_addrlo);
break;
case SK_YUKON:
h = sk_yukon_hash(enm->enm_addrlo);
break;
}
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
ETHER_NEXT_MULTI(step, enm);
}
}
switch(sc->sk_type) {
case SK_GENESIS:
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH|
XM_MODE_RX_USE_PERFECT);
SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
break;
case SK_YUKON:
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
break;
}
}
int
sk_init_rx_ring(struct sk_if_softc *sc_if)
{
struct sk_chain_data *cd = &sc_if->sk_cdata;
struct sk_ring_data *rd = sc_if->sk_rdata;
int i;
bzero((char *)rd->sk_rx_ring,
sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
for (i = 0; i < SK_RX_RING_CNT; i++) {
cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i];
if (i == (SK_RX_RING_CNT - 1)) {
cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0];
rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0);
} else {
cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1];
rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1);
}
}
for (i = 0; i < SK_RX_RING_CNT; i++) {
if (sk_newbuf(sc_if, i, NULL, NULL) == ENOBUFS) {
printf("%s: failed alloc of %dth mbuf\n",
sc_if->sk_dev.dv_xname, i);
return(ENOBUFS);
}
}
sc_if->sk_cdata.sk_rx_prod = 0;
sc_if->sk_cdata.sk_rx_cons = 0;
return(0);
}
int
sk_init_tx_ring(struct sk_if_softc *sc_if)
{
struct sk_chain_data *cd = &sc_if->sk_cdata;
struct sk_ring_data *rd = sc_if->sk_rdata;
int i;
bzero((char *)sc_if->sk_rdata->sk_tx_ring,
sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
for (i = 0; i < SK_TX_RING_CNT; i++) {
cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i];
if (i == (SK_TX_RING_CNT - 1)) {
cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0];
rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0);
} else {
cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1];
rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1);
}
}
sc_if->sk_cdata.sk_tx_prod = 0;
sc_if->sk_cdata.sk_tx_cons = 0;
sc_if->sk_cdata.sk_tx_cnt = 0;
SK_CDTXSYNC(sc_if, 0, SK_TX_RING_CNT,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
return (0);
}
int
sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
bus_dmamap_t dmamap)
{
struct sk_softc *sc = sc_if->sk_softc;
struct mbuf *m_new = NULL;
struct sk_chain *c;
struct sk_rx_desc *r;
if (dmamap == NULL) {
/* if (m) panic() */
if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &dmamap)) {
printf("%s: can't create recv map\n",
sc_if->sk_dev.dv_xname);
return(ENOMEM);
}
} else if (m == NULL)
bus_dmamap_unload(sc->sc_dmatag, dmamap);
sc_if->sk_cdata.sk_rx_map[i] = dmamap;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("%s: no memory for rx list -- "
"packet dropped!\n", sc_if->sk_dev.dv_xname);
return(ENOBUFS);
}
/* Allocate the jumbo buffer */
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return (ENOBUFS);
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_adj(m_new, ETHER_ALIGN);
if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m_new,
BUS_DMA_NOWAIT))
return(ENOBUFS);
} else {
/*
* We're re-using a previously allocated mbuf;
* be sure to re-init pointers and lengths to
* default values.
*/
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_adj(m_new, ETHER_ALIGN);
m_new->m_data = m_new->m_ext.ext_buf;
}
c = &sc_if->sk_cdata.sk_rx_chain[i];
r = c->sk_desc;
c->sk_mbuf = m_new;
r->sk_data_lo = dmamap->dm_segs[0].ds_addr;
r->sk_ctl = dmamap->dm_segs[0].ds_len | SK_RXSTAT;
SK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
return(0);
}
/*
* Set media options.
*/
int
sk_ifmedia_upd(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
(void) sk_init(ifp);
mii_mediachg(&sc_if->sk_mii);
return(0);
}
/*
* Report current media status.
*/
void
sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct sk_if_softc *sc_if = ifp->if_softc;
mii_pollstat(&sc_if->sk_mii);
ifmr->ifm_active = sc_if->sk_mii.mii_media_active;
ifmr->ifm_status = sc_if->sk_mii.mii_media_status;
}
int
sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct sk_softc *sc = sc_if->sk_softc;
struct ifreq *ifr = (struct ifreq *) data;
/* struct ifaddr *ifa = (struct ifaddr *) data; */
struct mii_data *mii;
int s, error = 0;
/* DPRINTFN(2, ("sk_ioctl\n")); */
s = splnet();
switch(command) {
case SIOCSIFFLAGS:
DPRINTFN(2, ("sk_ioctl IFFLAGS\n"));
if (ifp->if_flags & IFF_UP) {
if (ifp->if_flags & IFF_RUNNING &&
ifp->if_flags & IFF_PROMISC &&
!(sc_if->sk_if_flags & IFF_PROMISC)) {
switch(sc->sk_type) {
case SK_GENESIS:
SK_XM_SETBIT_4(sc_if, XM_MODE,
XM_MODE_RX_PROMISC);
break;
case SK_YUKON:
SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
YU_RCR_UFLEN | YU_RCR_MUFLEN);
break;
}
sk_setmulti(sc_if);
} else if (ifp->if_flags & IFF_RUNNING &&
!(ifp->if_flags & IFF_PROMISC) &&
sc_if->sk_if_flags & IFF_PROMISC) {
switch(sc->sk_type) {
case SK_GENESIS:
SK_XM_CLRBIT_4(sc_if, XM_MODE,
XM_MODE_RX_PROMISC);
break;
case SK_YUKON:
SK_YU_SETBIT_2(sc_if, YUKON_RCR,
YU_RCR_UFLEN | YU_RCR_MUFLEN);
break;
}
sk_setmulti(sc_if);
} else
(void) sk_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
sk_stop(ifp,0);
}
sc_if->sk_if_flags = ifp->if_flags;
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
DPRINTFN(2, ("sk_ioctl MEDIA\n"));
mii = &sc_if->sk_mii;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
DPRINTFN(2, ("sk_ioctl ETHER\n"));
error = ether_ioctl(ifp, command, data);
if ( error == ENETRESET) {
sk_setmulti(sc_if);
DPRINTFN(2, ("sk_ioctl setmulti called\n"));
error = 0;
} else if ( error ) {
splx(s);
return error;
}
break;
}
splx(s);
return(error);
}
/*
* Lookup: Check the PCI vendor and device, and return a pointer to
* The structure if the IDs match against our list.
*/
static const struct sk_product *
sk_lookup(const struct pci_attach_args *pa)
{
const struct sk_product *psk;
for ( psk = &sk_products[0]; psk->sk_vendor != 0; psk++ ) {
if (PCI_VENDOR(pa->pa_id) == psk->sk_vendor &&
PCI_PRODUCT(pa->pa_id) == psk->sk_product)
return (psk);
}
return (NULL);
}
/*
* Probe for a SysKonnect GEnesis chip.
*/
int
skc_probe(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
const struct sk_product *psk;
if ((psk = sk_lookup(pa))) {
return(1);
}
return(0);
}
/*
* Force the GEnesis into reset, then bring it out of reset.
*/
void sk_reset(struct sk_softc *sc)
{
DPRINTFN(2, ("sk_reset\n"));
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
if (sc->sk_type == SK_YUKON)
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
DELAY(1000);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
DELAY(2);
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
if (sc->sk_type == SK_YUKON)
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR)));
DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n",
CSR_READ_2(sc, SK_LINK_CTRL)));
if (sc->sk_type == SK_GENESIS) {
/* Configure packet arbiter */
sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
}
/* Enable RAM interface */
sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
/*
* Configure interrupt moderation. The moderation timer
* defers interrupts specified in the interrupt moderation
* timer mask based on the timeout specified in the interrupt
* moderation timer init register. Each bit in the timer
* register represents 18.825ns, so to specify a timeout in
* microseconds, we have to multiply by 54.
*/
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200));
sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
}
int
sk_probe(struct device *parent, struct cfdata *match, void *aux)
{
struct skc_attach_args *sa = aux;
if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
return(0);
return (1);
}
/*
* Each XMAC chip is attached as a separate logical IP interface.
* Single port cards will have only one logical interface of course.
*/
void
sk_attach(struct device *parent, struct device *self, void *aux)
{
struct sk_if_softc *sc_if = (struct sk_if_softc *) self;
struct sk_softc *sc = (struct sk_softc *)parent;
struct skc_attach_args *sa = aux;
struct sk_txmap_entry *entry;
struct ifnet *ifp;
bus_dma_segment_t seg;
bus_dmamap_t dmamap;
caddr_t kva;
int i, rseg;
sc_if->sk_port = sa->skc_port;
sc_if->sk_softc = sc;
sc->sk_if[sa->skc_port] = sc_if;
if (sa->skc_port == SK_PORT_A)
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
if (sa->skc_port == SK_PORT_B)
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port));
/*
* Get station address for this interface. Note that
* dual port cards actually come with three station
* addresses: one for each port, plus an extra. The
* extra one is used by the SysKonnect driver software
* as a 'virtual' station address for when both ports
* are operating in failover mode. Currently we don't
* use this extra address.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc_if->sk_enaddr[i] =
sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
aprint_normal(": Ethernet address %s\n",
ether_sprintf(sc_if->sk_enaddr));
/*
* Set up RAM buffer addresses. The NIC will have a certain
* amount of SRAM on it, somewhere between 512K and 2MB. We
* need to divide this up a) between the transmitter and
* receiver and b) between the two XMACs, if this is a
* dual port NIC. Our algotithm is to divide up the memory
* evenly so that everyone gets a fair share.
*/
if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
u_int32_t chunk, val;
chunk = sc->sk_ramsize / 2;
val = sc->sk_rboff / sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
} else {
u_int32_t chunk, val;
chunk = sc->sk_ramsize / 4;
val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
sizeof(u_int64_t);
sc_if->sk_rx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_rx_ramend = val - 1;
sc_if->sk_tx_ramstart = val;
val += (chunk / sizeof(u_int64_t));
sc_if->sk_tx_ramend = val - 1;
}
DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
" tx_ramstart=%#x tx_ramend=%#x\n",
sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
/* Read and save PHY type and set PHY address */
sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
switch (sc_if->sk_phytype) {
case SK_PHYTYPE_XMAC:
sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
break;
case SK_PHYTYPE_BCOM:
sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
break;
case SK_PHYTYPE_MARV_COPPER:
sc_if->sk_phyaddr = SK_PHYADDR_MARV;
break;
default:
aprint_error("%s: unsupported PHY type: %d\n",
sc->sk_dev.dv_xname, sc_if->sk_phytype);
return;
}
/* Allocate the descriptor queues. */
if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data),
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
aprint_error("%s: can't alloc rx buffers\n",
sc->sk_dev.dv_xname);
goto fail;
}
if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) {
aprint_error("%s: can't map dma buffers (%lu bytes)\n",
sc_if->sk_dev.dv_xname,
(u_long) sizeof(struct sk_ring_data));
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
goto fail;
}
if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1,
sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT,
&sc_if->sk_ring_map)) {
aprint_error("%s: can't create dma map\n",
sc_if->sk_dev.dv_xname);
bus_dmamem_unmap(sc->sc_dmatag, kva,
sizeof(struct sk_ring_data));
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
goto fail;
}
if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) {
aprint_error("%s: can't load dma map\n",
sc_if->sk_dev.dv_xname);
bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
bus_dmamem_unmap(sc->sc_dmatag, kva,
sizeof(struct sk_ring_data));
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
goto fail;
}
for (i = 0; i < SK_RX_RING_CNT; i++)
sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
SLIST_INIT(&sc_if->sk_txmap_listhead);
for (i = 0; i < SK_TX_RING_CNT; i++) {
sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
if (bus_dmamap_create(sc->sc_dmatag, MCLBYTES, SK_NTXSEG,
MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap)) {
aprint_error("%s: Can't create TX dmamap\n",
sc_if->sk_dev.dv_xname);
bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
bus_dmamem_unmap(sc->sc_dmatag, kva,
sizeof(struct sk_ring_data));
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
goto fail;
}
entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
if (!entry) {
aprint_error("%s: Can't alloc txmap entry\n",
sc_if->sk_dev.dv_xname);
bus_dmamap_destroy(sc->sc_dmatag, dmamap);
bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_ring_map);
bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
bus_dmamem_unmap(sc->sc_dmatag, kva,
sizeof(struct sk_ring_data));
bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
goto fail;
}
entry->dmamap = dmamap;
SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry, link);
}
sc_if->sk_rdata = (struct sk_ring_data *)kva;
bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data));
/* XXX TLS It's not clear what's wrong with the Jumbo MTU
XXX TLS support in this driver, so we don't enable it. */
sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
ifp = &sc_if->sk_ethercom.ec_if;
ifp->if_softc = sc_if;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = sk_ioctl;
ifp->if_start = sk_start;
ifp->if_stop = sk_stop;
ifp->if_init = sk_init;
ifp->if_watchdog = sk_watchdog;
ifp->if_capabilities = 0;
IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
IFQ_SET_READY(&ifp->if_snd);
strcpy(ifp->if_xname, sc_if->sk_dev.dv_xname);
/*
* Do miibus setup.
*/
switch (sc->sk_type) {
case SK_GENESIS:
sk_init_xmac(sc_if);
break;
case SK_YUKON:
sk_init_yukon(sc_if);
break;
default:
panic("%s: unknown device type %d", sc->sk_dev.dv_xname,
sc->sk_type);
}
DPRINTFN(2, ("sk_attach: 1\n"));
sc_if->sk_mii.mii_ifp = ifp;
switch (sc->sk_type) {
case SK_GENESIS:
sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg;
sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg;
sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg;
break;
case SK_YUKON:
sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg;
sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg;
sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg;
break;
}
ifmedia_init(&sc_if->sk_mii.mii_media, 0,
sk_ifmedia_upd, sk_ifmedia_sts);
mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname);
ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
0, NULL);
ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
}
else
ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
callout_init(&sc_if->sk_tick_ch);
callout_reset(&sc_if->sk_tick_ch,hz,sk_tick,sc_if);
DPRINTFN(2, ("sk_attach: 1\n"));
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp, sc_if->sk_enaddr);
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
DPRINTFN(2, ("sk_attach: end\n"));
return;
fail:
sc->sk_if[sa->skc_port] = NULL;
}
int
skcprint(void *aux, const char *pnp)
{
struct skc_attach_args *sa = aux;
if (pnp)
aprint_normal("sk port %c at %s",
(sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
else
aprint_normal(" port %c",
(sa->skc_port == SK_PORT_A) ? 'A' : 'B');
return (UNCONF);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
void
skc_attach(struct device *parent, struct device *self, void *aux)
{
struct sk_softc *sc = (struct sk_softc *)self;
struct pci_attach_args *pa = aux;
struct skc_attach_args skca;
pci_chipset_tag_t pc = pa->pa_pc;
pcireg_t memtype;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_addr_t iobase;
bus_size_t iosize;
int s;
u_int32_t command;
DPRINTFN(2, ("begin skc_attach\n"));
s = splnet();
/*
* Handle power management nonsense.
*/
command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
if (command == 0x01) {
command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
if (command & SK_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
/* Reset the power state. */
aprint_normal("%s chip is in D%d power mode "
"-- setting to D0\n", sc->sk_dev.dv_xname,
command & SK_PSTATE_MASK);
command &= 0xFFFFFFFC;
pci_conf_write(pc, pa->pa_tag,
SK_PCI_PWRMGMTCTRL, command);
/* Restore PCI config data. */
pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
}
}
/*
* Map control/status registers.
*/
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
command |= PCI_COMMAND_IO_ENABLE |
PCI_COMMAND_MEM_ENABLE |
PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_SCHNEIDERKOCH_SKNET_GE:
sc->sk_type = SK_GENESIS;
break;
case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2:
case PCI_PRODUCT_3COM_3C940:
case PCI_PRODUCT_DLINK_DGE530T:
case PCI_PRODUCT_LINKSYS_EG1032:
case PCI_PRODUCT_LINKSYS_EG1064:
sc->sk_type = SK_YUKON;
break;
default:
aprint_error(": unknown device!\n");
goto fail;
}
#ifdef SK_USEIOSPACE
if (!(command & PCI_COMMAND_IO_ENABLE)) {
aprint_error(": failed to enable I/O ports!\n");
goto fail;
}
/*
* Map control/status registers.
*/
if (pci_mapreg_map(pa, SK_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0,
&iobase, &iosize)) {
aprint_error(": can't find i/o space\n");
goto fail;
}
#else
if (!(command & PCI_COMMAND_MEM_ENABLE)) {
aprint_error(": failed to enable memory mapping!\n");
goto fail;
}
memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
if (pci_mapreg_map(pa, SK_PCI_LOMEM,
memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
&iobase, &iosize) == 0)
break;
default:
aprint_error("%s: can't find mem space\n",
sc->sk_dev.dv_xname);
return;
}
DPRINTFN(2, ("skc_attach: iobase=%lx, iosize=%lx\n", iobase, iosize));
#endif
sc->sc_dmatag = pa->pa_dmat;
DPRINTFN(2, ("skc_attach: allocate interrupt\n"));
/* Allocate interrupt */
if (pci_intr_map(pa, &ih)) {
aprint_error(": couldn't map interrupt\n");
goto fail;
}
intrstr = pci_intr_string(pc, ih);
sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc);
if (sc->sk_intrhand == NULL) {
aprint_error(": couldn't establish interrupt");
if (intrstr != NULL)
aprint_normal(" at %s", intrstr);
goto fail;
}
aprint_normal(": %s\n", intrstr);
/* Reset the adapter. */
sk_reset(sc);
/* Read and save vital product data from EEPROM. */
sk_vpd_read(sc);
if (sc->sk_type == SK_GENESIS) {
u_int8_t val = sk_win_read_1(sc, SK_EPROM0);
/* Read and save RAM size and RAMbuffer offset */
switch(val) {
case SK_RAMSIZE_512K_64:
sc->sk_ramsize = 0x80000;
sc->sk_rboff = SK_RBOFF_0;
break;
case SK_RAMSIZE_1024K_64:
sc->sk_ramsize = 0x100000;
sc->sk_rboff = SK_RBOFF_80000;
break;
case SK_RAMSIZE_1024K_128:
sc->sk_ramsize = 0x100000;
sc->sk_rboff = SK_RBOFF_0;
break;
case SK_RAMSIZE_2048K_128:
sc->sk_ramsize = 0x200000;
sc->sk_rboff = SK_RBOFF_0;
break;
default:
aprint_error("%s: unknown ram size: %d\n",
sc->sk_dev.dv_xname, val);
goto fail;
break;
}
DPRINTFN(2, ("skc_attach: ramsize=%d(%dk), rboff=%d\n",
sc->sk_ramsize, sc->sk_ramsize / 1024,
sc->sk_rboff));
} else {
sc->sk_ramsize = 0x20000;
sc->sk_rboff = SK_RBOFF_0;
DPRINTFN(2, ("skc_attach: ramsize=%dk (%d), rboff=%d\n",
sc->sk_ramsize / 1024, sc->sk_ramsize,
sc->sk_rboff));
}
/* Read and save physical media type */
switch(sk_win_read_1(sc, SK_PMDTYPE)) {
case SK_PMD_1000BASESX:
sc->sk_pmd = IFM_1000_SX;
break;
case SK_PMD_1000BASELX:
sc->sk_pmd = IFM_1000_LX;
break;
case SK_PMD_1000BASECX:
sc->sk_pmd = IFM_1000_CX;
break;
case SK_PMD_1000BASETX:
sc->sk_pmd = IFM_1000_T;
break;
default:
aprint_error("%s: unknown media type: 0x%x\n",
sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE));
goto fail;
}
/* Announce the product name. */
aprint_normal("%s: %s\n", sc->sk_dev.dv_xname, sc->sk_vpd_prodname);
skca.skc_port = SK_PORT_A;
(void)config_found(&sc->sk_dev, &skca, skcprint);
if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
skca.skc_port = SK_PORT_B;
(void)config_found(&sc->sk_dev, &skca, skcprint);
}
/* Turn on the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
fail:
splx(s);
}
int
sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
{
struct sk_softc *sc = sc_if->sk_softc;
struct sk_tx_desc *f = NULL;
u_int32_t frag, cur, cnt = 0;
int i;
struct sk_txmap_entry *entry;
bus_dmamap_t txmap;
DPRINTFN(3, ("sk_encap\n"));
entry = SLIST_FIRST(&sc_if->sk_txmap_listhead);
if (entry == NULL) {
DPRINTFN(3, ("sk_encap: no txmap available\n"));
return ENOBUFS;
}
txmap = entry->dmamap;
cur = frag = *txidx;
#ifdef SK_DEBUG
if (skdebug >= 3)
sk_dump_mbuf(m_head);
#endif
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
BUS_DMA_NOWAIT)) {
DPRINTFN(1, ("sk_encap: dmamap failed\n"));
return(ENOBUFS);
}
DPRINTFN(3, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
for (i = 0; i < txmap->dm_nsegs; i++) {
if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) {
DPRINTFN(1, ("sk_encap: too few descriptors free\n"));
return(ENOBUFS);
}
f = &sc_if->sk_rdata->sk_tx_ring[frag];
f->sk_data_lo = txmap->dm_segs[i].ds_addr;
f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT;
if (cnt == 0)
f->sk_ctl |= SK_TXCTL_FIRSTFRAG;
else
f->sk_ctl |= SK_TXCTL_OWN;
cur = frag;
SK_INC(frag, SK_TX_RING_CNT);
cnt++;
}
sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
SLIST_REMOVE_HEAD(&sc_if->sk_txmap_listhead, link);
sc_if->sk_cdata.sk_tx_map[cur] = entry;
sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |=
SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR;
/* Sync descriptors before handing to chip */
SK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN;
/* Sync first descriptor to hand it off */
SK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc_if->sk_cdata.sk_tx_cnt += cnt;
#ifdef SK_DEBUG
if (skdebug >= 3) {
struct sk_tx_desc *desc;
u_int32_t idx;
for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) {
desc = &sc_if->sk_rdata->sk_tx_ring[idx];
sk_dump_txdesc(desc, idx);
}
}
#endif
*txidx = frag;
DPRINTFN(3, ("sk_encap: completed successfully\n"));
return(0);
}
void
sk_start(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct sk_softc *sc = sc_if->sk_softc;
struct mbuf *m_head = NULL;
u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
int pkts = 0;
DPRINTFN(3, ("sk_start (idx %d, tx_chain[idx] %p)\n", idx,
sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf));
while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (sk_encap(sc_if, m_head, &idx)) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* now we are committed to transmit the packet */
IFQ_DEQUEUE(&ifp->if_snd, m_head);
pkts++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m_head);
#endif
}
if (pkts == 0)
return;
/* Transmit */
sc_if->sk_cdata.sk_tx_prod = idx;
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
/* Set a timeout in case the chip goes out to lunch. */
ifp->if_timer = 5;
}
void
sk_watchdog(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname);
(void) sk_init(ifp);
}
void
sk_shutdown(void * v)
{
struct sk_if_softc *sc_if = (struct sk_if_softc *)v;
struct sk_softc *sc = sc_if->sk_softc;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
DPRINTFN(2, ("sk_shutdown\n"));
sk_stop(ifp,1);
/* Turn off the 'driver is loaded' LED. */
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
/*
* Reset the GEnesis controller. Doing this should also
* assert the resets on the attached XMAC(s).
*/
sk_reset(sc);
}
void
sk_rxeof(struct sk_if_softc *sc_if)
{
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
struct mbuf *m;
struct sk_chain *cur_rx;
struct sk_rx_desc *cur_desc;
int i, cur, total_len = 0;
u_int32_t rxstat;
bus_dmamap_t dmamap;
i = sc_if->sk_cdata.sk_rx_prod;
DPRINTFN(3, ("sk_rxeof %d\n", i));
for (;;) {
cur = i;
/* Sync the descriptor */
SK_CDRXSYNC(sc_if, cur,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if (sc_if->sk_rdata->sk_rx_ring[cur].sk_ctl & SK_RXCTL_OWN) {
/* Invalidate the descriptor -- it's not ready yet */
SK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_PREREAD);
sc_if->sk_cdata.sk_rx_prod = i;
break;
}
cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur];
dmamap = sc_if->sk_cdata.sk_rx_map[cur];
bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
rxstat = cur_desc->sk_xmac_rxstat;
m = cur_rx->sk_mbuf;
cur_rx->sk_mbuf = NULL;
total_len = SK_RXBYTES(cur_desc->sk_ctl);
sc_if->sk_cdata.sk_rx_map[cur] = 0;
SK_INC(i, SK_RX_RING_CNT);
if (rxstat & XM_RXSTAT_ERRFRAME) {
ifp->if_ierrors++;
sk_newbuf(sc_if, cur, m, dmamap);
continue;
}
/*
* Try to allocate a new jumbo buffer. If that
* fails, copy the packet to mbufs and put the
* jumbo buffer back in the ring so it can be
* re-used. If allocating mbufs fails, then we
* have to drop the packet.
*/
if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
struct mbuf *m0;
m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
total_len + ETHER_ALIGN, 0, ifp, NULL);
sk_newbuf(sc_if, cur, m, dmamap);
if (m0 == NULL) {
printf("%s: no receive buffers "
"available -- packet dropped!\n",
sc_if->sk_dev.dv_xname);
ifp->if_ierrors++;
continue;
}
m_adj(m0, ETHER_ALIGN);
m = m0;
} else {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
}
ifp->if_ipackets++;
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/* pass it on. */
(*ifp->if_input)(ifp, m);
}
}
void
sk_txeof(struct sk_if_softc *sc_if)
{
struct sk_softc *sc = sc_if->sk_softc;
struct sk_tx_desc *cur_tx = NULL;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
u_int32_t idx;
struct sk_txmap_entry *entry;
DPRINTFN(3, ("sk_txeof\n"));
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
idx = sc_if->sk_cdata.sk_tx_cons;
while(idx != sc_if->sk_cdata.sk_tx_prod) {
SK_CDTXSYNC(sc_if, idx, 1,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
#ifdef SK_DEBUG
if (skdebug >= 3)
sk_dump_txdesc(cur_tx, idx);
#endif
if (cur_tx->sk_ctl & SK_TXCTL_OWN) {
SK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_PREREAD);
break;
}
if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG)
ifp->if_opackets++;
if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
entry = sc_if->sk_cdata.sk_tx_map[idx];
m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
SLIST_INSERT_HEAD(&sc_if->sk_txmap_listhead, entry,
link);
sc_if->sk_cdata.sk_tx_map[idx] = NULL;
}
sc_if->sk_cdata.sk_tx_cnt--;
SK_INC(idx, SK_TX_RING_CNT);
}
if (sc_if->sk_cdata.sk_tx_cnt == 0)
ifp->if_timer = 0;
sc_if->sk_cdata.sk_tx_cons = idx;
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
}
void
sk_tick(void *xsc_if)
{
struct sk_if_softc *sc_if = xsc_if;
struct mii_data *mii = &sc_if->sk_mii;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
int i;
DPRINTFN(3, ("sk_tick\n"));
if (!(ifp->if_flags & IFF_UP))
return;
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
sk_intr_bcom(sc_if);
return;
}
/*
* According to SysKonnect, the correct way to verify that
* the link has come back up is to poll bit 0 of the GPIO
* register three times. This pin has the signal from the
* link sync pin connected to it; if we read the same link
* state 3 times in a row, we know the link is up.
*/
for (i = 0; i < 3; i++) {
if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
break;
}
if (i != 3) {
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
return;
}
/* Turn the GP0 interrupt back on. */
SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
SK_XM_READ_2(sc_if, XM_ISR);
mii_tick(mii);
mii_pollstat(mii);
callout_stop(&sc_if->sk_tick_ch);
}
void
sk_intr_bcom(struct sk_if_softc *sc_if)
{
struct mii_data *mii = &sc_if->sk_mii;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
int status;
DPRINTFN(3, ("sk_intr_bcom\n"));
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
/*
* Read the PHY interrupt register to make sure
* we clear any pending interrupts.
*/
status = sk_xmac_miibus_readreg((struct device *)sc_if,
SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
if (!(ifp->if_flags & IFF_RUNNING)) {
sk_init_xmac(sc_if);
return;
}
if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
int lstat;
lstat = sk_xmac_miibus_readreg((struct device *)sc_if,
SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS);
if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
mii_mediachg(mii);
/* Turn off the link LED. */
SK_IF_WRITE_1(sc_if, 0,
SK_LINKLED1_CTL, SK_LINKLED_OFF);
sc_if->sk_link = 0;
} else if (status & BRGPHY_ISR_LNK_CHG) {
sk_xmac_miibus_writereg((struct device *)sc_if,
SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00);
mii_tick(mii);
sc_if->sk_link = 1;
/* Turn on the link LED. */
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
SK_LINKLED_BLINK_OFF);
mii_pollstat(mii);
} else {
mii_tick(mii);
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick,sc_if);
}
}
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
}
void
sk_intr_xmac(struct sk_if_softc *sc_if)
{
u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR);
DPRINTFN(3, ("sk_intr_xmac\n"));
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
if (status & XM_ISR_GP0_SET) {
SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
}
if (status & XM_ISR_AUTONEG_DONE) {
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
}
}
if (status & XM_IMR_TX_UNDERRUN)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
if (status & XM_IMR_RX_OVERRUN)
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
}
void
sk_intr_yukon(sc_if)
struct sk_if_softc *sc_if;
{
int status;
status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
DPRINTFN(3, ("sk_intr_yukon status=%#x\n", status));
}
int
sk_intr(void *xsc)
{
struct sk_softc *sc = xsc;
struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
u_int32_t status;
int claimed = 0;
if (sc_if0 != NULL)
ifp0 = &sc_if0->sk_ethercom.ec_if;
if (sc_if1 != NULL)
ifp1 = &sc_if1->sk_ethercom.ec_if;
for (;;) {
status = CSR_READ_4(sc, SK_ISSR);
DPRINTFN(3, ("sk_intr: status=%#x\n", status));
if (!(status & sc->sk_intrmask))
break;
claimed = 1;
/* Handle receive interrupts first. */
if (status & SK_ISR_RX1_EOF) {
sk_rxeof(sc_if0);
CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
}
if (status & SK_ISR_RX2_EOF) {
sk_rxeof(sc_if1);
CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
}
/* Then transmit interrupts. */
if (status & SK_ISR_TX1_S_EOF) {
sk_txeof(sc_if0);
CSR_WRITE_4(sc, SK_BMU_TXS_CSR0,
SK_TXBMU_CLR_IRQ_EOF);
}
if (status & SK_ISR_TX2_S_EOF) {
sk_txeof(sc_if1);
CSR_WRITE_4(sc, SK_BMU_TXS_CSR1,
SK_TXBMU_CLR_IRQ_EOF);
}
/* Then MAC interrupts. */
if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) {
if (sc->sk_type == SK_GENESIS)
sk_intr_xmac(sc_if0);
else
sk_intr_yukon(sc_if0);
}
if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) {
if (sc->sk_type == SK_GENESIS)
sk_intr_xmac(sc_if1);
else
sk_intr_yukon(sc_if1);
}
if (status & SK_ISR_EXTERNAL_REG) {
if (ifp0 != NULL &&
sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
sk_intr_bcom(sc_if0);
if (ifp1 != NULL &&
sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
sk_intr_bcom(sc_if1);
}
}
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
sk_start(ifp0);
if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
sk_start(ifp1);
return (claimed);
}
void
sk_init_xmac(struct sk_if_softc *sc_if)
{
struct sk_softc *sc = sc_if->sk_softc;
struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
static const struct sk_bcom_hack bhack[] = {
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
{ 0, 0 } };
DPRINTFN(1, ("sk_init_xmac\n"));
/* Unreset the XMAC. */
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
DELAY(1000);
/* Reset the XMAC's internal state. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
/* Save the XMAC II revision */
sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
/*
* Perform additional initialization for external PHYs,
* namely for the 1000baseTX cards that use the XMAC's
* GMII mode.
*/
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
int i = 0;
u_int32_t val;
/* Take PHY out of reset. */
val = sk_win_read_4(sc, SK_GPIO);
if (sc_if->sk_port == SK_PORT_A)
val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
else
val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
sk_win_write_4(sc, SK_GPIO, val);
/* Enable GMII mode on the XMAC. */
SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
sk_xmac_miibus_writereg((struct device *)sc_if,
SK_PHYADDR_BCOM, MII_BMCR, BMCR_RESET);
DELAY(10000);
sk_xmac_miibus_writereg((struct device *)sc_if,
SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0);
/*
* Early versions of the BCM5400 apparently have
* a bug that requires them to have their reserved
* registers initialized to some magic values. I don't
* know what the numbers do, I'm just the messenger.
*/
if (sk_xmac_miibus_readreg((struct device *)sc_if,
SK_PHYADDR_BCOM, 0x03) == 0x6041) {
while(bhack[i].reg) {
sk_xmac_miibus_writereg((struct device *)sc_if,
SK_PHYADDR_BCOM, bhack[i].reg,
bhack[i].val);
i++;
}
}
}
/* Set station address */
SK_XM_WRITE_2(sc_if, XM_PAR0,
*(u_int16_t *)(&sc_if->sk_enaddr[0]));
SK_XM_WRITE_2(sc_if, XM_PAR1,
*(u_int16_t *)(&sc_if->sk_enaddr[2]));
SK_XM_WRITE_2(sc_if, XM_PAR2,
*(u_int16_t *)(&sc_if->sk_enaddr[4]));
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
if (ifp->if_flags & IFF_PROMISC) {
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
} else {
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC);
}
if (ifp->if_flags & IFF_BROADCAST) {
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
} else {
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
}
/* We don't need the FCS appended to the packet. */
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
/* We want short frames padded to 60 bytes. */
SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
/*
* Enable the reception of all error frames. This is is
* a necessary evil due to the design of the XMAC. The
* XMAC's receive FIFO is only 8K in size, however jumbo
* frames can be up to 9000 bytes in length. When bad
* frame filtering is enabled, the XMAC's RX FIFO operates
* in 'store and forward' mode. For this to work, the
* entire frame has to fit into the FIFO, but that means
* that jumbo frames larger than 8192 bytes will be
* truncated. Disabling all bad frame filtering causes
* the RX FIFO to operate in streaming mode, in which
* case the XMAC will start transfering frames out of the
* RX FIFO as soon as the FIFO threshold is reached.
*/
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
XM_MODE_RX_INRANGELEN);
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
else
SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
/*
* Bump up the transmit threshold. This helps hold off transmit
* underruns when we're blasting traffic from both ports at once.
*/
SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
/* Set multicast filter */
sk_setmulti(sc_if);
/* Clear and enable interrupts */
SK_XM_READ_2(sc_if, XM_ISR);
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
else
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Configure MAC arbiter */
switch(sc_if->sk_xmac_rev) {
case XM_XMAC_REV_B2:
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
break;
case XM_XMAC_REV_C1:
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
break;
default:
break;
}
sk_win_write_2(sc, SK_MACARB_CTL,
SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
sc_if->sk_link = 1;
}
void sk_init_yukon(sc_if)
struct sk_if_softc *sc_if;
{
u_int32_t /*mac, */phy;
u_int16_t reg;
int i;
DPRINTFN(1, ("sk_init_yukon: start: sk_csr=%#x\n",
CSR_READ_4(sc_if->sk_softc, SK_CSR)));
/* GMAC and GPHY Reset */
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
DPRINTFN(6, ("sk_init_yukon: 1\n"));
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
DELAY(1000);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
DELAY(1000);
DPRINTFN(6, ("sk_init_yukon: 2\n"));
phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
switch(sc_if->sk_softc->sk_pmd) {
case IFM_1000_SX:
case IFM_1000_LX:
phy |= SK_GPHY_FIBER;
break;
case IFM_1000_CX:
case IFM_1000_T:
phy |= SK_GPHY_COPPER;
break;
}
DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy));
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
DELAY(1000);
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n",
SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
DPRINTFN(6, ("sk_init_yukon: 3\n"));
/* unused read of the interrupt source register */
DPRINTFN(6, ("sk_init_yukon: 4\n"));
SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
DPRINTFN(6, ("sk_init_yukon: 4a\n"));
reg = SK_YU_READ_2(sc_if, YUKON_PAR);
DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
/* MIB Counter Clear Mode set */
reg |= YU_PAR_MIB_CLR;
DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg));
DPRINTFN(6, ("sk_init_yukon: 4b\n"));
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
/* MIB Counter Clear Mode clear */
DPRINTFN(6, ("sk_init_yukon: 5\n"));
reg &= ~YU_PAR_MIB_CLR;
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
/* receive control reg */
DPRINTFN(6, ("sk_init_yukon: 7\n"));
SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN |
YU_RCR_CRCR);
/* transmit parameter register */
DPRINTFN(6, ("sk_init_yukon: 8\n"));
SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
/* serial mode register */
DPRINTFN(6, ("sk_init_yukon: 9\n"));
SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) |
YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e));
DPRINTFN(6, ("sk_init_yukon: 10\n"));
/* Setup Yukon's address */
for (i = 0; i < 3; i++) {
/* Write Source Address 1 (unicast filter) */
SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
sc_if->sk_enaddr[i * 2] |
sc_if->sk_enaddr[i * 2 + 1] << 8);
}
for (i = 0; i < 3; i++) {
reg = sk_win_read_2(sc_if->sk_softc,
SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
}
/* Set multicast filter */
DPRINTFN(6, ("sk_init_yukon: 11\n"));
sk_setmulti(sc_if);
/* enable interrupt mask for counter overflows */
DPRINTFN(6, ("sk_init_yukon: 12\n"));
SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
/* Configure RX MAC FIFO */
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON);
/* Configure TX MAC FIFO */
SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
DPRINTFN(6, ("sk_init_yukon: end\n"));
}
/*
* Note that to properly initialize any part of the GEnesis chip,
* you first have to take it out of reset mode.
*/
int
sk_init(struct ifnet *ifp)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct sk_softc *sc = sc_if->sk_softc;
struct mii_data *mii = &sc_if->sk_mii;
int s;
DPRINTFN(1, ("sk_init\n"));
s = splnet();
/* Cancel pending I/O and free all RX/TX buffers. */
sk_stop(ifp,0);
if (sc->sk_type == SK_GENESIS) {
/* Configure LINK_SYNC LED */
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
SK_LINKLED_LINKSYNC_ON);
/* Configure RX LED */
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
SK_RXLEDCTL_COUNTER_START);
/* Configure TX LED */
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
SK_TXLEDCTL_COUNTER_START);
}
/* Configure I2C registers */
/* Configure XMAC(s) */
switch (sc->sk_type) {
case SK_GENESIS:
sk_init_xmac(sc_if);
break;
case SK_YUKON:
sk_init_yukon(sc_if);
break;
}
mii_mediachg(mii);
if (sc->sk_type == SK_GENESIS) {
/* Configure MAC FIFOs */
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
}
/* Configure transmit arbiter(s) */
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
/* Configure RAMbuffers */
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
/* Configure BMUs */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
SK_RX_RING_ADDR(sc_if, 0));
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
SK_TX_RING_ADDR(sc_if, 0));
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0);
/* Init descriptors */
if (sk_init_rx_ring(sc_if) == ENOBUFS) {
printf("%s: initialization failed: no "
"memory for rx buffers\n", sc_if->sk_dev.dv_xname);
sk_stop(ifp,0);
splx(s);
return(ENOBUFS);
}
if (sk_init_tx_ring(sc_if) == ENOBUFS) {
printf("%s: initialization failed: no "
"memory for tx buffers\n", sc_if->sk_dev.dv_xname);
sk_stop(ifp,0);
splx(s);
return(ENOBUFS);
}
/* Configure interrupt handling */
CSR_READ_4(sc, SK_ISSR);
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask |= SK_INTRS1;
else
sc->sk_intrmask |= SK_INTRS2;
sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
/* Start BMUs. */
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
if (sc->sk_type == SK_GENESIS) {
/* Enable XMACs TX and RX state machines */
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
SK_XM_SETBIT_2(sc_if, XM_MMUCMD,
XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
}
if (sc->sk_type == SK_YUKON) {
u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN);
SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
splx(s);
return(0);
}
void
sk_stop(struct ifnet *ifp, int disable)
{
struct sk_if_softc *sc_if = ifp->if_softc;
struct sk_softc *sc = sc_if->sk_softc;
int i;
DPRINTFN(1, ("sk_stop\n"));
callout_stop(&sc_if->sk_tick_ch);
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
u_int32_t val;
/* Put PHY back into reset. */
val = sk_win_read_4(sc, SK_GPIO);
if (sc_if->sk_port == SK_PORT_A) {
val |= SK_GPIO_DIR0;
val &= ~SK_GPIO_DAT0;
} else {
val |= SK_GPIO_DIR2;
val &= ~SK_GPIO_DAT2;
}
sk_win_write_4(sc, SK_GPIO, val);
}
/* Turn off various components of this interface. */
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
switch (sc->sk_type) {
case SK_GENESIS:
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL,
SK_TXMACCTL_XMAC_RESET);
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
break;
case SK_YUKON:
SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
break;
}
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
/* Disable interrupts */
if (sc_if->sk_port == SK_PORT_A)
sc->sk_intrmask &= ~SK_INTRS1;
else
sc->sk_intrmask &= ~SK_INTRS2;
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
SK_XM_READ_2(sc_if, XM_ISR);
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
/* Free RX and TX mbufs still in the queues. */
for (i = 0; i < SK_RX_RING_CNT; i++) {
if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
}
}
for (i = 0; i < SK_TX_RING_CNT; i++) {
if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
}
}
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
}
CFATTACH_DECL(skc,sizeof(struct sk_softc), skc_probe, skc_attach, NULL, NULL);
/*
struct cfdriver skc_cd = {
0, "skc", DV_DULL
};
*/
CFATTACH_DECL(sk,sizeof(struct sk_if_softc), sk_probe, sk_attach, NULL, NULL);
/*
struct cfdriver sk_cd = {
0, "sk", DV_IFNET
};
*/
#ifdef SK_DEBUG
void
sk_dump_txdesc(struct sk_tx_desc *desc, int idx)
{
#define DESC_PRINT(X) \
if (desc->X) \
printf("txdesc[%d]." #X "=%#x\n", \
idx, desc->X);
DESC_PRINT(sk_ctl);
DESC_PRINT(sk_next);
DESC_PRINT(sk_data_lo);
DESC_PRINT(sk_data_hi);
DESC_PRINT(sk_xmac_txstat);
DESC_PRINT(sk_rsvd0);
DESC_PRINT(sk_csum_startval);
DESC_PRINT(sk_csum_startpos);
DESC_PRINT(sk_csum_writepos);
DESC_PRINT(sk_rsvd1);
#undef PRINT
}
void
sk_dump_bytes(const char *data, int len)
{
int c, i, j;
for (i = 0; i < len; i += 16) {
printf("%08x ", i);
c = len - i;
if (c > 16) c = 16;
for (j = 0; j < c; j++) {
printf("%02x ", data[i + j] & 0xff);
if ((j & 0xf) == 7 && j > 0)
printf(" ");
}
for (; j < 16; j++)
printf(" ");
printf(" ");
for (j = 0; j < c; j++) {
int ch = data[i + j] & 0xff;
printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
}
printf("\n");
if (c < 16)
break;
}
}
void
sk_dump_mbuf(struct mbuf *m)
{
int count = m->m_pkthdr.len;
printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
while (count > 0 && m) {
printf("m=%p, m->m_data=%p, m->m_len=%d\n",
m, m->m_data, m->m_len);
sk_dump_bytes(mtod(m, char *), m->m_len);
count -= m->m_len;
m = m->m_next;
}
}
#endif