NetBSD/sys/arch/powerpc/oea/oea_machdep.c
kleink 0fea7f39a2 On OEA, turn PSL_USER* into runtime values appropriate for the CPU model
we're executing on; besides dealing with the bits not implemented in the
601's MSR it also removes the silent failure behaviour when passing
PSL_VEC set on a CPU not implementing it.

Also, fix those masks for the 4xx again.
2004-06-26 21:48:30 +00:00

818 lines
20 KiB
C

/* $NetBSD: oea_machdep.c,v 1.19 2004/06/26 21:48:30 kleink Exp $ */
/*
* Copyright (C) 2002 Matt Thomas
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: oea_machdep.c,v 1.19 2004/06/26 21:48:30 kleink Exp $");
#include "opt_compat_netbsd.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_ipkdb.h"
#include "opt_multiprocessor.h"
#include "opt_altivec.h"
#include <sys/param.h>
#include <sys/buf.h>
#include <sys/exec.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mount.h>
#include <sys/msgbuf.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/sa.h>
#include <sys/syscallargs.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/user.h>
#include <sys/boot_flag.h>
#include <uvm/uvm_extern.h>
#include <net/netisr.h>
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_extern.h>
#endif
#ifdef KGDB
#include <sys/kgdb.h>
#endif
#ifdef IPKDB
#include <ipkdb/ipkdb.h>
#endif
#include <powerpc/oea/bat.h>
#include <powerpc/oea/sr_601.h>
#include <powerpc/trap.h>
#include <powerpc/stdarg.h>
#include <powerpc/spr.h>
#include <powerpc/pte.h>
#include <powerpc/altivec.h>
#include <machine/powerpc.h>
char machine[] = MACHINE; /* from <machine/param.h> */
char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
struct vm_map *exec_map = NULL;
struct vm_map *mb_map = NULL;
struct vm_map *phys_map = NULL;
/*
* Global variables used here and there
*/
extern struct user *proc0paddr;
struct bat battable[512];
register_t iosrtable[16]; /* I/O segments, for kernel_pmap setup */
paddr_t msgbuf_paddr;
void
oea_init(void (*handler)(void))
{
extern int trapstart[], trapend[];
extern int trapcode[], trapsize[];
extern int sctrap[], scsize[];
extern int alitrap[], alisize[];
extern int dsitrap[], dsisize[];
extern int dsi601trap[], dsi601size[];
extern int decrint[], decrsize[];
extern int tlbimiss[], tlbimsize[];
extern int tlbdlmiss[], tlbdlmsize[];
extern int tlbdsmiss[], tlbdsmsize[];
#if defined(DDB) || defined(KGDB)
extern int ddblow[], ddbsize[];
#endif
#ifdef IPKDB
extern int ipkdblow[], ipkdbsize[];
#endif
#ifdef ALTIVEC
register_t msr;
#endif
uintptr_t exc;
register_t scratch;
unsigned int cpuvers;
size_t size;
struct cpu_info * const ci = &cpu_info[0];
mtspr(SPR_SPRG0, ci);
cpuvers = mfpvr() >> 16;
/*
* Initialize proc0 and current pcb and pmap pointers.
*/
KASSERT(ci != NULL);
KASSERT(curcpu() == ci);
lwp0.l_cpu = ci;
lwp0.l_addr = proc0paddr;
memset(lwp0.l_addr, 0, sizeof *lwp0.l_addr);
KASSERT(lwp0.l_cpu != NULL);
curpcb = &proc0paddr->u_pcb;
memset(curpcb, 0, sizeof(*curpcb));
#ifdef ALTIVEC
/*
* Initialize the vectors with NaNs
*/
for (scratch = 0; scratch < 32; scratch++) {
curpcb->pcb_vr.vreg[scratch][0] = 0x7FFFDEAD;
curpcb->pcb_vr.vreg[scratch][1] = 0x7FFFDEAD;
curpcb->pcb_vr.vreg[scratch][2] = 0x7FFFDEAD;
curpcb->pcb_vr.vreg[scratch][3] = 0x7FFFDEAD;
}
curpcb->pcb_vr.vscr = 0;
curpcb->pcb_vr.vrsave = 0;
#endif
curpm = curpcb->pcb_pm = pmap_kernel();
/*
* Cause a PGM trap if we branch to 0.
*/
memset(0, 0, 0x100);
/*
* Set up trap vectors. Don't assume vectors are on 0x100.
*/
for (exc = 0; exc <= EXC_LAST; exc += 0x100) {
switch (exc) {
default:
size = (size_t)trapsize;
memcpy((void *)exc, trapcode, size);
break;
#if 0
case EXC_EXI:
/*
* This one is (potentially) installed during autoconf
*/
break;
#endif
case EXC_SC:
size = (size_t)scsize;
memcpy((void *)EXC_SC, sctrap, size);
break;
case EXC_ALI:
size = (size_t)alisize;
memcpy((void *)EXC_ALI, alitrap, size);
break;
case EXC_DSI:
if (cpuvers == MPC601) {
size = (size_t)dsi601size;
memcpy((void *)EXC_DSI, dsi601trap, size);
} else {
size = (size_t)dsisize;
memcpy((void *)EXC_DSI, dsitrap, size);
}
break;
case EXC_DECR:
size = (size_t)decrsize;
memcpy((void *)EXC_DECR, decrint, size);
break;
case EXC_IMISS:
size = (size_t)tlbimsize;
memcpy((void *)EXC_IMISS, tlbimiss, size);
break;
case EXC_DLMISS:
size = (size_t)tlbdlmsize;
memcpy((void *)EXC_DLMISS, tlbdlmiss, size);
break;
case EXC_DSMISS:
size = (size_t)tlbdsmsize;
memcpy((void *)EXC_DSMISS, tlbdsmiss, size);
break;
case EXC_PERF:
size = (size_t)trapsize;
memcpy((void *)EXC_PERF, trapcode, size);
memcpy((void *)EXC_VEC, trapcode, size);
break;
#if defined(DDB) || defined(IPKDB) || defined(KGDB)
case EXC_RUNMODETRC:
if (cpuvers != MPC601) {
size = (size_t)trapsize;
memcpy((void *)EXC_RUNMODETRC, trapcode, size);
break;
}
/* FALLTHROUGH */
case EXC_PGM:
case EXC_TRC:
case EXC_BPT:
#if defined(DDB) || defined(KGDB)
size = (size_t)ddbsize;
memcpy((void *)exc, ddblow, size);
#if defined(IPKDB)
#error "cannot enable IPKDB with DDB or KGDB"
#endif
#else
size = (size_t)ipkdbsize;
memcpy((void *)exc, ipkdblow, size);
#endif
break;
#endif /* DDB || IPKDB || KGDB */
}
#if 0
exc += roundup(size, 32);
#endif
}
/*
* Get the cache sizes because install_extint calls __syncicache.
*/
cpu_probe_cache();
#define MxSPR_MASK 0x7c1fffff
#define MFSPR_MQ 0x7c0002a6
#define MTSPR_MQ 0x7c0003a6
#define MTSPR_IBAT0L 0x7c1183a6
#define MTSPR_IBAT1L 0x7c1383a6
#define NOP 0x60000000
#define B 0x48000000
#define TLBSYNC 0x7c00046c
#define SYNC 0x7c0004ac
#ifdef ALTIVEC
#define MFSPR_VRSAVE 0x7c0042a6
#define MTSPR_VRSAVE 0x7c0043a6
/*
* Try to set the VEC bit in the MSR. If it doesn't get set, we are
* not on a AltiVec capable processor.
*/
__asm __volatile (
"mfmsr %0; oris %1,%0,%2@h; mtmsr %1; isync; "
"mfmsr %1; mtmsr %0; isync"
: "=r"(msr), "=r"(scratch)
: "J"(PSL_VEC));
/*
* If we aren't on an AltiVec capable processor, we need to zap any of
* the sequences we save/restore the VRSAVE SPR into NOPs.
*/
if (scratch & PSL_VEC) {
cpu_altivec = 1;
} else {
int *ip = trapstart;
for (; ip < trapend; ip++) {
if ((ip[0] & MxSPR_MASK) == MFSPR_VRSAVE) {
ip[0] = NOP; /* mfspr */
ip[1] = NOP; /* stw */
} else if ((ip[0] & MxSPR_MASK) == MTSPR_VRSAVE) {
ip[-1] = NOP; /* lwz */
ip[0] = NOP; /* mtspr */
}
}
}
#endif
/*
* If we aren't on a MPC601 processor, we need to zap any of the
* sequences we save/restore the MQ SPR into NOPs, and skip over the
* sequences where we zap/restore BAT registers on kernel exit/entry.
*/
if (cpuvers != MPC601) {
int *ip = trapstart;
for (; ip < trapend; ip++) {
if ((ip[0] & MxSPR_MASK) == MFSPR_MQ) {
ip[0] = NOP; /* mfspr */
ip[1] = NOP; /* stw */
} else if ((ip[0] & MxSPR_MASK) == MTSPR_MQ) {
ip[-1] = NOP; /* lwz */
ip[0] = NOP; /* mtspr */
} else if ((ip[0] & MxSPR_MASK) == MTSPR_IBAT0L) {
if ((ip[1] & MxSPR_MASK) == MTSPR_IBAT1L)
ip[-1] = B | 0x14; /* li */
else
ip[-4] = B | 0x24; /* lis */
}
}
}
/*
* Sync the changed instructions.
*/
__syncicache((void *) trapstart,
(uintptr_t) trapend - (uintptr_t) trapstart);
/*
* If we are on a MPC601 processor, we need to zap any tlbsync
* instructions into sync. This differs from the above in
* examing all kernel text, as opposed to just the exception handling.
* We sync the icache on every instruction found since there are
* only very few of them.
*/
if (cpuvers == MPC601) {
extern int kernel_text[], etext[];
int *ip;
for (ip = kernel_text; ip < etext; ip++)
if (*ip == TLBSYNC) {
*ip = SYNC;
__syncicache(ip, sizeof(*ip));
}
}
/*
* Configure a PSL user mask matching this processor.
*/
cpu_psluserset = PSL_EE | PSL_PR | PSL_ME | PSL_IR | PSL_DR | PSL_RI;
cpu_pslusermod = PSL_FP | PSL_FE0 | PSL_FE1 | PSL_LE | PSL_SE | PSL_BE;
if (cpuvers == MPC601) {
cpu_psluserset &= PSL_601_MASK;
cpu_pslusermod &= PSL_601_MASK;
}
#ifdef ALTIVEC
if (cpu_altivec)
cpu_pslusermod |= PSL_VEC;
#endif
/*
* external interrupt handler install
*/
if (handler)
oea_install_extint(handler);
__syncicache(0, EXC_LAST + 0x100);
/*
* Now enable translation (and machine checks/recoverable interrupts).
*/
__asm __volatile ("sync; mfmsr %0; ori %0,%0,%1; mtmsr %0; isync"
: "=r"(scratch)
: "K"(PSL_IR|PSL_DR|PSL_ME|PSL_RI));
KASSERT(curcpu() == ci);
}
void
mpc601_ioseg_add(paddr_t pa, register_t len)
{
const u_int i = pa >> ADDR_SR_SHFT;
if (len != BAT_BL_256M)
panic("mpc601_ioseg_add: len != 256M");
/*
* Translate into an I/O segment, load it, and stash away for use
* in pmap_bootstrap().
*/
iosrtable[i] = SR601(SR601_Ks, SR601_BUID_MEMFORCED, 0, i);
__asm __volatile ("mtsrin %0,%1"
:: "r"(iosrtable[i]),
"r"(pa));
}
void
oea_iobat_add(paddr_t pa, register_t len)
{
static int n = 1;
const u_int i = pa >> 28;
battable[i].batl = BATL(pa, BAT_I|BAT_G, BAT_PP_RW);
battable[i].batu = BATU(pa, len, BAT_Vs);
/*
* Let's start loading the BAT registers.
*/
switch (n) {
case 1:
__asm __volatile ("mtdbatl 1,%0; mtdbatu 1,%1;"
:: "r"(battable[i].batl),
"r"(battable[i].batu));
n = 2;
break;
case 2:
__asm __volatile ("mtdbatl 2,%0; mtdbatu 2,%1;"
:: "r"(battable[i].batl),
"r"(battable[i].batu));
n = 3;
break;
case 3:
__asm __volatile ("mtdbatl 3,%0; mtdbatu 3,%1;"
:: "r"(battable[i].batl),
"r"(battable[i].batu));
n = 4;
break;
default:
break;
}
}
void
oea_iobat_remove(paddr_t pa)
{
register_t batu;
int i, n;
n = pa >> ADDR_SR_SHFT;
if (!BAT_VA_MATCH_P(battable[n].batu, pa) ||
!BAT_VALID_P(battable[n].batu, PSL_PR))
return;
battable[n].batl = 0;
battable[n].batu = 0;
#define BAT_RESET(n) \
__asm __volatile("mtdbatu %0,%1; mtdbatl %0,%1" :: "n"(n), "r"(0))
#define BATU_GET(n, r) __asm __volatile("mfdbatu %0,%1" : "=r"(r) : "n"(n))
for (i=1 ; i<4 ; i++) {
switch (i) {
case 1:
BATU_GET(1, batu);
if (BAT_VA_MATCH_P(batu, pa) &&
BAT_VALID_P(batu, PSL_PR))
BAT_RESET(1);
break;
case 2:
BATU_GET(2, batu);
if (BAT_VA_MATCH_P(batu, pa) &&
BAT_VALID_P(batu, PSL_PR))
BAT_RESET(2);
break;
case 3:
BATU_GET(3, batu);
if (BAT_VA_MATCH_P(batu, pa) &&
BAT_VALID_P(batu, PSL_PR))
BAT_RESET(3);
break;
default:
break;
}
}
}
void
oea_batinit(paddr_t pa, ...)
{
struct mem_region *allmem, *availmem, *mp;
int i;
unsigned int cpuvers;
register_t msr = mfmsr();
va_list ap;
cpuvers = mfpvr() >> 16;
/*
* Initialize BAT registers to unmapped to not generate
* overlapping mappings below.
*
* The 601's implementation differs in the Valid bit being situated
* in the lower BAT register, and in being a unified BAT only whose
* four entries are accessed through the IBAT[0-3] SPRs.
*
* Also, while the 601 does distinguish between supervisor/user
* protection keys, it does _not_ distinguish between validity in
* supervisor/user mode.
*/
if ((msr & (PSL_IR|PSL_DR)) == 0) {
if (cpuvers == MPC601) {
__asm __volatile ("mtibatl 0,%0" :: "r"(0));
__asm __volatile ("mtibatl 1,%0" :: "r"(0));
__asm __volatile ("mtibatl 2,%0" :: "r"(0));
__asm __volatile ("mtibatl 3,%0" :: "r"(0));
} else {
__asm __volatile ("mtibatu 0,%0" :: "r"(0));
__asm __volatile ("mtibatu 1,%0" :: "r"(0));
__asm __volatile ("mtibatu 2,%0" :: "r"(0));
__asm __volatile ("mtibatu 3,%0" :: "r"(0));
__asm __volatile ("mtdbatu 0,%0" :: "r"(0));
__asm __volatile ("mtdbatu 1,%0" :: "r"(0));
__asm __volatile ("mtdbatu 2,%0" :: "r"(0));
__asm __volatile ("mtdbatu 3,%0" :: "r"(0));
}
}
/*
* Set up BAT to map physical memory
*/
if (cpuvers == MPC601) {
/*
* Set up battable to map the lowest 256 MB area.
* Map the lowest 32 MB area via BAT[0-3];
* BAT[01] are fixed, BAT[23] are floating.
*/
for (i = 0; i < 32; i++) {
battable[i].batl = BATL601(i << 23,
BAT601_BSM_8M, BAT601_V);
battable[i].batu = BATU601(i << 23,
BAT601_M, BAT601_Ku, BAT601_PP_NONE);
}
__asm __volatile ("mtibatu 0,%1; mtibatl 0,%0"
:: "r"(battable[0x00000000 >> 23].batl),
"r"(battable[0x00000000 >> 23].batu));
__asm __volatile ("mtibatu 1,%1; mtibatl 1,%0"
:: "r"(battable[0x00800000 >> 23].batl),
"r"(battable[0x00800000 >> 23].batu));
__asm __volatile ("mtibatu 2,%1; mtibatl 2,%0"
:: "r"(battable[0x01000000 >> 23].batl),
"r"(battable[0x01000000 >> 23].batu));
__asm __volatile ("mtibatu 3,%1; mtibatl 3,%0"
:: "r"(battable[0x01800000 >> 23].batl),
"r"(battable[0x01800000 >> 23].batu));
} else {
/*
* Set up BAT0 to only map the lowest 256 MB area
*/
battable[0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
battable[0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
__asm __volatile ("mtibatl 0,%0; mtibatu 0,%1;"
"mtdbatl 0,%0; mtdbatu 0,%1;"
:: "r"(battable[0].batl), "r"(battable[0].batu));
}
/*
* Now setup other fixed bat registers
*
* Note that we still run in real mode, and the BAT
* registers were cleared above.
*/
va_start(ap, pa);
/*
* Add any I/O BATs specificed;
* use I/O segments on the BAT-starved 601.
*/
if (cpuvers == MPC601) {
while (pa != 0) {
register_t len = va_arg(ap, register_t);
mpc601_ioseg_add(pa, len);
pa = va_arg(ap, paddr_t);
}
} else {
while (pa != 0) {
register_t len = va_arg(ap, register_t);
oea_iobat_add(pa, len);
pa = va_arg(ap, paddr_t);
}
}
va_end(ap);
/*
* Set up battable to map all RAM regions.
* This is here because mem_regions() call needs bat0 set up.
*/
mem_regions(&allmem, &availmem);
if (cpuvers == MPC601) {
for (mp = allmem; mp->size; mp++) {
paddr_t pa = mp->start & 0xff800000;
paddr_t end = mp->start + mp->size;
do {
u_int i = pa >> 23;
battable[i].batl =
BATL601(pa, BAT601_BSM_8M, BAT601_V);
battable[i].batu =
BATU601(pa, BAT601_M, BAT601_Ku, BAT601_PP_NONE);
pa += (1 << 23);
} while (pa < end);
}
} else {
for (mp = allmem; mp->size; mp++) {
paddr_t pa = mp->start & 0xf0000000;
paddr_t end = mp->start + mp->size;
do {
u_int i = pa >> 28;
battable[i].batl =
BATL(pa, BAT_M, BAT_PP_RW);
battable[i].batu =
BATU(pa, BAT_BL_256M, BAT_Vs);
pa += SEGMENT_LENGTH;
} while (pa < end);
}
}
}
void
oea_install_extint(void (*handler)(void))
{
extern int extint[], extsize[];
extern int extint_call[];
uintptr_t offset = (uintptr_t)handler - (uintptr_t)extint_call;
int omsr, msr;
#ifdef DIAGNOSTIC
if (offset > 0x1ffffff)
panic("install_extint: %p too far away (%#lx)", handler,
(unsigned long) offset);
#endif
__asm __volatile ("mfmsr %0; andi. %1,%0,%2; mtmsr %1"
: "=r" (omsr), "=r" (msr)
: "K" ((u_short)~PSL_EE));
extint_call[0] = (extint_call[0] & 0xfc000003) | offset;
memcpy((void *)EXC_EXI, extint, (size_t)extsize);
__syncicache((void *)extint_call, sizeof extint_call[0]);
__syncicache((void *)EXC_EXI, (int)extsize);
__asm __volatile ("mtmsr %0" :: "r"(omsr));
}
/*
* Machine dependent startup code.
*/
void
oea_startup(const char *model)
{
uintptr_t sz;
caddr_t v;
vaddr_t minaddr, maxaddr;
char pbuf[9];
u_int i;
KASSERT(curcpu() != NULL);
KASSERT(lwp0.l_cpu != NULL);
KASSERT(curcpu()->ci_intstk != 0);
KASSERT(curcpu()->ci_intrdepth == -1);
/*
* If the msgbuf is not in segment 0, allocate KVA for it and access
* it via mapped pages. [This prevents unneeded BAT switches.]
*/
sz = round_page(MSGBUFSIZE);
v = (caddr_t) msgbuf_paddr;
if (msgbuf_paddr + sz > SEGMENT_LENGTH) {
minaddr = 0;
if (uvm_map(kernel_map, &minaddr, sz,
NULL, UVM_UNKNOWN_OFFSET, 0,
UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE,
UVM_INH_NONE, UVM_ADV_NORMAL, 0)) != 0)
panic("startup: cannot allocate VM for msgbuf");
v = (caddr_t)minaddr;
for (i = 0; i < sz; i += PAGE_SIZE) {
pmap_kenter_pa(minaddr + i, msgbuf_paddr + i,
VM_PROT_READ|VM_PROT_WRITE);
}
pmap_update(pmap_kernel());
}
initmsgbuf(v, sz);
printf("%s", version);
if (model != NULL)
printf("Model: %s\n", model);
cpu_identify(NULL, 0);
format_bytes(pbuf, sizeof(pbuf), ctob((u_int)physmem));
printf("total memory = %s\n", pbuf);
/*
* Allocate away the pages that map to 0xDEA[CDE]xxxx. Do this after
* the bufpages are allocated in case they overlap since it's not
* fatal if we can't allocate these.
*/
if (KERNEL_SR == 13 || KERNEL2_SR == 14) {
int error;
minaddr = 0xDEAC0000;
error = uvm_map(kernel_map, &minaddr, 0x30000,
NULL, UVM_UNKNOWN_OFFSET, 0,
UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
UVM_ADV_NORMAL, UVM_FLAG_FIXED));
if (error != 0 || minaddr != 0xDEAC0000)
printf("oea_startup: failed to allocate DEAD "
"ZONE: error=%d\n", error);
}
minaddr = 0;
/*
* Allocate a submap for exec arguments. This map effectively
* limits the number of processes exec'ing at any time. These
* submaps will be allocated after the dead zone.
*/
exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
16*NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);
/*
* Allocate a submap for physio
*/
phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
VM_PHYS_SIZE, 0, FALSE, NULL);
#ifndef PMAP_MAP_POOLPAGE
/*
* No need to allocate an mbuf cluster submap. Mbuf clusters
* are allocated via the pool allocator, and we use direct-mapped
* pool pages.
*/
mb_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
mclbytes*nmbclusters, VM_MAP_INTRSAFE, FALSE, NULL);
#endif
format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
printf("avail memory = %s\n", pbuf);
}
/*
* Crash dump handling.
*/
void
oea_dumpsys(void)
{
printf("dumpsys: TBD\n");
}
#ifndef __HAVE_GENERIC_SOFT_INTERRUPTS
/*
* Soft networking interrupts.
*/
void
softnet(int pendisr)
{
#define DONETISR(bit, fn) do { \
if (pendisr & (1 << bit)) \
(*fn)(); \
} while (0)
#include <net/netisr_dispatch.h>
#undef DONETISR
}
#endif
/*
* Convert kernel VA to physical address
*/
paddr_t
kvtop(caddr_t addr)
{
vaddr_t va;
paddr_t pa;
uintptr_t off;
extern char end[];
if (addr < end)
return (paddr_t)addr;
va = trunc_page((vaddr_t)addr);
off = (uintptr_t)addr - va;
if (pmap_extract(pmap_kernel(), va, &pa) == FALSE) {
/*printf("kvtop: zero page frame (va=0x%x)\n", addr);*/
return (paddr_t)addr;
}
return(pa + off);
}
/*
* Allocate vm space and mapin the I/O address
*/
void *
mapiodev(paddr_t pa, psize_t len)
{
paddr_t faddr;
vaddr_t taddr, va;
int off;
faddr = trunc_page(pa);
off = pa - faddr;
len = round_page(off + len);
va = taddr = uvm_km_valloc(kernel_map, len);
if (va == 0)
return NULL;
for (; len > 0; len -= PAGE_SIZE) {
pmap_kenter_pa(taddr, faddr, VM_PROT_READ | VM_PROT_WRITE);
faddr += PAGE_SIZE;
taddr += PAGE_SIZE;
}
pmap_update(pmap_kernel());
return (void *)(va + off);
}