NetBSD/sys/nfs/nfs_socket.c

1261 lines
32 KiB
C

/* $NetBSD: nfs_socket.c,v 1.188 2010/12/17 22:22:00 yamt Exp $ */
/*
* Copyright (c) 1989, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
*/
/*
* Socket operations for use by nfs
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.188 2010/12/17 22:22:00 yamt Exp $");
#ifdef _KERNEL_OPT
#include "opt_nfs.h"
#include "opt_mbuftrace.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/evcnt.h>
#include <sys/callout.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/vnode.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syslog.h>
#include <sys/tprintf.h>
#include <sys/namei.h>
#include <sys/signal.h>
#include <sys/signalvar.h>
#include <sys/kauth.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <nfs/rpcv2.h>
#include <nfs/nfsproto.h>
#include <nfs/nfs.h>
#include <nfs/xdr_subs.h>
#include <nfs/nfsm_subs.h>
#include <nfs/nfsmount.h>
#include <nfs/nfsnode.h>
#include <nfs/nfsrtt.h>
#include <nfs/nfs_var.h>
#ifdef MBUFTRACE
struct mowner nfs_mowner = MOWNER_INIT("nfs","");
#endif
/*
* Estimate rto for an nfs rpc sent via. an unreliable datagram.
* Use the mean and mean deviation of rtt for the appropriate type of rpc
* for the frequent rpcs and a default for the others.
* The justification for doing "other" this way is that these rpcs
* happen so infrequently that timer est. would probably be stale.
* Also, since many of these rpcs are
* non-idempotent, a conservative timeout is desired.
* getattr, lookup - A+2D
* read, write - A+4D
* other - nm_timeo
*/
#define NFS_RTO(n, t) \
((t) == 0 ? (n)->nm_timeo : \
((t) < 3 ? \
(((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
#define NFS_SRTT(r) (r)->r_nmp->nm_srtt[nfs_proct[(r)->r_procnum] - 1]
#define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[nfs_proct[(r)->r_procnum] - 1]
/*
* Defines which timer to use for the procnum.
* 0 - default
* 1 - getattr
* 2 - lookup
* 3 - read
* 4 - write
*/
const int nfs_proct[NFS_NPROCS] = {
[NFSPROC_NULL] = 0,
[NFSPROC_GETATTR] = 1,
[NFSPROC_SETATTR] = 0,
[NFSPROC_LOOKUP] = 2,
[NFSPROC_ACCESS] = 1,
[NFSPROC_READLINK] = 3,
[NFSPROC_READ] = 3,
[NFSPROC_WRITE] = 4,
[NFSPROC_CREATE] = 0,
[NFSPROC_MKDIR] = 0,
[NFSPROC_SYMLINK] = 0,
[NFSPROC_MKNOD] = 0,
[NFSPROC_REMOVE] = 0,
[NFSPROC_RMDIR] = 0,
[NFSPROC_RENAME] = 0,
[NFSPROC_LINK] = 0,
[NFSPROC_READDIR] = 3,
[NFSPROC_READDIRPLUS] = 3,
[NFSPROC_FSSTAT] = 0,
[NFSPROC_FSINFO] = 0,
[NFSPROC_PATHCONF] = 0,
[NFSPROC_COMMIT] = 0,
[NFSPROC_NOOP] = 0,
};
#ifdef DEBUG
/*
* Avoid spamming the console with debugging messages. We only print
* the nfs timer and reply error debugs every 10 seconds.
*/
const struct timeval nfs_err_interval = { 10, 0 };
struct timeval nfs_reply_last_err_time;
struct timeval nfs_timer_last_err_time;
#endif
/*
* There is a congestion window for outstanding rpcs maintained per mount
* point. The cwnd size is adjusted in roughly the way that:
* Van Jacobson, Congestion avoidance and Control, In "Proceedings of
* SIGCOMM '88". ACM, August 1988.
* describes for TCP. The cwnd size is chopped in half on a retransmit timeout
* and incremented by 1/cwnd when each rpc reply is received and a full cwnd
* of rpcs is in progress.
* (The sent count and cwnd are scaled for integer arith.)
* Variants of "slow start" were tried and were found to be too much of a
* performance hit (ave. rtt 3 times larger),
* I suspect due to the large rtt that nfs rpcs have.
*/
int nfsrtton = 0;
struct nfsrtt nfsrtt;
static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
struct nfsreqhead nfs_reqq;
static callout_t nfs_timer_ch;
static struct evcnt nfs_timer_ev;
static struct evcnt nfs_timer_start_ev;
static struct evcnt nfs_timer_stop_ev;
static kmutex_t nfs_timer_lock;
static bool (*nfs_timer_srvvec)(void);
/*
* Initialize sockets and congestion for a new NFS connection.
* We do not free the sockaddr if error.
*/
int
nfs_connect(struct nfsmount *nmp, struct nfsreq *rep, struct lwp *l)
{
struct socket *so;
int error, rcvreserve, sndreserve;
struct sockaddr *saddr;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
struct mbuf *m;
int val;
nmp->nm_so = NULL;
saddr = mtod(nmp->nm_nam, struct sockaddr *);
error = socreate(saddr->sa_family, &nmp->nm_so,
nmp->nm_sotype, nmp->nm_soproto, l, NULL);
if (error)
goto bad;
so = nmp->nm_so;
#ifdef MBUFTRACE
so->so_mowner = &nfs_mowner;
so->so_rcv.sb_mowner = &nfs_mowner;
so->so_snd.sb_mowner = &nfs_mowner;
#endif
nmp->nm_soflags = so->so_proto->pr_flags;
/*
* Some servers require that the client port be a reserved port number.
*/
if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
val = IP_PORTRANGE_LOW;
if ((error = so_setsockopt(NULL, so, IPPROTO_IP, IP_PORTRANGE,
&val, sizeof(val))))
goto bad;
m = m_get(M_WAIT, MT_SONAME);
MCLAIM(m, so->so_mowner);
sin = mtod(m, struct sockaddr_in *);
sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = INADDR_ANY;
sin->sin_port = 0;
error = sobind(so, m, &lwp0);
m_freem(m);
if (error)
goto bad;
}
if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
val = IPV6_PORTRANGE_LOW;
if ((error = so_setsockopt(NULL, so, IPPROTO_IPV6,
IPV6_PORTRANGE, &val, sizeof(val))))
goto bad;
m = m_get(M_WAIT, MT_SONAME);
MCLAIM(m, so->so_mowner);
sin6 = mtod(m, struct sockaddr_in6 *);
memset(sin6, 0, sizeof(*sin6));
sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
sin6->sin6_family = AF_INET6;
error = sobind(so, m, &lwp0);
m_freem(m);
if (error)
goto bad;
}
/*
* Protocols that do not require connections may be optionally left
* unconnected for servers that reply from a port other than NFS_PORT.
*/
solock(so);
if (nmp->nm_flag & NFSMNT_NOCONN) {
if (nmp->nm_soflags & PR_CONNREQUIRED) {
sounlock(so);
error = ENOTCONN;
goto bad;
}
} else {
error = soconnect(so, nmp->nm_nam, l);
if (error) {
sounlock(so);
goto bad;
}
/*
* Wait for the connection to complete. Cribbed from the
* connect system call but with the wait timing out so
* that interruptible mounts don't hang here for a long time.
*/
while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
(void)sowait(so, false, 2 * hz);
if ((so->so_state & SS_ISCONNECTING) &&
so->so_error == 0 && rep &&
(error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){
so->so_state &= ~SS_ISCONNECTING;
sounlock(so);
goto bad;
}
}
if (so->so_error) {
error = so->so_error;
so->so_error = 0;
sounlock(so);
goto bad;
}
}
if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
so->so_rcv.sb_timeo = (5 * hz);
so->so_snd.sb_timeo = (5 * hz);
} else {
/*
* enable receive timeout to detect server crash and reconnect.
* otherwise, we can be stuck in soreceive forever.
*/
so->so_rcv.sb_timeo = (5 * hz);
so->so_snd.sb_timeo = 0;
}
if (nmp->nm_sotype == SOCK_DGRAM) {
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
NFS_MAXPKTHDR) * 2;
} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
NFS_MAXPKTHDR) * 2;
} else {
sounlock(so);
if (nmp->nm_sotype != SOCK_STREAM)
panic("nfscon sotype");
if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
val = 1;
so_setsockopt(NULL, so, SOL_SOCKET, SO_KEEPALIVE, &val,
sizeof(val));
}
if (so->so_proto->pr_protocol == IPPROTO_TCP) {
val = 1;
so_setsockopt(NULL, so, IPPROTO_TCP, TCP_NODELAY, &val,
sizeof(val));
}
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
sizeof (u_int32_t)) * 2;
rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
sizeof (u_int32_t)) * 2;
solock(so);
}
error = soreserve(so, sndreserve, rcvreserve);
if (error) {
sounlock(so);
goto bad;
}
so->so_rcv.sb_flags |= SB_NOINTR;
so->so_snd.sb_flags |= SB_NOINTR;
sounlock(so);
/* Initialize other non-zero congestion variables */
nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
NFS_TIMEO << 3;
nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
nmp->nm_sdrtt[3] = 0;
nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
nmp->nm_sent = 0;
nmp->nm_timeouts = 0;
return (0);
bad:
nfs_disconnect(nmp);
return (error);
}
/*
* Reconnect routine:
* Called when a connection is broken on a reliable protocol.
* - clean up the old socket
* - nfs_connect() again
* - set R_MUSTRESEND for all outstanding requests on mount point
* If this fails the mount point is DEAD!
* nb: Must be called with the nfs_sndlock() set on the mount point.
*/
int
nfs_reconnect(struct nfsreq *rep)
{
struct nfsreq *rp;
struct nfsmount *nmp = rep->r_nmp;
int error;
nfs_disconnect(nmp);
while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) {
if (error == EINTR || error == ERESTART)
return (EINTR);
kpause("nfscn2", false, hz, NULL);
}
/*
* Loop through outstanding request list and fix up all requests
* on old socket.
*/
TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
if (rp->r_nmp == nmp) {
if ((rp->r_flags & R_MUSTRESEND) == 0)
rp->r_flags |= R_MUSTRESEND | R_REXMITTED;
rp->r_rexmit = 0;
}
}
return (0);
}
/*
* NFS disconnect. Clean up and unlink.
*/
void
nfs_disconnect(struct nfsmount *nmp)
{
struct socket *so;
int drain = 0;
if (nmp->nm_so) {
so = nmp->nm_so;
nmp->nm_so = NULL;
solock(so);
soshutdown(so, SHUT_RDWR);
sounlock(so);
drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
if (drain) {
/*
* soshutdown() above should wake up the current
* listener.
* Now wake up those waiting for the receive lock, and
* wait for them to go away unhappy, to prevent *nmp
* from evaporating while they're sleeping.
*/
mutex_enter(&nmp->nm_lock);
while (nmp->nm_waiters > 0) {
cv_broadcast(&nmp->nm_rcvcv);
cv_broadcast(&nmp->nm_sndcv);
cv_wait(&nmp->nm_disconcv, &nmp->nm_lock);
}
mutex_exit(&nmp->nm_lock);
}
soclose(so);
}
#ifdef DIAGNOSTIC
if (drain && (nmp->nm_waiters > 0))
panic("nfs_disconnect: waiters left after drain?");
#endif
}
void
nfs_safedisconnect(struct nfsmount *nmp)
{
struct nfsreq dummyreq;
memset(&dummyreq, 0, sizeof(dummyreq));
dummyreq.r_nmp = nmp;
nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */
nfs_disconnect(nmp);
nfs_rcvunlock(nmp);
}
/*
* This is the nfs send routine. For connection based socket types, it
* must be called with an nfs_sndlock() on the socket.
* "rep == NULL" indicates that it has been called from a server.
* For the client side:
* - return EINTR if the RPC is terminated, 0 otherwise
* - set R_MUSTRESEND if the send fails for any reason
* - do any cleanup required by recoverable socket errors (? ? ?)
* For the server side:
* - return EINTR or ERESTART if interrupted by a signal
* - return EPIPE if a connection is lost for connection based sockets (TCP...)
* - do any cleanup required by recoverable socket errors (? ? ?)
*/
int
nfs_send(struct socket *so, struct mbuf *nam, struct mbuf *top, struct nfsreq *rep, struct lwp *l)
{
struct mbuf *sendnam;
int error, soflags, flags;
/* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */
if (l == NULL && rep->r_lwp == NULL)
l = curlwp;
if (rep) {
if (rep->r_flags & R_SOFTTERM) {
m_freem(top);
return (EINTR);
}
if ((so = rep->r_nmp->nm_so) == NULL) {
rep->r_flags |= R_MUSTRESEND;
m_freem(top);
return (0);
}
rep->r_flags &= ~R_MUSTRESEND;
soflags = rep->r_nmp->nm_soflags;
} else
soflags = so->so_proto->pr_flags;
if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
sendnam = NULL;
else
sendnam = nam;
if (so->so_type == SOCK_SEQPACKET)
flags = MSG_EOR;
else
flags = 0;
error = (*so->so_send)(so, sendnam, NULL, top, NULL, flags, l);
if (error) {
if (rep) {
if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
/*
* We're too fast for the network/driver,
* and UDP isn't flowcontrolled.
* We need to resend. This is not fatal,
* just try again.
*
* Could be smarter here by doing some sort
* of a backoff, but this is rare.
*/
rep->r_flags |= R_MUSTRESEND;
} else {
if (error != EPIPE)
log(LOG_INFO,
"nfs send error %d for %s\n",
error,
rep->r_nmp->nm_mountp->
mnt_stat.f_mntfromname);
/*
* Deal with errors for the client side.
*/
if (rep->r_flags & R_SOFTTERM)
error = EINTR;
else if (error != EMSGSIZE)
rep->r_flags |= R_MUSTRESEND;
}
} else {
/*
* See above. This error can happen under normal
* circumstances and the log is too noisy.
* The error will still show up in nfsstat.
*/
if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
log(LOG_INFO, "nfsd send error %d\n", error);
}
/*
* Handle any recoverable (soft) socket errors here. (? ? ?)
*/
if (error != EINTR && error != ERESTART &&
error != EWOULDBLOCK && error != EPIPE &&
error != EMSGSIZE)
error = 0;
}
return (error);
}
/*
* Generate the rpc reply header
* siz arg. is used to decide if adding a cluster is worthwhile
*/
int
nfs_rephead(int siz, struct nfsrv_descript *nd, struct nfssvc_sock *slp, int err, int cache, u_quad_t *frev, struct mbuf **mrq, struct mbuf **mbp, char **bposp)
{
u_int32_t *tl;
struct mbuf *mreq;
char *bpos;
struct mbuf *mb;
mreq = m_gethdr(M_WAIT, MT_DATA);
MCLAIM(mreq, &nfs_mowner);
mb = mreq;
/*
* If this is a big reply, use a cluster else
* try and leave leading space for the lower level headers.
*/
siz += RPC_REPLYSIZ;
if (siz >= max_datalen) {
m_clget(mreq, M_WAIT);
} else
mreq->m_data += max_hdr;
tl = mtod(mreq, u_int32_t *);
mreq->m_len = 6 * NFSX_UNSIGNED;
bpos = ((char *)tl) + mreq->m_len;
*tl++ = txdr_unsigned(nd->nd_retxid);
*tl++ = rpc_reply;
if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
*tl++ = rpc_msgdenied;
if (err & NFSERR_AUTHERR) {
*tl++ = rpc_autherr;
*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
mreq->m_len -= NFSX_UNSIGNED;
bpos -= NFSX_UNSIGNED;
} else {
*tl++ = rpc_mismatch;
*tl++ = txdr_unsigned(RPC_VER2);
*tl = txdr_unsigned(RPC_VER2);
}
} else {
*tl++ = rpc_msgaccepted;
/*
* For Kerberos authentication, we must send the nickname
* verifier back, otherwise just RPCAUTH_NULL.
*/
if (nd->nd_flag & ND_KERBFULL) {
struct nfsuid *nuidp;
struct timeval ktvin, ktvout;
memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
LIST_FOREACH(nuidp,
NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)),
nu_hash) {
if (kauth_cred_geteuid(nuidp->nu_cr) ==
kauth_cred_geteuid(nd->nd_cr) &&
(!nd->nd_nam2 || netaddr_match(
NU_NETFAM(nuidp), &nuidp->nu_haddr,
nd->nd_nam2)))
break;
}
if (nuidp) {
ktvin.tv_sec =
txdr_unsigned(nuidp->nu_timestamp.tv_sec
- 1);
ktvin.tv_usec =
txdr_unsigned(nuidp->nu_timestamp.tv_usec);
/*
* Encrypt the timestamp in ecb mode using the
* session key.
*/
#ifdef NFSKERB
XXX
#endif
*tl++ = rpc_auth_kerb;
*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
*tl = ktvout.tv_sec;
nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
*tl++ = ktvout.tv_usec;
*tl++ = txdr_unsigned(
kauth_cred_geteuid(nuidp->nu_cr));
} else {
*tl++ = 0;
*tl++ = 0;
}
} else {
*tl++ = 0;
*tl++ = 0;
}
switch (err) {
case EPROGUNAVAIL:
*tl = txdr_unsigned(RPC_PROGUNAVAIL);
break;
case EPROGMISMATCH:
*tl = txdr_unsigned(RPC_PROGMISMATCH);
nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
*tl++ = txdr_unsigned(2);
*tl = txdr_unsigned(3);
break;
case EPROCUNAVAIL:
*tl = txdr_unsigned(RPC_PROCUNAVAIL);
break;
case EBADRPC:
*tl = txdr_unsigned(RPC_GARBAGE);
break;
default:
*tl = 0;
if (err != NFSERR_RETVOID) {
nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
if (err)
*tl = txdr_unsigned(nfsrv_errmap(nd, err));
else
*tl = 0;
}
break;
};
}
if (mrq != NULL)
*mrq = mreq;
*mbp = mb;
*bposp = bpos;
if (err != 0 && err != NFSERR_RETVOID)
nfsstats.srvrpc_errs++;
return (0);
}
static void
nfs_timer_schedule(void)
{
callout_schedule(&nfs_timer_ch, nfs_ticks);
}
void
nfs_timer_start(void)
{
if (callout_pending(&nfs_timer_ch))
return;
nfs_timer_start_ev.ev_count++;
nfs_timer_schedule();
}
void
nfs_timer_init(void)
{
mutex_init(&nfs_timer_lock, MUTEX_DEFAULT, IPL_NONE);
callout_init(&nfs_timer_ch, 0);
callout_setfunc(&nfs_timer_ch, nfs_timer, NULL);
evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL,
"nfs", "timer");
evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL,
"nfs", "timer start");
evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL,
"nfs", "timer stop");
}
void
nfs_timer_fini(void)
{
callout_halt(&nfs_timer_ch, NULL);
callout_destroy(&nfs_timer_ch);
mutex_destroy(&nfs_timer_lock);
evcnt_detach(&nfs_timer_ev);
evcnt_detach(&nfs_timer_start_ev);
evcnt_detach(&nfs_timer_stop_ev);
}
void
nfs_timer_srvinit(bool (*func)(void))
{
nfs_timer_srvvec = func;
}
void
nfs_timer_srvfini(void)
{
mutex_enter(&nfs_timer_lock);
nfs_timer_srvvec = NULL;
mutex_exit(&nfs_timer_lock);
}
/*
* Nfs timer routine
* Scan the nfsreq list and retranmit any requests that have timed out
* To avoid retransmission attempts on STREAM sockets (in the future) make
* sure to set the r_retry field to 0 (implies nm_retry == 0).
*/
void
nfs_timer(void *arg)
{
struct nfsreq *rep;
struct mbuf *m;
struct socket *so;
struct nfsmount *nmp;
int timeo;
int error;
bool more = false;
nfs_timer_ev.ev_count++;
mutex_enter(softnet_lock); /* XXX PR 40491 */
TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
more = true;
nmp = rep->r_nmp;
if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
continue;
if (nfs_sigintr(nmp, rep, rep->r_lwp)) {
rep->r_flags |= R_SOFTTERM;
continue;
}
if (rep->r_rtt >= 0) {
rep->r_rtt++;
if (nmp->nm_flag & NFSMNT_DUMBTIMR)
timeo = nmp->nm_timeo;
else
timeo = NFS_RTO(nmp, nfs_proct[rep->r_procnum]);
if (nmp->nm_timeouts > 0)
timeo *= nfs_backoff[nmp->nm_timeouts - 1];
if (timeo > NFS_MAXTIMEO)
timeo = NFS_MAXTIMEO;
if (rep->r_rtt <= timeo)
continue;
if (nmp->nm_timeouts <
(sizeof(nfs_backoff) / sizeof(nfs_backoff[0])))
nmp->nm_timeouts++;
}
/*
* Check for server not responding
*/
if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
rep->r_rexmit > nmp->nm_deadthresh) {
nfs_msg(rep->r_lwp,
nmp->nm_mountp->mnt_stat.f_mntfromname,
"not responding");
rep->r_flags |= R_TPRINTFMSG;
}
if (rep->r_rexmit >= rep->r_retry) { /* too many */
nfsstats.rpctimeouts++;
rep->r_flags |= R_SOFTTERM;
continue;
}
if (nmp->nm_sotype != SOCK_DGRAM) {
if (++rep->r_rexmit > NFS_MAXREXMIT)
rep->r_rexmit = NFS_MAXREXMIT;
continue;
}
if ((so = nmp->nm_so) == NULL)
continue;
/*
* If there is enough space and the window allows..
* Resend it
* Set r_rtt to -1 in case we fail to send it now.
*/
/* solock(so); XXX PR 40491 */
rep->r_rtt = -1;
if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
(rep->r_flags & R_SENT) ||
nmp->nm_sent < nmp->nm_cwnd) &&
(m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
if (so->so_state & SS_ISCONNECTED)
error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
NULL, NULL, NULL);
else
error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
nmp->nm_nam, NULL, NULL);
if (error) {
if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
#ifdef DEBUG
if (ratecheck(&nfs_timer_last_err_time,
&nfs_err_interval))
printf("%s: ignoring error "
"%d\n", __func__, error);
#endif
so->so_error = 0;
}
} else {
/*
* Iff first send, start timing
* else turn timing off, backoff timer
* and divide congestion window by 2.
*/
if (rep->r_flags & R_SENT) {
rep->r_flags &= ~R_TIMING;
if (++rep->r_rexmit > NFS_MAXREXMIT)
rep->r_rexmit = NFS_MAXREXMIT;
nmp->nm_cwnd >>= 1;
if (nmp->nm_cwnd < NFS_CWNDSCALE)
nmp->nm_cwnd = NFS_CWNDSCALE;
nfsstats.rpcretries++;
} else {
rep->r_flags |= R_SENT;
nmp->nm_sent += NFS_CWNDSCALE;
}
rep->r_rtt = 0;
}
}
/* sounlock(so); XXX PR 40491 */
}
mutex_exit(softnet_lock); /* XXX PR 40491 */
mutex_enter(&nfs_timer_lock);
if (nfs_timer_srvvec != NULL) {
more |= (*nfs_timer_srvvec)();
}
mutex_exit(&nfs_timer_lock);
if (more) {
nfs_timer_schedule();
} else {
nfs_timer_stop_ev.ev_count++;
}
}
/*
* Test for a termination condition pending on the process.
* This is used for NFSMNT_INT mounts.
*/
int
nfs_sigintr(struct nfsmount *nmp, struct nfsreq *rep, struct lwp *l)
{
sigset_t ss;
if (rep && (rep->r_flags & R_SOFTTERM))
return (EINTR);
if (!(nmp->nm_flag & NFSMNT_INT))
return (0);
if (l) {
sigpending1(l, &ss);
#if 0
sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss);
#endif
if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
sigismember(&ss, SIGQUIT))
return (EINTR);
}
return (0);
}
int
nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
{
int *flagp = &nmp->nm_iflag;
int slptimeo = 0;
bool catch;
int error = 0;
KASSERT(nmp == rep->r_nmp);
catch = (nmp->nm_flag & NFSMNT_INT) != 0;
mutex_enter(&nmp->nm_lock);
while (/* CONSTCOND */ true) {
if (*flagp & NFSMNT_DISMNT) {
cv_signal(&nmp->nm_disconcv);
error = EIO;
break;
}
/* If our reply was received while we were sleeping,
* then just return without taking the lock to avoid a
* situation where a single iod could 'capture' the
* receive lock.
*/
if (rep->r_mrep != NULL) {
cv_signal(&nmp->nm_rcvcv);
error = EALREADY;
break;
}
if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) {
cv_signal(&nmp->nm_rcvcv);
error = EINTR;
break;
}
if ((*flagp & NFSMNT_RCVLOCK) == 0) {
*flagp |= NFSMNT_RCVLOCK;
break;
}
if (catch) {
cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock,
slptimeo);
} else {
cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock,
slptimeo);
}
if (catch) {
catch = false;
slptimeo = 2 * hz;
}
}
mutex_exit(&nmp->nm_lock);
return error;
}
/*
* Unlock the stream socket for others.
*/
void
nfs_rcvunlock(struct nfsmount *nmp)
{
mutex_enter(&nmp->nm_lock);
if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0)
panic("nfs rcvunlock");
nmp->nm_iflag &= ~NFSMNT_RCVLOCK;
cv_signal(&nmp->nm_rcvcv);
mutex_exit(&nmp->nm_lock);
}
/*
* Parse an RPC request
* - verify it
* - allocate and fill in the cred.
*/
int
nfs_getreq(struct nfsrv_descript *nd, struct nfsd *nfsd, int has_header)
{
int len, i;
u_int32_t *tl;
int32_t t1;
struct uio uio;
struct iovec iov;
char *dpos, *cp2, *cp;
u_int32_t nfsvers, auth_type;
uid_t nickuid;
int error = 0, ticklen;
struct mbuf *mrep, *md;
struct nfsuid *nuidp;
struct timeval tvin, tvout;
memset(&tvout, 0, sizeof tvout); /* XXX gcc */
KASSERT(nd->nd_cr == NULL);
mrep = nd->nd_mrep;
md = nd->nd_md;
dpos = nd->nd_dpos;
if (has_header) {
nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
if (*tl++ != rpc_call) {
m_freem(mrep);
return (EBADRPC);
}
} else
nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
nd->nd_repstat = 0;
nd->nd_flag = 0;
if (*tl++ != rpc_vers) {
nd->nd_repstat = ERPCMISMATCH;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if (*tl != nfs_prog) {
nd->nd_repstat = EPROGUNAVAIL;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
tl++;
nfsvers = fxdr_unsigned(u_int32_t, *tl++);
if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
nd->nd_repstat = EPROGMISMATCH;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if (nfsvers == NFS_VER3)
nd->nd_flag = ND_NFSV3;
nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
if (nd->nd_procnum == NFSPROC_NULL)
return (0);
if (nd->nd_procnum > NFSPROC_COMMIT ||
(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
nd->nd_repstat = EPROCUNAVAIL;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if ((nd->nd_flag & ND_NFSV3) == 0)
nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
auth_type = *tl++;
len = fxdr_unsigned(int, *tl++);
if (len < 0 || len > RPCAUTH_MAXSIZ) {
m_freem(mrep);
return (EBADRPC);
}
nd->nd_flag &= ~ND_KERBAUTH;
/*
* Handle auth_unix or auth_kerb.
*/
if (auth_type == rpc_auth_unix) {
uid_t uid;
gid_t gid;
nd->nd_cr = kauth_cred_alloc();
len = fxdr_unsigned(int, *++tl);
if (len < 0 || len > NFS_MAXNAMLEN) {
m_freem(mrep);
error = EBADRPC;
goto errout;
}
nfsm_adv(nfsm_rndup(len));
nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
uid = fxdr_unsigned(uid_t, *tl++);
gid = fxdr_unsigned(gid_t, *tl++);
kauth_cred_setuid(nd->nd_cr, uid);
kauth_cred_seteuid(nd->nd_cr, uid);
kauth_cred_setsvuid(nd->nd_cr, uid);
kauth_cred_setgid(nd->nd_cr, gid);
kauth_cred_setegid(nd->nd_cr, gid);
kauth_cred_setsvgid(nd->nd_cr, gid);
len = fxdr_unsigned(int, *tl);
if (len < 0 || len > RPCAUTH_UNIXGIDS) {
m_freem(mrep);
error = EBADRPC;
goto errout;
}
nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
if (len > 0) {
size_t grbuf_size = min(len, NGROUPS) * sizeof(gid_t);
gid_t *grbuf = kmem_alloc(grbuf_size, KM_SLEEP);
for (i = 0; i < len; i++) {
if (i < NGROUPS) /* XXX elad */
grbuf[i] = fxdr_unsigned(gid_t, *tl++);
else
tl++;
}
kauth_cred_setgroups(nd->nd_cr, grbuf,
min(len, NGROUPS), -1, UIO_SYSSPACE);
kmem_free(grbuf, grbuf_size);
}
len = fxdr_unsigned(int, *++tl);
if (len < 0 || len > RPCAUTH_MAXSIZ) {
m_freem(mrep);
error = EBADRPC;
goto errout;
}
if (len > 0)
nfsm_adv(nfsm_rndup(len));
} else if (auth_type == rpc_auth_kerb) {
switch (fxdr_unsigned(int, *tl++)) {
case RPCAKN_FULLNAME:
ticklen = fxdr_unsigned(int, *tl);
*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
m_freem(mrep);
error = EBADRPC;
goto errout;
}
uio.uio_offset = 0;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
UIO_SETUP_SYSSPACE(&uio);
iov.iov_base = (void *)&nfsd->nfsd_authstr[4];
iov.iov_len = RPCAUTH_MAXSIZ - 4;
nfsm_mtouio(&uio, uio.uio_resid);
nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
if (*tl++ != rpc_auth_kerb ||
fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
printf("Bad kerb verifier\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED);
tl = (u_int32_t *)cp;
if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
printf("Not fullname kerb verifier\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
cp += NFSX_UNSIGNED;
memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
nd->nd_flag |= ND_KERBFULL;
nfsd->nfsd_flag |= NFSD_NEEDAUTH;
break;
case RPCAKN_NICKNAME:
if (len != 2 * NFSX_UNSIGNED) {
printf("Kerb nickname short\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nickuid = fxdr_unsigned(uid_t, *tl);
nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
if (*tl++ != rpc_auth_kerb ||
fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
printf("Kerb nick verifier bad\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
tvin.tv_sec = *tl++;
tvin.tv_usec = *tl;
LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid),
nu_hash) {
if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid &&
(!nd->nd_nam2 ||
netaddr_match(NU_NETFAM(nuidp),
&nuidp->nu_haddr, nd->nd_nam2)))
break;
}
if (!nuidp) {
nd->nd_repstat =
(NFSERR_AUTHERR|AUTH_REJECTCRED);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
/*
* Now, decrypt the timestamp using the session key
* and validate it.
*/
#ifdef NFSKERB
XXX
#endif
tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
if (nuidp->nu_expire < time_second ||
nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
(nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
nuidp->nu_expire = 0;
nd->nd_repstat =
(NFSERR_AUTHERR|AUTH_REJECTVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
kauth_cred_hold(nuidp->nu_cr);
nd->nd_cr = nuidp->nu_cr;
nd->nd_flag |= ND_KERBNICK;
}
} else {
nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nd->nd_md = md;
nd->nd_dpos = dpos;
KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0)
|| (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0));
return (0);
nfsmout:
errout:
KASSERT(error != 0);
if (nd->nd_cr != NULL) {
kauth_cred_free(nd->nd_cr);
nd->nd_cr = NULL;
}
return (error);
}
int
nfs_msg(struct lwp *l, const char *server, const char *msg)
{
tpr_t tpr;
#if 0 /* XXX nfs_timer can't block on proc_lock */
if (l)
tpr = tprintf_open(l->l_proc);
else
#endif
tpr = NULL;
tprintf(tpr, "nfs server %s: %s\n", server, msg);
tprintf_close(tpr);
return (0);
}
static struct pool nfs_srvdesc_pool;
void
nfsdreq_init(void)
{
pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE);
}
void
nfsdreq_fini(void)
{
pool_destroy(&nfs_srvdesc_pool);
}
struct nfsrv_descript *
nfsdreq_alloc(void)
{
struct nfsrv_descript *nd;
nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK);
nd->nd_cr = NULL;
return nd;
}
void
nfsdreq_free(struct nfsrv_descript *nd)
{
kauth_cred_t cr;
cr = nd->nd_cr;
if (cr != NULL) {
kauth_cred_free(cr);
}
pool_put(&nfs_srvdesc_pool, nd);
}