NetBSD/gnu/dist/bfd/elf32-v850.c

1786 lines
52 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* V850-specific support for 32-bit ELF
Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
/* XXX FIXME: This code is littered with 32bit int, 16bit short, 8bit char
dependencies. As is the gas & simulator code or the v850. */
#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf/v850.h"
/* sign-extend a 24-bit number */
#define SEXT24(x) ((((x) & 0xffffff) ^ (~ 0x7fffff)) + 0x800000)
static reloc_howto_type *v850_elf_reloc_type_lookup
PARAMS ((bfd *abfd, bfd_reloc_code_real_type code));
static void v850_elf_info_to_howto_rel
PARAMS ((bfd *, arelent *, Elf32_Internal_Rel *));
static bfd_reloc_status_type v850_elf_reloc
PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
static boolean v850_elf_is_local_label_name PARAMS ((bfd *, const char *));
static boolean v850_elf_relocate_section PARAMS((bfd *,
struct bfd_link_info *,
bfd *,
asection *,
bfd_byte *,
Elf_Internal_Rela *,
Elf_Internal_Sym *,
asection **));
/* Try to minimize the amount of space occupied by relocation tables
on the ROM (not that the ROM won't be swamped by other ELF overhead). */
#define USE_REL
/* Note: It is REQUIRED that the 'type' value of each entry in this array
match the index of the entry in the array. */
static reloc_howto_type v850_elf_howto_table[] =
{
/* This reloc does nothing. */
HOWTO (R_V850_NONE, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_V850_NONE", /* name */
false, /* partial_inplace */
0, /* src_mask */
0, /* dst_mask */
false), /* pcrel_offset */
/* A PC relative 9 bit branch. */
HOWTO (R_V850_9_PCREL, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
26, /* bitsize */
true, /* pc_relative */
0, /* bitpos */
complain_overflow_bitfield, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_9_PCREL", /* name */
false, /* partial_inplace */
0x00ffffff, /* src_mask */
0x00ffffff, /* dst_mask */
true), /* pcrel_offset */
/* A PC relative 22 bit branch. */
HOWTO (R_V850_22_PCREL, /* type */
2, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
22, /* bitsize */
true, /* pc_relative */
7, /* bitpos */
complain_overflow_signed, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_22_PCREL", /* name */
false, /* partial_inplace */
0x07ffff80, /* src_mask */
0x07ffff80, /* dst_mask */
true), /* pcrel_offset */
/* High 16 bits of symbol value. */
HOWTO (R_V850_HI16_S, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_HI16_S", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* High 16 bits of symbol value. */
HOWTO (R_V850_HI16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_HI16", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* Low 16 bits of symbol value. */
HOWTO (R_V850_LO16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_LO16", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* Simple 32bit reloc. */
HOWTO (R_V850_32, /* type */
0, /* rightshift */
2, /* size (0 = byte, 1 = short, 2 = long) */
32, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_32", /* name */
true, /* partial_inplace */
0xffffffff, /* src_mask */
0xffffffff, /* dst_mask */
false), /* pcrel_offset */
/* Simple 16bit reloc. */
HOWTO (R_V850_16, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_V850_16", /* name */
true, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* Simple 8bit reloc. */
HOWTO (R_V850_8, /* type */
0, /* rightshift */
0, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
bfd_elf_generic_reloc, /* special_function */
"R_V850_8", /* name */
true, /* partial_inplace */
0xff, /* src_mask */
0xff, /* dst_mask */
false), /* pcrel_offset */
/* 16 bit offset from the short data area pointer. */
HOWTO (R_V850_SDA_16_16_OFFSET, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_SDA_16_16_OFFSET", /* name */
false, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* 15 bit offset from the short data area pointer. */
HOWTO (R_V850_SDA_15_16_OFFSET, /* type */
1, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
1, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_SDA_15_16_OFFSET", /* name */
false, /* partial_inplace */
0xfffe, /* src_mask */
0xfffe, /* dst_mask */
false), /* pcrel_offset */
/* 16 bit offset from the zero data area pointer. */
HOWTO (R_V850_ZDA_16_16_OFFSET, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_ZDA_16_16_OFFSET", /* name */
false, /* partial_inplace */
0xffff, /* src_mask */
0xffff, /* dst_mask */
false), /* pcrel_offset */
/* 15 bit offset from the zero data area pointer. */
HOWTO (R_V850_ZDA_15_16_OFFSET, /* type */
1, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
1, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_ZDA_15_16_OFFSET", /* name */
false, /* partial_inplace */
0xfffe, /* src_mask */
0xfffe, /* dst_mask */
false), /* pcrel_offset */
/* 6 bit offset from the tiny data area pointer. */
HOWTO (R_V850_TDA_6_8_OFFSET, /* type */
2, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
false, /* pc_relative */
1, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_TDA_6_8_OFFSET", /* name */
false, /* partial_inplace */
0x7e, /* src_mask */
0x7e, /* dst_mask */
false), /* pcrel_offset */
/* 8 bit offset from the tiny data area pointer. */
HOWTO (R_V850_TDA_7_8_OFFSET, /* type */
1, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
8, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_TDA_7_8_OFFSET", /* name */
false, /* partial_inplace */
0x7f, /* src_mask */
0x7f, /* dst_mask */
false), /* pcrel_offset */
/* 7 bit offset from the tiny data area pointer. */
HOWTO (R_V850_TDA_7_7_OFFSET, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
7, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_TDA_7_7_OFFSET", /* name */
false, /* partial_inplace */
0x7f, /* src_mask */
0x7f, /* dst_mask */
false), /* pcrel_offset */
/* 16 bit offset from the tiny data area pointer! */
HOWTO (R_V850_TDA_16_16_OFFSET, /* type */
0, /* rightshift */
1, /* size (0 = byte, 1 = short, 2 = long) */
16, /* bitsize */
false, /* pc_relative */
0, /* bitpos */
complain_overflow_dont, /* complain_on_overflow */
v850_elf_reloc, /* special_function */
"R_V850_TDA_16_16_OFFSET", /* name */
false, /* partial_inplace */
0xffff, /* src_mask */
0xfff, /* dst_mask */
false), /* pcrel_offset */
};
/* Map BFD reloc types to V850 ELF reloc types. */
struct v850_elf_reloc_map
{
unsigned char bfd_reloc_val;
unsigned char elf_reloc_val;
};
static const struct v850_elf_reloc_map v850_elf_reloc_map[] =
{
{ BFD_RELOC_NONE, R_V850_NONE },
{ BFD_RELOC_V850_9_PCREL, R_V850_9_PCREL },
{ BFD_RELOC_V850_22_PCREL, R_V850_22_PCREL },
{ BFD_RELOC_HI16_S, R_V850_HI16_S },
{ BFD_RELOC_HI16, R_V850_HI16 },
{ BFD_RELOC_LO16, R_V850_LO16 },
{ BFD_RELOC_32, R_V850_32 },
{ BFD_RELOC_16, R_V850_16 },
{ BFD_RELOC_8, R_V850_8 },
{ BFD_RELOC_V850_SDA_16_16_OFFSET, R_V850_SDA_16_16_OFFSET },
{ BFD_RELOC_V850_SDA_15_16_OFFSET, R_V850_SDA_15_16_OFFSET },
{ BFD_RELOC_V850_ZDA_16_16_OFFSET, R_V850_ZDA_16_16_OFFSET },
{ BFD_RELOC_V850_ZDA_15_16_OFFSET, R_V850_ZDA_15_16_OFFSET },
{ BFD_RELOC_V850_TDA_6_8_OFFSET, R_V850_TDA_6_8_OFFSET },
{ BFD_RELOC_V850_TDA_7_8_OFFSET, R_V850_TDA_7_8_OFFSET },
{ BFD_RELOC_V850_TDA_7_7_OFFSET, R_V850_TDA_7_7_OFFSET },
{ BFD_RELOC_V850_TDA_16_16_OFFSET, R_V850_TDA_16_16_OFFSET },
};
/* Map a bfd relocation into the appropriate howto structure */
static reloc_howto_type *
v850_elf_reloc_type_lookup (abfd, code)
bfd * abfd;
bfd_reloc_code_real_type code;
{
unsigned int i;
for (i = 0;
i < sizeof (v850_elf_reloc_map) / sizeof (struct v850_elf_reloc_map);
i++)
{
if (v850_elf_reloc_map[i].bfd_reloc_val == code)
{
BFD_ASSERT (v850_elf_howto_table[v850_elf_reloc_map[i].elf_reloc_val].type == v850_elf_reloc_map[i].elf_reloc_val);
return & v850_elf_howto_table[v850_elf_reloc_map[i].elf_reloc_val];
}
}
return NULL;
}
/* Set the howto pointer for an V850 ELF reloc. */
static void
v850_elf_info_to_howto_rel (abfd, cache_ptr, dst)
bfd * abfd;
arelent * cache_ptr;
Elf32_Internal_Rel * dst;
{
unsigned int r_type;
r_type = ELF32_R_TYPE (dst->r_info);
BFD_ASSERT (r_type < (unsigned int) R_V850_max);
cache_ptr->howto = &v850_elf_howto_table[r_type];
}
/* Look through the relocs for a section during the first phase, and
allocate space in the global offset table or procedure linkage
table. */
static boolean
v850_elf_check_relocs (abfd, info, sec, relocs)
bfd * abfd;
struct bfd_link_info * info;
asection * sec;
const Elf_Internal_Rela * relocs;
{
boolean ret = true;
bfd *dynobj;
Elf_Internal_Shdr *symtab_hdr;
struct elf_link_hash_entry **sym_hashes;
const Elf_Internal_Rela *rel;
const Elf_Internal_Rela *rel_end;
asection *sreloc;
enum v850_reloc_type r_type;
int other = 0;
const char *common = (const char *)0;
if (info->relocateable)
return true;
#ifdef DEBUG
fprintf (stderr, "v850_elf_check_relocs called for section %s in %s\n",
bfd_get_section_name (abfd, sec),
bfd_get_filename (abfd));
#endif
dynobj = elf_hash_table (info)->dynobj;
symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (abfd);
sreloc = NULL;
rel_end = relocs + sec->reloc_count;
for (rel = relocs; rel < rel_end; rel++)
{
unsigned long r_symndx;
struct elf_link_hash_entry *h;
r_symndx = ELF32_R_SYM (rel->r_info);
if (r_symndx < symtab_hdr->sh_info)
h = NULL;
else
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
r_type = (enum v850_reloc_type) ELF32_R_TYPE (rel->r_info);
switch (r_type)
{
default:
case R_V850_NONE:
case R_V850_9_PCREL:
case R_V850_22_PCREL:
case R_V850_HI16_S:
case R_V850_HI16:
case R_V850_LO16:
case R_V850_32:
case R_V850_16:
case R_V850_8:
break;
case R_V850_SDA_16_16_OFFSET:
case R_V850_SDA_15_16_OFFSET:
other = V850_OTHER_SDA;
common = ".scommon";
goto small_data_common;
case R_V850_ZDA_16_16_OFFSET:
case R_V850_ZDA_15_16_OFFSET:
other = V850_OTHER_ZDA;
common = ".zcommon";
goto small_data_common;
case R_V850_TDA_6_8_OFFSET:
case R_V850_TDA_7_8_OFFSET:
case R_V850_TDA_7_7_OFFSET:
case R_V850_TDA_16_16_OFFSET:
other = V850_OTHER_TDA;
common = ".tcommon";
/* fall through */
#define V850_OTHER_MASK (V850_OTHER_TDA | V850_OTHER_SDA | V850_OTHER_ZDA)
small_data_common:
if (h)
{
h->other |= other; /* flag which type of relocation was used */
if ((h->other & V850_OTHER_MASK) != (other & V850_OTHER_MASK)
&& (h->other & V850_OTHER_ERROR) == 0)
{
const char * msg;
static char buff[100]; /* XXX */
switch (h->other & V850_OTHER_MASK)
{
default:
msg = "cannot occupy in multiple small data regions";
break;
case V850_OTHER_SDA | V850_OTHER_ZDA | V850_OTHER_TDA:
msg = "can only be in one of the small, zero, and tiny data regions";
break;
case V850_OTHER_SDA | V850_OTHER_ZDA:
msg = "cannot be in both small and zero data regions simultaneously";
break;
case V850_OTHER_SDA | V850_OTHER_TDA:
msg = "cannot be in both small and tiny data regions simultaneously";
break;
case V850_OTHER_ZDA | V850_OTHER_TDA:
msg = "cannot be in both zero and tiny data regions simultaneously";
break;
}
sprintf (buff, "Variable '%s' %s", h->root.root.string, msg );
info->callbacks->warning (info, buff, h->root.root.string,
abfd, h->root.u.def.section, 0);
bfd_set_error (bfd_error_bad_value);
h->other |= V850_OTHER_ERROR;
ret = false;
}
}
if (h && h->root.type == bfd_link_hash_common
&& h->root.u.c.p
&& !strcmp (bfd_get_section_name (abfd, h->root.u.c.p->section), "COMMON"))
{
asection *section = h->root.u.c.p->section = bfd_make_section_old_way (abfd, common);
section->flags |= SEC_IS_COMMON;
}
#ifdef DEBUG
fprintf (stderr, "v850_elf_check_relocs, found %s relocation for %s%s\n",
v850_elf_howto_table[ (int)r_type ].name,
(h && h->root.root.string) ? h->root.root.string : "<unknown>",
(h->root.type == bfd_link_hash_common) ? ", symbol is common" : "");
#endif
break;
}
}
return ret;
}
typedef struct
{
long addend;
bfd_byte * address;
unsigned long counter;
}
hi16s_location;
static hi16s_location previous_hi16s[ 10 ]; /* XXX is this enough ? */
static unsigned long hi16s_counter;
static void
remember_hi16s_reloc (addend, address)
long addend;
bfd_byte * address;
{
hi16s_location * oldest = NULL;
int i;
/* Find a free slot. */
for (i = sizeof (previous_hi16s) / sizeof (previous_hi16s[0]); i--;)
{
hi16s_location * entry = previous_hi16s + i;
if (entry->addend == 0 && entry->address == 0)
{
/* Use this entry. */
oldest = entry;
break;
}
/* Remember the least recently added entry. */
if (oldest == NULL || oldest->counter > entry->counter)
oldest = entry;
}
oldest->addend = addend;
oldest->address = address;
oldest->counter = hi16s_counter ++;
/* Cope with wrap around of our counter. */
if (hi16s_counter == 0)
{
/* XXX - Assume that all counter entries differ only in their low 16 bits. */
for (i = sizeof (previous_hi16s) / sizeof (previous_hi16s[0]); i--;)
{
hi16s_location * entry = previous_hi16s + i;
entry->counter &= 0xffff;
}
hi16s_counter = 0x10000;
}
return;
}
static bfd_byte *
find_remembered_hi16s_reloc (addend)
long addend;
{
hi16s_location * match = NULL;
int i;
/* Search the table. Record the most recent entry that matches. */
for (i = sizeof (previous_hi16s) / sizeof (previous_hi16s[0]); i--;)
{
hi16s_location * entry = previous_hi16s + i;
if (entry->addend == addend)
{
if (match == NULL || match->counter < entry->counter)
match = entry;
}
}
if (match != NULL)
{
bfd_byte * addr;
/* Empty the table entry. */
match->addend = 0;
addr = match->address;
match->address = NULL;
return addr;
}
return NULL;
}
static bfd_reloc_status_type
v850_elf_store_addend_in_insn (abfd, r_type, addend, address, replace)
bfd * abfd;
int r_type;
long addend;
bfd_byte * address;
boolean replace;
{
unsigned long insn;
switch (r_type)
{
default:
/* fprintf (stderr, "reloc type %d not SUPPORTED\n", r_type ); */
return bfd_reloc_notsupported;
case R_V850_32:
if (! replace)
addend += bfd_get_32 (abfd, address);
bfd_put_32 (abfd, addend, address);
return bfd_reloc_ok;
case R_V850_22_PCREL:
if (addend > 0x1fffff || addend < -0x200000)
return bfd_reloc_overflow;
if ((addend % 2) != 0)
return bfd_reloc_dangerous;
insn = bfd_get_32 (abfd, address);
insn &= ~0xfffe003f;
insn |= (((addend & 0xfffe) << 16) | ((addend & 0x3f0000) >> 16));
bfd_put_32 (abfd, insn, address);
return bfd_reloc_ok;
case R_V850_9_PCREL:
if (addend > 0xff || addend < -0x100)
return bfd_reloc_overflow;
if ((addend % 2) != 0)
return bfd_reloc_dangerous;
insn = bfd_get_16 (abfd, address);
insn &= ~ 0xf870;
insn |= ((addend & 0x1f0) << 7) | ((addend & 0x0e) << 3);
break;
case R_V850_HI16:
addend += (bfd_get_16 (abfd, address) << 16);
addend = (addend >> 16);
insn = addend;
break;
case R_V850_HI16_S:
/* Remember where this relocation took place. */
remember_hi16s_reloc (addend, address);
addend += (bfd_get_16 (abfd, address) << 16);
addend = (addend >> 16) + ((addend & 0x8000) != 0);
/* This relocation cannot overflow. */
if (addend > 0x7fff || addend < -0x8000)
addend = 0;
insn = addend;
break;
case R_V850_LO16:
/* Calculate the sum of the value stored in the instruction and the
addend and check for overflow from the low 16 bits into the high
16 bits. The assembler has already done some of this: If the
value stored in the instruction has its 15th bit set, (counting
from zero) then the assembler will have added 1 to the value
stored in the associated HI16S reloc. So for example, these
relocations:
movhi hi( fred ), r0, r1
movea lo( fred ), r1, r1
will store 0 in the value fields for the MOVHI and MOVEA instructions
and addend will be the address of fred, but for these instructions:
movhi hi( fred + 0x123456), r0, r1
movea lo( fred + 0x123456), r1, r1
the value stored in the MOVHI instruction will be 0x12 and the value
stored in the MOVEA instruction will be 0x3456. If however the
instructions were:
movhi hi( fred + 0x10ffff), r0, r1
movea lo( fred + 0x10ffff), r1, r1
then the value stored in the MOVHI instruction would be 0x11 (not
0x10) and the value stored in the MOVEA instruction would be 0xffff.
Thus (assuming for the moment that the addend is 0), at run time the
MOVHI instruction loads 0x110000 into r1, then the MOVEA instruction
adds 0xffffffff (sign extension!) producing 0x10ffff. Similarly if
the instructions were:
movhi hi( fred - 1), r0, r1
movea lo( fred - 1), r1, r1
then 0 is stored in the MOVHI instruction and -1 is stored in the
MOVEA instruction.
Overflow can occur if the addition of the value stored in the
instruction plus the addend sets the 15th bit when before it was clear.
This is because the 15th bit will be sign extended into the high part,
thus reducing its value by one, but since the 15th bit was originally
clear, the assembler will not have added 1 to the previous HI16S reloc
to compensate for this effect. For example:
movhi hi( fred + 0x123456), r0, r1
movea lo( fred + 0x123456), r1, r1
The value stored in HI16S reloc is 0x12, the value stored in the LO16
reloc is 0x3456. If we assume that the address of fred is 0x00007000
then the relocations become:
HI16S: 0x0012 + (0x00007000 >> 16) = 0x12
LO16: 0x3456 + (0x00007000 & 0xffff) = 0xa456
but when the instructions are executed, the MOVEA instruction's value
is signed extended, so the sum becomes:
0x00120000
+ 0xffffa456
------------
0x0011a456 but 'fred + 0x123456' = 0x0012a456
Note that if the 15th bit was set in the value stored in the LO16
reloc, then we do not have to do anything:
movhi hi( fred + 0x10ffff), r0, r1
movea lo( fred + 0x10ffff), r1, r1
HI16S: 0x0011 + (0x00007000 >> 16) = 0x11
LO16: 0xffff + (0x00007000 & 0xffff) = 0x6fff
0x00110000
+ 0x00006fff
------------
0x00116fff = fred + 0x10ffff = 0x7000 + 0x10ffff
Overflow can also occur if the computation carries into the 16th bit
and it also results in the 15th bit having the same value as the 15th
bit of the original value. What happens is that the HI16S reloc
will have already examined the 15th bit of the original value and
added 1 to the high part if the bit is set. This compensates for the
sign extension of 15th bit of the result of the computation. But now
there is a carry into the 16th bit, and this has not been allowed for.
So, for example if fred is at address 0xf000:
movhi hi( fred + 0xffff), r0, r1 [bit 15 of the offset is set]
movea lo( fred + 0xffff), r1, r1
HI16S: 0x0001 + (0x0000f000 >> 16) = 0x0001
LO16: 0xffff + (0x0000f000 & 0xffff) = 0xefff (carry into bit 16 is lost)
0x00010000
+ 0xffffefff
------------
0x0000efff but 'fred + 0xffff' = 0x0001efff
Similarly, if the 15th bit remains clear, but overflow occurs into
the 16th bit then (assuming the address of fred is 0xf000):
movhi hi( fred + 0x7000), r0, r1 [bit 15 of the offset is clear]
movea lo( fred + 0x7000), r1, r1
HI16S: 0x0000 + (0x0000f000 >> 16) = 0x0000
LO16: 0x7000 + (0x0000f000 & 0xffff) = 0x6fff (carry into bit 16 is lost)
0x00000000
+ 0x00006fff
------------
0x00006fff but 'fred + 0x7000' = 0x00016fff
Note - there is no need to change anything if a carry occurs, and the
15th bit changes its value from being set to being clear, as the HI16S
reloc will have already added in 1 to the high part for us:
movhi hi( fred + 0xffff), r0, r1 [bit 15 of the offset is set]
movea lo( fred + 0xffff), r1, r1
HI16S: 0x0001 + (0x00007000 >> 16)
LO16: 0xffff + (0x00007000 & 0xffff) = 0x6fff (carry into bit 16 is lost)
0x00010000
+ 0x00006fff (bit 15 not set, so the top half is zero)
------------
0x00016fff which is right (assuming that fred is at 0x7000)
but if the 15th bit goes from being clear to being set, then we must
once again handle overflow:
movhi hi( fred + 0x7000), r0, r1 [bit 15 of the offset is clear]
movea lo( fred + 0x7000), r1, r1
HI16S: 0x0000 + (0x0000ffff >> 16)
LO16: 0x7000 + (0x0000ffff & 0xffff) = 0x6fff (carry into bit 16)
0x00000000
+ 0x00006fff (bit 15 not set, so the top half is zero)
------------
0x00006fff which is wrong (assuming that fred is at 0xffff)
*/
{
long result;
insn = bfd_get_16 (abfd, address);
result = insn + addend;
#define BIT15_SET(x) ((x) & 0x8000)
#define OVERFLOWS(a,i) ((((a) & 0xffff) + (i)) > 0xffff)
if ((BIT15_SET (result) && ! BIT15_SET (addend))
|| (OVERFLOWS (addend, insn)
&& ((! BIT15_SET (insn)) || (BIT15_SET (addend)))))
{
bfd_byte * hi16s_address = find_remembered_hi16s_reloc (addend);
/* Amend the matching HI16_S relocation. */
if (hi16s_address != NULL)
{
insn = bfd_get_16 (abfd, hi16s_address);
insn += 1;
bfd_put_16 (abfd, insn, hi16s_address);
}
else
{
fprintf (stderr, "FAILED to find previous HI16 reloc\n");
return bfd_reloc_overflow;
}
}
/* Do not complain if value has top bit set, as this has been anticipated. */
insn = result & 0xffff;
break;
}
case R_V850_8:
if (! replace)
addend += (char) bfd_get_8 (abfd, address);
if (addend > 0x7f || addend < -0x80)
return bfd_reloc_overflow;
bfd_put_8 (abfd, addend, address);
return bfd_reloc_ok;
case R_V850_16:
replace = false;
/* drop through */
case R_V850_SDA_16_16_OFFSET:
case R_V850_ZDA_16_16_OFFSET:
case R_V850_TDA_16_16_OFFSET:
if (! replace)
addend += bfd_get_16 (abfd, address);
if (addend > 0x7fff || addend < -0x8000)
return bfd_reloc_overflow;
insn = addend;
break;
case R_V850_SDA_15_16_OFFSET:
case R_V850_ZDA_15_16_OFFSET:
insn = bfd_get_16 (abfd, address);
if (! replace)
addend += (insn & 0xfffe);
if (addend > 0x7ffe || addend < -0x8000)
return bfd_reloc_overflow;
if (addend & 1)
return bfd_reloc_dangerous;
insn = (addend & ~1) | (insn & 1);
break;
case R_V850_TDA_6_8_OFFSET:
insn = bfd_get_16 (abfd, address);
if (! replace)
addend += ((insn & 0x7e) << 1);
if (addend > 0xfc || addend < 0)
return bfd_reloc_overflow;
if (addend & 3)
return bfd_reloc_dangerous;
insn &= 0xff81;
insn |= (addend >> 1);
break;
case R_V850_TDA_7_8_OFFSET:
insn = bfd_get_16 (abfd, address);
if (! replace)
addend += ((insn & 0x7f) << 1);
if (addend > 0xfe || addend < 0)
return bfd_reloc_overflow;
if (addend & 1)
return bfd_reloc_dangerous;
insn &= 0xff80;
insn |= (addend >> 1);
break;
case R_V850_TDA_7_7_OFFSET:
insn = bfd_get_16 (abfd, address);
if (! replace)
addend += insn & 0x7f;
if (addend > 0x7f || addend < 0)
return bfd_reloc_overflow;
insn &= 0xff80;
insn |= addend;
break;
}
bfd_put_16 (abfd, insn, address);
return bfd_reloc_ok;
}
/* Insert the addend into the instruction. */
static bfd_reloc_status_type
v850_elf_reloc (abfd, reloc, symbol, data, isection, obfd, err)
bfd * abfd;
arelent * reloc;
asymbol * symbol;
PTR data;
asection * isection;
bfd * obfd;
char ** err;
{
long relocation;
/* If there is an output BFD,
and the symbol is not a section name (which is only defined at final link time),
and either we are not putting the addend into the instruction
or the addend is zero, so there is nothing to add into the instruction
then just fixup the address and return. */
if (obfd != (bfd *) NULL
&& (symbol->flags & BSF_SECTION_SYM) == 0
&& (! reloc->howto->partial_inplace
|| reloc->addend == 0))
{
reloc->address += isection->output_offset;
return bfd_reloc_ok;
}
#if 0
else if (obfd != NULL)
{
return bfd_reloc_continue;
}
#endif
/* Catch relocs involving undefined symbols. */
if (bfd_is_und_section (symbol->section)
&& (symbol->flags & BSF_WEAK) == 0
&& obfd == NULL)
return bfd_reloc_undefined;
/* We handle final linking of some relocs ourselves. */
/* Is the address of the relocation really within the section? */
if (reloc->address > isection->_cooked_size)
return bfd_reloc_outofrange;
/* Work out which section the relocation is targetted at and the
initial relocation command value. */
/* Get symbol value. (Common symbols are special.) */
if (bfd_is_com_section (symbol->section))
relocation = 0;
else
relocation = symbol->value;
/* Convert input-section-relative symbol value to absolute + addend. */
relocation += symbol->section->output_section->vma;
relocation += symbol->section->output_offset;
relocation += reloc->addend;
if (reloc->howto->pc_relative == true)
{
/* Here the variable relocation holds the final address of the
symbol we are relocating against, plus any addend. */
relocation -= isection->output_section->vma + isection->output_offset;
/* Deal with pcrel_offset */
relocation -= reloc->address;
}
/* I've got no clue... */
reloc->addend = 0;
return v850_elf_store_addend_in_insn (abfd, reloc->howto->type, relocation,
(bfd_byte *) data + reloc->address, true);
}
/*ARGSUSED*/
static boolean
v850_elf_is_local_label_name (abfd, name)
bfd * abfd;
const char * name;
{
return ( (name[0] == '.' && (name[1] == 'L' || name[1] == '.'))
|| (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_'));
}
/* Perform a relocation as part of a final link. */
static bfd_reloc_status_type
v850_elf_final_link_relocate (howto, input_bfd, output_bfd,
input_section, contents, offset, value,
addend, info, sym_sec, is_local)
reloc_howto_type * howto;
bfd * input_bfd;
bfd * output_bfd;
asection * input_section;
bfd_byte * contents;
bfd_vma offset;
bfd_vma value;
bfd_vma addend;
struct bfd_link_info * info;
asection * sym_sec;
int is_local;
{
unsigned long r_type = howto->type;
bfd_byte * hit_data = contents + offset;
/* Adjust the value according to the relocation. */
switch (r_type)
{
case R_V850_9_PCREL:
value -= (input_section->output_section->vma
+ input_section->output_offset);
value -= offset;
break;
case R_V850_22_PCREL:
value -= (input_section->output_section->vma
+ input_section->output_offset
+ offset);
value = SEXT24 (value); /* Only the bottom 24 bits of the PC are valid */
break;
case R_V850_HI16_S:
case R_V850_HI16:
case R_V850_LO16:
case R_V850_16:
case R_V850_32:
case R_V850_8:
break;
case R_V850_ZDA_15_16_OFFSET:
case R_V850_ZDA_16_16_OFFSET:
if (sym_sec == NULL)
return bfd_reloc_undefined;
value -= sym_sec->output_section->vma;
break;
case R_V850_SDA_15_16_OFFSET:
case R_V850_SDA_16_16_OFFSET:
{
unsigned long gp;
struct bfd_link_hash_entry * h;
if (sym_sec == NULL)
return bfd_reloc_undefined;
/* Get the value of __gp. */
h = bfd_link_hash_lookup (info->hash, "__gp", false, false, true);
if (h == (struct bfd_link_hash_entry *) NULL
|| h->type != bfd_link_hash_defined)
return bfd_reloc_other;
gp = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
value -= sym_sec->output_section->vma;
value -= (gp - sym_sec->output_section->vma);
}
break;
case R_V850_TDA_16_16_OFFSET:
case R_V850_TDA_7_7_OFFSET:
case R_V850_TDA_7_8_OFFSET:
case R_V850_TDA_6_8_OFFSET:
{
unsigned long ep;
struct bfd_link_hash_entry * h;
/* Get the value of __ep. */
h = bfd_link_hash_lookup (info->hash, "__ep", false, false, true);
if (h == (struct bfd_link_hash_entry *) NULL
|| h->type != bfd_link_hash_defined)
return bfd_reloc_continue; /* Actually this indicates that __ep could not be found. */
ep = (h->u.def.value
+ h->u.def.section->output_section->vma
+ h->u.def.section->output_offset);
value -= ep;
}
break;
case R_V850_NONE:
return bfd_reloc_ok;
default:
return bfd_reloc_notsupported;
}
/* Perform the relocation. */
return v850_elf_store_addend_in_insn (input_bfd, r_type, value, hit_data, false);
}
/* Relocate an V850 ELF section. */
static boolean
v850_elf_relocate_section (output_bfd, info, input_bfd, input_section,
contents, relocs, local_syms, local_sections)
bfd * output_bfd;
struct bfd_link_info * info;
bfd * input_bfd;
asection * input_section;
bfd_byte * contents;
Elf_Internal_Rela * relocs;
Elf_Internal_Sym * local_syms;
asection ** local_sections;
{
Elf_Internal_Shdr * symtab_hdr;
struct elf_link_hash_entry ** sym_hashes;
Elf_Internal_Rela * rel;
Elf_Internal_Rela * relend;
symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
sym_hashes = elf_sym_hashes (input_bfd);
rel = relocs;
relend = relocs + input_section->reloc_count;
for (; rel < relend; rel++)
{
int r_type;
reloc_howto_type * howto;
unsigned long r_symndx;
Elf_Internal_Sym * sym;
asection * sec;
struct elf_link_hash_entry * h;
bfd_vma relocation;
bfd_reloc_status_type r;
r_symndx = ELF32_R_SYM (rel->r_info);
r_type = ELF32_R_TYPE (rel->r_info);
howto = v850_elf_howto_table + r_type;
if (info->relocateable)
{
/* This is a relocateable link. We don't have to change
anything, unless the reloc is against a section symbol,
in which case we have to adjust according to where the
section symbol winds up in the output section. */
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
sec = local_sections[r_symndx];
#ifdef USE_REL
/* The Elf_Internal_Rel structure does not have space for the
modified addend value, so we store it in the instruction
instead. */
if (sec->output_offset + sym->st_value != 0)
{
if (v850_elf_store_addend_in_insn (input_bfd, r_type,
sec->output_offset +
sym->st_value,
contents + rel->r_offset,
false)
!= bfd_reloc_ok)
{
info->callbacks->warning
(info,
"Unable to handle relocation during incremental link",
NULL, input_bfd, input_section, rel->r_offset);
}
}
#else
rel->r_addend += sec->output_offset + sym->st_value;
#endif
}
}
continue;
}
/* This is a final link. */
h = NULL;
sym = NULL;
sec = NULL;
if (r_symndx < symtab_hdr->sh_info)
{
sym = local_syms + r_symndx;
sec = local_sections[r_symndx];
relocation = (sec->output_section->vma
+ sec->output_offset
+ sym->st_value);
#if 0
{
char * name;
name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, sym->st_name);
name = (name == NULL) ? "<none>" : name;
fprintf (stderr, "local: sec: %s, sym: %s (%d), value: %x + %x + %x addend %x\n",
sec->name, name, sym->st_name,
sec->output_section->vma, sec->output_offset, sym->st_value, rel->r_addend);
}
#endif
}
else
{
h = sym_hashes[r_symndx - symtab_hdr->sh_info];
while (h->root.type == bfd_link_hash_indirect
|| h->root.type == bfd_link_hash_warning)
h = (struct elf_link_hash_entry *) h->root.u.i.link;
if (h->root.type == bfd_link_hash_defined
|| h->root.type == bfd_link_hash_defweak)
{
sec = h->root.u.def.section;
relocation = (h->root.u.def.value
+ sec->output_section->vma
+ sec->output_offset);
#if 0
fprintf (stderr, "defined: sec: %s, name: %s, value: %x + %x + %x gives: %x\n",
sec->name, h->root.root.string, h->root.u.def.value, sec->output_section->vma, sec->output_offset, relocation);
#endif
}
else if (h->root.type == bfd_link_hash_undefweak)
{
#if 0
fprintf (stderr, "undefined: sec: %s, name: %s\n",
sec->name, h->root.root.string);
#endif
relocation = 0;
}
else
{
if (! ((*info->callbacks->undefined_symbol)
(info, h->root.root.string, input_bfd,
input_section, rel->r_offset)))
return false;
#if 0
fprintf (stderr, "unknown: name: %s\n", h->root.root.string);
#endif
relocation = 0;
}
}
/* FIXME: We should use the addend, but the COFF relocations
don't. */
r = v850_elf_final_link_relocate (howto, input_bfd, output_bfd,
input_section,
contents, rel->r_offset,
relocation, rel->r_addend,
info, sec, h == NULL);
if (r != bfd_reloc_ok)
{
const char * name;
const char * msg = (const char *)0;
if (h != NULL)
name = h->root.root.string;
else
{
name = (bfd_elf_string_from_elf_section
(input_bfd, symtab_hdr->sh_link, sym->st_name));
if (name == NULL || *name == '\0')
name = bfd_section_name (input_bfd, sec);
}
switch (r)
{
case bfd_reloc_overflow:
if (! ((*info->callbacks->reloc_overflow)
(info, name, howto->name, (bfd_vma) 0,
input_bfd, input_section, rel->r_offset)))
return false;
break;
case bfd_reloc_undefined:
if (! ((*info->callbacks->undefined_symbol)
(info, name, input_bfd, input_section,
rel->r_offset)))
return false;
break;
case bfd_reloc_outofrange:
msg = "internal error: out of range error";
goto common_error;
case bfd_reloc_notsupported:
msg = "internal error: unsupported relocation error";
goto common_error;
case bfd_reloc_dangerous:
msg = "internal error: dangerous relocation";
goto common_error;
case bfd_reloc_other:
msg = "could not locate special linker symbol __gp";
goto common_error;
case bfd_reloc_continue:
msg = "could not locate special linker symbol __ep";
goto common_error;
case (bfd_reloc_dangerous + 1):
msg = "could not locate special linker symbol __ctbp";
goto common_error;
default:
msg = "internal error: unknown error";
/* fall through */
common_error:
if (!((*info->callbacks->warning)
(info, msg, name, input_bfd, input_section,
rel->r_offset)))
return false;
break;
}
}
}
return true;
}
/* Set the right machine number. */
static boolean
v850_elf_object_p (abfd)
bfd *abfd;
{
switch (elf_elfheader (abfd)->e_flags & EF_V850_ARCH)
{
default:
case E_V850_ARCH: (void) bfd_default_set_arch_mach (abfd, bfd_arch_v850, 0); break;
}
return true;
}
/* Store the machine number in the flags field. */
void
v850_elf_final_write_processing (abfd, linker)
bfd * abfd;
boolean linker;
{
unsigned long val;
switch (bfd_get_mach (abfd))
{
default:
case 0: val = E_V850_ARCH; break;
}
elf_elfheader (abfd)->e_flags &=~ EF_V850_ARCH;
elf_elfheader (abfd)->e_flags |= val;
}
/* Function to keep V850 specific file flags. */
boolean
v850_elf_set_private_flags (abfd, flags)
bfd * abfd;
flagword flags;
{
BFD_ASSERT (!elf_flags_init (abfd)
|| elf_elfheader (abfd)->e_flags == flags);
elf_elfheader (abfd)->e_flags = flags;
elf_flags_init (abfd) = true;
return true;
}
/* Copy backend specific data from one object module to another */
boolean
v850_elf_copy_private_bfd_data (ibfd, obfd)
bfd * ibfd;
bfd * obfd;
{
if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return true;
BFD_ASSERT (!elf_flags_init (obfd)
|| (elf_elfheader (obfd)->e_flags
== elf_elfheader (ibfd)->e_flags));
elf_gp (obfd) = elf_gp (ibfd);
elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
elf_flags_init (obfd) = true;
return true;
}
/* Merge backend specific data from an object file to the output
object file when linking. */
boolean
v850_elf_merge_private_bfd_data (ibfd, obfd)
bfd * ibfd;
bfd * obfd;
{
flagword out_flags;
flagword in_flags;
if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
|| bfd_get_flavour (obfd) != bfd_target_elf_flavour)
return true;
in_flags = elf_elfheader (ibfd)->e_flags;
out_flags = elf_elfheader (obfd)->e_flags;
if (! elf_flags_init (obfd))
{
/* If the input is the default architecture then do not
bother setting the flags for the output architecture,
instead allow future merges to do this. If no future
merges ever set these flags then they will retain their
unitialised values, which surprise surprise, correspond
to the default values. */
if (bfd_get_arch_info (ibfd)->the_default)
return true;
elf_flags_init (obfd) = true;
elf_elfheader (obfd)->e_flags = in_flags;
if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
&& bfd_get_arch_info (obfd)->the_default)
{
return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
}
return true;
}
/* Check flag compatibility. */
if (in_flags == out_flags)
return true;
if ((in_flags & EF_V850_ARCH) != (out_flags & EF_V850_ARCH)
&& (in_flags & EF_V850_ARCH) != E_V850_ARCH)
_bfd_error_handler ("%s: Architecture mismatch with previous modules",
bfd_get_filename (ibfd));
return true;
}
/* Display the flags field */
static boolean
v850_elf_print_private_bfd_data (abfd, ptr)
bfd * abfd;
PTR ptr;
{
FILE * file = (FILE *) ptr;
BFD_ASSERT (abfd != NULL && ptr != NULL)
fprintf (file, "private flags = %lx", elf_elfheader (abfd)->e_flags);
switch (elf_elfheader (abfd)->e_flags & EF_V850_ARCH)
{
default:
case E_V850_ARCH: fprintf (file, ": v850 architecture"); break;
}
fputc ('\n', file);
return true;
}
/* V850 ELF uses four common sections. One is the usual one, and the
others are for (small) objects in one of the special data areas:
small, tiny and zero. All the objects are kept together, and then
referenced via the gp register, the ep register or the r0 register
respectively, which yields smaller, faster assembler code. This
approach is copied from elf32-mips.c. */
static asection v850_elf_scom_section;
static asymbol v850_elf_scom_symbol;
static asymbol * v850_elf_scom_symbol_ptr;
static asection v850_elf_tcom_section;
static asymbol v850_elf_tcom_symbol;
static asymbol * v850_elf_tcom_symbol_ptr;
static asection v850_elf_zcom_section;
static asymbol v850_elf_zcom_symbol;
static asymbol * v850_elf_zcom_symbol_ptr;
/* Given a BFD section, try to locate the corresponding ELF section
index. */
static boolean
v850_elf_section_from_bfd_section (abfd, hdr, sec, retval)
bfd * abfd;
Elf32_Internal_Shdr * hdr;
asection * sec;
int * retval;
{
if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
{
*retval = SHN_V850_SCOMMON;
return true;
}
if (strcmp (bfd_get_section_name (abfd, sec), ".tcommon") == 0)
{
*retval = SHN_V850_TCOMMON;
return true;
}
if (strcmp (bfd_get_section_name (abfd, sec), ".zcommon") == 0)
{
*retval = SHN_V850_ZCOMMON;
return true;
}
return false;
}
/* Handle the special V850 section numbers that a symbol may use. */
static void
v850_elf_symbol_processing (abfd, asym)
bfd * abfd;
asymbol * asym;
{
elf_symbol_type * elfsym = (elf_symbol_type *) asym;
switch (elfsym->internal_elf_sym.st_shndx)
{
case SHN_V850_SCOMMON:
if (v850_elf_scom_section.name == NULL)
{
/* Initialize the small common section. */
v850_elf_scom_section.name = ".scommon";
v850_elf_scom_section.flags = SEC_IS_COMMON | SEC_ALLOC | SEC_DATA;
v850_elf_scom_section.output_section = & v850_elf_scom_section;
v850_elf_scom_section.symbol = & v850_elf_scom_symbol;
v850_elf_scom_section.symbol_ptr_ptr = & v850_elf_scom_symbol_ptr;
v850_elf_scom_symbol.name = ".scommon";
v850_elf_scom_symbol.flags = BSF_SECTION_SYM;
v850_elf_scom_symbol.section = & v850_elf_scom_section;
v850_elf_scom_symbol_ptr = & v850_elf_scom_symbol;
}
asym->section = & v850_elf_scom_section;
asym->value = elfsym->internal_elf_sym.st_size;
break;
case SHN_V850_TCOMMON:
if (v850_elf_tcom_section.name == NULL)
{
/* Initialize the tcommon section. */
v850_elf_tcom_section.name = ".tcommon";
v850_elf_tcom_section.flags = SEC_IS_COMMON;
v850_elf_tcom_section.output_section = & v850_elf_tcom_section;
v850_elf_tcom_section.symbol = & v850_elf_tcom_symbol;
v850_elf_tcom_section.symbol_ptr_ptr = & v850_elf_tcom_symbol_ptr;
v850_elf_tcom_symbol.name = ".tcommon";
v850_elf_tcom_symbol.flags = BSF_SECTION_SYM;
v850_elf_tcom_symbol.section = & v850_elf_tcom_section;
v850_elf_tcom_symbol_ptr = & v850_elf_tcom_symbol;
}
asym->section = & v850_elf_tcom_section;
asym->value = elfsym->internal_elf_sym.st_size;
break;
case SHN_V850_ZCOMMON:
if (v850_elf_zcom_section.name == NULL)
{
/* Initialize the zcommon section. */
v850_elf_zcom_section.name = ".zcommon";
v850_elf_zcom_section.flags = SEC_IS_COMMON;
v850_elf_zcom_section.output_section = & v850_elf_zcom_section;
v850_elf_zcom_section.symbol = & v850_elf_zcom_symbol;
v850_elf_zcom_section.symbol_ptr_ptr = & v850_elf_zcom_symbol_ptr;
v850_elf_zcom_symbol.name = ".zcommon";
v850_elf_zcom_symbol.flags = BSF_SECTION_SYM;
v850_elf_zcom_symbol.section = & v850_elf_zcom_section;
v850_elf_zcom_symbol_ptr = & v850_elf_zcom_symbol;
}
asym->section = & v850_elf_zcom_section;
asym->value = elfsym->internal_elf_sym.st_size;
break;
}
}
/* Hook called by the linker routine which adds symbols from an object
file. We must handle the special MIPS section numbers here. */
/*ARGSUSED*/
static boolean
v850_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
bfd * abfd;
struct bfd_link_info * info;
const Elf_Internal_Sym * sym;
const char ** namep;
flagword * flagsp;
asection ** secp;
bfd_vma * valp;
{
switch (sym->st_shndx)
{
case SHN_V850_SCOMMON:
*secp = bfd_make_section_old_way (abfd, ".scommon");
(*secp)->flags |= SEC_IS_COMMON;
*valp = sym->st_size;
break;
case SHN_V850_TCOMMON:
*secp = bfd_make_section_old_way (abfd, ".tcommon");
(*secp)->flags |= SEC_IS_COMMON;
*valp = sym->st_size;
break;
case SHN_V850_ZCOMMON:
*secp = bfd_make_section_old_way (abfd, ".zcommon");
(*secp)->flags |= SEC_IS_COMMON;
*valp = sym->st_size;
break;
}
return true;
}
/*ARGSIGNORED*/
static boolean
v850_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec)
bfd * abfd;
struct bfd_link_info * info;
const char * name;
Elf_Internal_Sym * sym;
asection * input_sec;
{
/* If we see a common symbol, which implies a relocatable link, then
if a symbol was in a special common section in an input file, mark
it as a special common in the output file. */
if (sym->st_shndx == SHN_COMMON)
{
if (strcmp (input_sec->name, ".scommon") == 0)
sym->st_shndx = SHN_V850_SCOMMON;
else if (strcmp (input_sec->name, ".tcommon") == 0)
sym->st_shndx = SHN_V850_TCOMMON;
else if (strcmp (input_sec->name, ".zcommon") == 0)
sym->st_shndx = SHN_V850_ZCOMMON;
}
return true;
}
static boolean
v850_elf_section_from_shdr (abfd, hdr, name)
bfd * abfd;
Elf_Internal_Shdr * hdr;
char * name;
{
/* There ought to be a place to keep ELF backend specific flags, but
at the moment there isn't one. We just keep track of the
sections by their name, instead. */
if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
return false;
switch (hdr->sh_type)
{
case SHT_V850_SCOMMON:
case SHT_V850_TCOMMON:
case SHT_V850_ZCOMMON:
if (! bfd_set_section_flags (abfd, hdr->bfd_section,
(bfd_get_section_flags (abfd,
hdr->bfd_section)
| SEC_IS_COMMON)))
return false;
}
return true;
}
/* Set the correct type for a V850 ELF section. We do this by the
section name, which is a hack, but ought to work. */
static boolean
v850_elf_fake_sections (abfd, hdr, sec)
bfd * abfd;
Elf32_Internal_Shdr * hdr;
asection * sec;
{
register const char * name;
name = bfd_get_section_name (abfd, sec);
if (strcmp (name, ".scommon") == 0)
{
hdr->sh_type = SHT_V850_SCOMMON;
}
else if (strcmp (name, ".tcommon") == 0)
{
hdr->sh_type = SHT_V850_TCOMMON;
}
else if (strcmp (name, ".zcommon") == 0)
hdr->sh_type = SHT_V850_ZCOMMON;
return true;
}
#define TARGET_LITTLE_SYM bfd_elf32_v850_vec
#define TARGET_LITTLE_NAME "elf32-v850"
#define ELF_ARCH bfd_arch_v850
#define ELF_MACHINE_CODE EM_CYGNUS_V850
#define ELF_MAXPAGESIZE 0x1000
#define elf_info_to_howto 0
#define elf_info_to_howto_rel v850_elf_info_to_howto_rel
#define elf_backend_check_relocs v850_elf_check_relocs
#define elf_backend_relocate_section v850_elf_relocate_section
#define elf_backend_object_p v850_elf_object_p
#define elf_backend_final_write_processing v850_elf_final_write_processing
#define elf_backend_section_from_bfd_section v850_elf_section_from_bfd_section
#define elf_backend_symbol_processing v850_elf_symbol_processing
#define elf_backend_add_symbol_hook v850_elf_add_symbol_hook
#define elf_backend_link_output_symbol_hook v850_elf_link_output_symbol_hook
#define elf_backend_section_from_shdr v850_elf_section_from_shdr
#define elf_backend_fake_sections v850_elf_fake_sections
#define bfd_elf32_bfd_is_local_label_name v850_elf_is_local_label_name
#define bfd_elf32_bfd_reloc_type_lookup v850_elf_reloc_type_lookup
#define bfd_elf32_bfd_copy_private_bfd_data v850_elf_copy_private_bfd_data
#define bfd_elf32_bfd_merge_private_bfd_data v850_elf_merge_private_bfd_data
#define bfd_elf32_bfd_set_private_flags v850_elf_set_private_flags
#define bfd_elf32_bfd_print_private_bfd_data v850_elf_print_private_bfd_data
#define elf_symbol_leading_char '_'
#include "elf32-target.h"