NetBSD/sys/dev/cardbus/cardbus.c

1242 lines
31 KiB
C

/* $NetBSD: cardbus.c,v 1.107 2010/03/04 22:37:38 dyoung Exp $ */
/*
* Copyright (c) 1997, 1998, 1999 and 2000
* HAYAKAWA Koichi. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cardbus.c,v 1.107 2010/03/04 22:37:38 dyoung Exp $");
#include "opt_cardbus.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/proc.h>
#include <sys/reboot.h> /* for AB_* needed by bootverbose */
#include <sys/bus.h>
#include <dev/cardbus/cardbusvar.h>
#include <dev/pci/pcidevs.h>
#include <dev/cardbus/cardbus_exrom.h>
#include <dev/pci/pcivar.h> /* XXX */
#include <dev/pci/pcireg.h> /* XXX */
#include <dev/pcmcia/pcmciareg.h>
#include "locators.h"
#if defined CARDBUS_DEBUG
#define STATIC
#define DPRINTF(a) printf a
#else
#define STATIC static
#define DPRINTF(a)
#endif
STATIC void cardbusattach(device_t, device_t, void *);
STATIC int cardbusdetach(device_t, int);
STATIC int cardbusmatch(device_t, cfdata_t, void *);
int cardbus_rescan(device_t, const char *, const int *);
void cardbus_childdetached(device_t, device_t);
static int cardbusprint(void *, const char *);
typedef void (*tuple_decode_func)(u_int8_t*, int, void*);
static int decode_tuples(u_int8_t *, int, tuple_decode_func, void*);
#ifdef CARDBUS_DEBUG
static void print_tuple(u_int8_t*, int, void*);
#endif
static int cardbus_read_tuples(struct cardbus_attach_args *,
pcireg_t, u_int8_t *, size_t);
static void enable_function(struct cardbus_softc *, int, int);
static void disable_function(struct cardbus_softc *, int);
static bool cardbus_child_register(device_t);
CFATTACH_DECL3_NEW(cardbus, sizeof(struct cardbus_softc),
cardbusmatch, cardbusattach, cardbusdetach, NULL,
cardbus_rescan, cardbus_childdetached, DVF_DETACH_SHUTDOWN);
#ifndef __NetBSD_Version__
struct cfdriver cardbus_cd = {
NULL, "cardbus", DV_DULL
};
#endif
STATIC int
cardbusmatch(device_t parent, cfdata_t cf, void *aux)
{
return (1);
}
STATIC void
cardbusattach(device_t parent, device_t self, void *aux)
{
struct cardbus_softc *sc = device_private(self);
struct cbslot_attach_args *cba = aux;
sc->sc_dev = self;
sc->sc_bus = cba->cba_bus;
sc->sc_intrline = cba->cba_intrline;
sc->sc_cacheline = cba->cba_cacheline;
sc->sc_max_lattimer = MIN(0xf8, cba->cba_max_lattimer);
aprint_naive("\n");
aprint_normal(": bus %d", sc->sc_bus);
if (bootverbose)
aprint_normal(" cacheline 0x%x, lattimer 0x%x",
sc->sc_cacheline, sc->sc_max_lattimer);
aprint_normal("\n");
sc->sc_iot = cba->cba_iot; /* CardBus I/O space tag */
sc->sc_memt = cba->cba_memt; /* CardBus MEM space tag */
sc->sc_dmat = cba->cba_dmat; /* DMA tag */
sc->sc_cc = cba->cba_cc;
sc->sc_cf = cba->cba_cf;
sc->sc_rbus_iot = cba->cba_rbus_iot;
sc->sc_rbus_memt = cba->cba_rbus_memt;
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
}
STATIC int
cardbusdetach(device_t self, int flags)
{
int rc;
if ((rc = config_detach_children(self, flags)) != 0)
return rc;
pmf_device_deregister(self);
return 0;
}
static int
cardbus_read_tuples(struct cardbus_attach_args *ca, pcireg_t cis_ptr,
u_int8_t *tuples, size_t len)
{
struct cardbus_softc *sc = ca->ca_ct->ct_sc;
cardbus_chipset_tag_t cc = ca->ca_ct->ct_cc;
cardbus_function_tag_t cf = ca->ca_ct->ct_cf;
pcitag_t tag = ca->ca_tag;
pcireg_t command;
bus_space_tag_t bar_tag;
bus_space_handle_t bar_memh;
bus_size_t bar_size;
bus_addr_t bar_addr;
pcireg_t reg;
int found = 0;
int cardbus_space = cis_ptr & CARDBUS_CIS_ASIMASK;
int i, j;
memset(tuples, 0, len);
cis_ptr = cis_ptr & CARDBUS_CIS_ADDRMASK;
switch (cardbus_space) {
case CARDBUS_CIS_ASI_TUPLE:
DPRINTF(("%s: reading CIS data from configuration space\n",
device_xname(sc->sc_dev)));
for (i = cis_ptr, j = 0; i < 0xff; i += 4) {
u_int32_t e = (*cf->cardbus_conf_read)(cc, tag, i);
tuples[j] = 0xff & e;
e >>= 8;
tuples[j + 1] = 0xff & e;
e >>= 8;
tuples[j + 2] = 0xff & e;
e >>= 8;
tuples[j + 3] = 0xff & e;
j += 4;
}
found++;
break;
case CARDBUS_CIS_ASI_BAR0:
case CARDBUS_CIS_ASI_BAR1:
case CARDBUS_CIS_ASI_BAR2:
case CARDBUS_CIS_ASI_BAR3:
case CARDBUS_CIS_ASI_BAR4:
case CARDBUS_CIS_ASI_BAR5:
case CARDBUS_CIS_ASI_ROM:
if (cardbus_space == CARDBUS_CIS_ASI_ROM) {
reg = CARDBUS_ROM_REG;
DPRINTF(("%s: reading CIS data from ROM\n",
device_xname(sc->sc_dev)));
} else {
reg = CARDBUS_CIS_ASI_BAR(cardbus_space);
DPRINTF(("%s: reading CIS data from BAR%d\n",
device_xname(sc->sc_dev), cardbus_space - 1));
}
/*
* XXX zero register so mapreg_map doesn't get confused by old
* contents.
*/
cardbus_conf_write(cc, cf, tag, reg, 0);
if (Cardbus_mapreg_map(ca->ca_ct, reg,
PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
0, &bar_tag, &bar_memh, &bar_addr, &bar_size)) {
aprint_error_dev(sc->sc_dev, "failed to map memory\n");
return (1);
}
aprint_debug_dev(sc->sc_dev, "mapped %ju bytes at 0x%jx\n",
(uintmax_t)bar_size, (uintmax_t)bar_addr);
if (cardbus_space == CARDBUS_CIS_ASI_ROM) {
pcireg_t exrom;
int save;
struct cardbus_rom_image_head rom_image;
struct cardbus_rom_image *p;
save = splhigh();
/* enable rom address decoder */
exrom = cardbus_conf_read(cc, cf, tag, reg);
cardbus_conf_write(cc, cf, tag, reg, exrom | 1);
command = cardbus_conf_read(cc, cf, tag,
PCI_COMMAND_STATUS_REG);
cardbus_conf_write(cc, cf, tag,
PCI_COMMAND_STATUS_REG,
command | PCI_COMMAND_MEM_ENABLE);
if (cardbus_read_exrom(bar_tag, bar_memh, &rom_image))
goto out;
SIMPLEQ_FOREACH(p, &rom_image, next) {
if (p->rom_image ==
CARDBUS_CIS_ASI_ROM_IMAGE(cis_ptr)) {
bus_space_read_region_1(p->romt,
p->romh, CARDBUS_CIS_ADDR(cis_ptr),
tuples, MIN(p->image_size, len));
found++;
break;
}
}
while ((p = SIMPLEQ_FIRST(&rom_image)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&rom_image, next);
free(p, M_DEVBUF);
}
out:
exrom = cardbus_conf_read(cc, cf, tag, reg);
cardbus_conf_write(cc, cf, tag, reg, exrom & ~1);
splx(save);
} else {
command = cardbus_conf_read(cc, cf, tag,
PCI_COMMAND_STATUS_REG);
cardbus_conf_write(cc, cf, tag,
PCI_COMMAND_STATUS_REG,
command | PCI_COMMAND_MEM_ENABLE);
/* XXX byte order? */
bus_space_read_region_1(bar_tag, bar_memh,
cis_ptr, tuples,
MIN(bar_size - MIN(bar_size, cis_ptr), len));
found++;
}
command = cardbus_conf_read(cc, cf, tag,
PCI_COMMAND_STATUS_REG);
cardbus_conf_write(cc, cf, tag, PCI_COMMAND_STATUS_REG,
command & ~PCI_COMMAND_MEM_ENABLE);
cardbus_conf_write(cc, cf, tag, reg, 0);
Cardbus_mapreg_unmap(ca->ca_ct, reg, bar_tag, bar_memh,
bar_size);
break;
#ifdef DIAGNOSTIC
default:
panic("%s: bad CIS space (%d)", device_xname(sc->sc_dev),
cardbus_space);
#endif
}
return (!found);
}
static void
parse_tuple(u_int8_t *tuple, int len, void *data)
{
struct cardbus_cis_info *cis = data;
char *p;
int i, bar_index;
switch (tuple[0]) {
case PCMCIA_CISTPL_MANFID:
if (tuple[1] != 4) {
DPRINTF(("%s: wrong length manufacturer id (%d)\n",
__func__, tuple[1]));
break;
}
cis->manufacturer = tuple[2] | (tuple[3] << 8);
cis->product = tuple[4] | (tuple[5] << 8);
break;
case PCMCIA_CISTPL_VERS_1:
memcpy(cis->cis1_info_buf, tuple + 2, tuple[1]);
i = 0;
p = cis->cis1_info_buf + 2;
while (i <
sizeof(cis->cis1_info) / sizeof(cis->cis1_info[0])) {
if (p >= cis->cis1_info_buf + tuple[1] || *p == '\xff')
break;
cis->cis1_info[i++] = p;
while (*p != '\0' && *p != '\xff')
p++;
if (*p == '\0')
p++;
}
break;
case PCMCIA_CISTPL_BAR:
if (tuple[1] != 6) {
DPRINTF(("%s: BAR with short length (%d)\n",
__func__, tuple[1]));
break;
}
bar_index = tuple[2] & 7;
if (bar_index == 0) {
DPRINTF(("%s: invalid ASI in BAR tuple\n", __func__));
break;
}
bar_index--;
cis->bar[bar_index].flags = tuple[2];
cis->bar[bar_index].size =
(tuple[4] << 0) |
(tuple[5] << 8) |
(tuple[6] << 16) |
(tuple[7] << 24);
break;
case PCMCIA_CISTPL_FUNCID:
cis->funcid = tuple[2];
break;
case PCMCIA_CISTPL_FUNCE:
switch (cis->funcid) {
case PCMCIA_FUNCTION_SERIAL:
if (tuple[1] >= 2 &&
/* XXX PCMCIA_TPLFE_TYPE_SERIAL_??? */
tuple[2] == 0) {
cis->funce.serial.uart_type = tuple[3] & 0x1f;
cis->funce.serial.uart_present = 1;
}
break;
case PCMCIA_FUNCTION_NETWORK:
if (tuple[1] >= 8 &&
tuple[2] == PCMCIA_TPLFE_TYPE_LAN_NID) {
if (tuple[3] >
sizeof(cis->funce.network.netid)) {
DPRINTF(("%s: unknown network id type "
"(len = %d)\n",
__func__, tuple[3]));
} else {
cis->funce.network.netid_present = 1;
memcpy(cis->funce.network.netid,
tuple + 4, tuple[3]);
}
}
break;
}
break;
}
}
/*
* int cardbus_attach_card(struct cardbus_softc *sc)
*
* This function attaches the card on the slot: turns on power,
* reads and analyses tuple, sets configuration index.
*
* This function returns the number of recognised device functions.
* If no functions are recognised, return 0.
*/
int
cardbus_attach_card(struct cardbus_softc *sc)
{
cardbus_chipset_tag_t cc;
cardbus_function_tag_t cf;
int cdstatus;
static int wildcard[CARDBUSCF_NLOCS] = {
CARDBUSCF_FUNCTION_DEFAULT
};
cc = sc->sc_cc;
cf = sc->sc_cf;
DPRINTF(("cardbus_attach_card: cb%d start\n",
device_unit(sc->sc_dev)));
/* inspect initial voltage */
if ((cdstatus = (*cf->cardbus_ctrl)(cc, CARDBUS_CD)) == 0) {
DPRINTF(("%s: no CardBus card on cb%d\n", __func__,
device_unit(sc->sc_dev)));
return (0);
}
device_pmf_driver_set_child_register(sc->sc_dev, cardbus_child_register);
cardbus_rescan(sc->sc_dev, "cardbus", wildcard);
return (1); /* XXX */
}
int
cardbus_rescan(device_t self, const char *ifattr,
const int *locators)
{
struct cardbus_softc *sc = device_private(self);
cardbus_chipset_tag_t cc;
cardbus_function_tag_t cf;
pcitag_t tag;
pcireg_t id, class, cis_ptr;
pcireg_t bhlc, icr, lattimer;
int cdstatus;
int function, nfunction;
device_t csc;
cardbus_devfunc_t ct;
cc = sc->sc_cc;
cf = sc->sc_cf;
/* inspect initial voltage */
if ((cdstatus = (*cf->cardbus_ctrl)(cc, CARDBUS_CD)) == 0) {
DPRINTF(("%s: no CardBus card on cb%d\n", __func__,
device_unit(sc->sc_dev)));
return (0);
}
/*
* XXX use fake function 8 to keep power on during whole
* configuration.
*/
enable_function(sc, cdstatus, 8);
function = 0;
tag = cardbus_make_tag(cc, cf, sc->sc_bus, function);
/*
* Wait until power comes up. Maxmum 500 ms.
*
* XXX What is this for? The bridge driver ought to have waited
* XXX already.
*/
{
int i;
for (i = 0; i < 5; ++i) {
id = cardbus_conf_read(cc, cf, tag, PCI_ID_REG);
if (id != 0xffffffff && id != 0) {
break;
}
if (cold) { /* before kernel thread invoked */
delay(100 * 1000);
} else { /* thread context */
if (tsleep((void *)sc, PCATCH, "cardbus",
hz / 10) != EWOULDBLOCK) {
break;
}
}
}
aprint_debug_dev(self, "id reg valid in %d iterations\n", i);
if (i == 5) {
return (EIO);
}
}
bhlc = cardbus_conf_read(cc, cf, tag, PCI_BHLC_REG);
DPRINTF(("%s bhlc 0x%08x -> ", device_xname(sc->sc_dev), bhlc));
nfunction = PCI_HDRTYPE_MULTIFN(bhlc) ? 8 : 1;
for (function = 0; function < nfunction; function++) {
struct cardbus_attach_args ca;
int locs[CARDBUSCF_NLOCS];
if (locators[CARDBUSCF_FUNCTION] !=
CARDBUSCF_FUNCTION_DEFAULT &&
locators[CARDBUSCF_FUNCTION] != function)
continue;
if (sc->sc_funcs[function])
continue;
tag = cardbus_make_tag(cc, cf, sc->sc_bus, function);
id = cardbus_conf_read(cc, cf, tag, PCI_ID_REG);
class = cardbus_conf_read(cc, cf, tag, PCI_CLASS_REG);
cis_ptr = cardbus_conf_read(cc, cf, tag, CARDBUS_CIS_REG);
/* Invalid vendor ID value? */
if (PCI_VENDOR(id) == PCI_VENDOR_INVALID) {
continue;
}
DPRINTF(("cardbus_attach_card: "
"Vendor 0x%x, Product 0x%x, CIS 0x%x\n",
PCI_VENDOR(id), PCI_PRODUCT(id), cis_ptr));
enable_function(sc, cdstatus, function);
/* clean up every BAR */
cardbus_conf_write(cc, cf, tag, PCI_BAR0, 0);
cardbus_conf_write(cc, cf, tag, PCI_BAR1, 0);
cardbus_conf_write(cc, cf, tag, PCI_BAR2, 0);
cardbus_conf_write(cc, cf, tag, PCI_BAR3, 0);
cardbus_conf_write(cc, cf, tag, PCI_BAR4, 0);
cardbus_conf_write(cc, cf, tag, PCI_BAR5, 0);
cardbus_conf_write(cc, cf, tag, CARDBUS_ROM_REG, 0);
/* set initial latency and cacheline size */
bhlc = cardbus_conf_read(cc, cf, tag, PCI_BHLC_REG);
icr = cardbus_conf_read(cc, cf, tag, PCI_INTERRUPT_REG);
DPRINTF(("%s func%d icr 0x%08x bhlc 0x%08x -> ",
device_xname(sc->sc_dev), function, icr, bhlc));
bhlc &= ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT);
bhlc |= (sc->sc_cacheline & PCI_CACHELINE_MASK) <<
PCI_CACHELINE_SHIFT;
/*
* Set the initial value of the Latency Timer.
*
* While a PCI device owns the bus, its Latency
* Timer counts down bus cycles from its initial
* value to 0. Minimum Grant tells for how long
* the device wants to own the bus once it gets
* access, in units of 250ns.
*
* On a 33 MHz bus, there are 8 cycles per 250ns.
* So I multiply the Minimum Grant by 8 to find
* out the initial value of the Latency Timer.
*
* Avoid setting a Latency Timer less than 0x10,
* since the old code did not do that.
*/
lattimer =
MIN(sc->sc_max_lattimer, MAX(0x10, 8 * PCI_MIN_GNT(icr)));
if (PCI_LATTIMER(bhlc) < lattimer) {
bhlc &= ~(PCI_LATTIMER_MASK << PCI_LATTIMER_SHIFT);
bhlc |= (lattimer << PCI_LATTIMER_SHIFT);
}
cardbus_conf_write(cc, cf, tag, PCI_BHLC_REG, bhlc);
bhlc = cardbus_conf_read(cc, cf, tag, PCI_BHLC_REG);
DPRINTF(("0x%08x\n", bhlc));
/*
* We need to allocate the ct here, since we might
* need it when reading the CIS
*/
if ((ct = malloc(sizeof(struct cardbus_devfunc),
M_DEVBUF, M_NOWAIT)) == NULL) {
panic("no room for cardbus_tag");
}
ct->ct_bhlc = bhlc;
ct->ct_cc = sc->sc_cc;
ct->ct_cf = sc->sc_cf;
ct->ct_bus = sc->sc_bus;
ct->ct_func = function;
ct->ct_sc = sc;
sc->sc_funcs[function] = ct;
memset(&ca, 0, sizeof(ca));
ca.ca_ct = ct;
ca.ca_iot = sc->sc_iot;
ca.ca_memt = sc->sc_memt;
ca.ca_dmat = sc->sc_dmat;
ca.ca_rbus_iot = sc->sc_rbus_iot;
ca.ca_rbus_memt= sc->sc_rbus_memt;
ca.ca_tag = tag;
ca.ca_bus = sc->sc_bus;
ca.ca_function = function;
ca.ca_id = id;
ca.ca_class = class;
ca.ca_intrline = sc->sc_intrline;
if (cis_ptr != 0) {
#define TUPLESIZE 2048
u_int8_t *tuple = malloc(TUPLESIZE, M_DEVBUF, M_WAITOK);
if (cardbus_read_tuples(&ca, cis_ptr,
tuple, TUPLESIZE)) {
printf("cardbus_attach_card: "
"failed to read CIS\n");
} else {
#ifdef CARDBUS_DEBUG
decode_tuples(tuple, TUPLESIZE,
print_tuple, NULL);
#endif
decode_tuples(tuple, TUPLESIZE,
parse_tuple, &ca.ca_cis);
}
free(tuple, M_DEVBUF);
}
locs[CARDBUSCF_FUNCTION] = function;
if ((csc = config_found_sm_loc(sc->sc_dev, "cardbus", locs,
&ca, cardbusprint, config_stdsubmatch)) == NULL) {
/* do not match */
disable_function(sc, function);
sc->sc_funcs[function] = NULL;
free(ct, M_DEVBUF);
} else {
/* found */
ct->ct_device = csc;
}
}
/*
* XXX power down pseudo function 8 (this will power down the card
* if no functions were attached).
*/
disable_function(sc, 8);
return (0);
}
static int
cardbusprint(void *aux, const char *pnp)
{
struct cardbus_attach_args *ca = aux;
char devinfo[256];
int i;
if (pnp) {
pci_devinfo(ca->ca_id, ca->ca_class, 1, devinfo,
sizeof(devinfo));
for (i = 0; i < 4; i++) {
if (ca->ca_cis.cis1_info[i] == NULL)
break;
if (i)
aprint_normal(", ");
aprint_normal("%s", ca->ca_cis.cis1_info[i]);
}
aprint_verbose("%s(manufacturer 0x%x, product 0x%x)",
i ? " " : "",
ca->ca_cis.manufacturer, ca->ca_cis.product);
aprint_normal(" %s at %s", devinfo, pnp);
}
aprint_normal(" function %d", ca->ca_function);
return (UNCONF);
}
/*
* void cardbus_detach_card(struct cardbus_softc *sc)
*
* This function detaches the card on the slot: detach device data
* structure and turns off the power.
*
* This function must not be called under interrupt context.
*/
void
cardbus_detach_card(struct cardbus_softc *sc)
{
int f;
struct cardbus_devfunc *ct;
for (f = 0; f < 8; f++) {
ct = sc->sc_funcs[f];
if (!ct)
continue;
DPRINTF(("%s: detaching %s\n", device_xname(sc->sc_dev),
device_xname(ct->ct_device)));
/* call device detach function */
if (config_detach(ct->ct_device, 0) != 0) {
aprint_error_dev(sc->sc_dev,
"cannot detach dev %s, function %d\n",
device_xname(ct->ct_device), ct->ct_func);
}
}
sc->sc_poweron_func = 0;
(*sc->sc_cf->cardbus_power)(sc->sc_cc,
CARDBUS_VCC_0V | CARDBUS_VPP_0V);
}
void
cardbus_childdetached(device_t self, device_t child)
{
struct cardbus_softc *sc = device_private(self);
struct cardbus_devfunc *ct;
ct = sc->sc_funcs[device_locator(child, CARDBUSCF_FUNCTION)];
KASSERT(ct->ct_device == child);
sc->sc_poweron_func &= ~(1 << ct->ct_func);
sc->sc_funcs[ct->ct_func] = NULL;
free(ct, M_DEVBUF);
}
void *
Cardbus_intr_establish(cardbus_devfunc_t ct,
cardbus_intr_line_t irq, int level, int (*func)(void *), void *arg)
{
return cardbus_intr_establish(ct->ct_cc, ct->ct_cf, irq, level, func,
arg);
}
/*
* void *cardbus_intr_establish(cc, cf, irq, level, func, arg)
* Interrupt handler of pccard.
* args:
* cardbus_chipset_tag_t *cc
* int irq:
*/
void *
cardbus_intr_establish(cardbus_chipset_tag_t cc, cardbus_function_tag_t cf,
cardbus_intr_line_t irq, int level, int (*func)(void *), void *arg)
{
DPRINTF(("- cardbus_intr_establish: irq %d\n", irq));
return ((*cf->cardbus_intr_establish)(cc, irq, level, func, arg));
}
void
Cardbus_intr_disestablish(cardbus_devfunc_t ct, void *handler)
{
cardbus_intr_disestablish(ct->ct_cc, ct->ct_cf, handler);
}
/*
* void cardbus_intr_disestablish(cc, cf, handler)
* Interrupt handler of pccard.
* args:
* cardbus_chipset_tag_t *cc
*/
void
cardbus_intr_disestablish(cardbus_chipset_tag_t cc, cardbus_function_tag_t cf,
void *handler)
{
DPRINTF(("- pccard_intr_disestablish\n"));
(*cf->cardbus_intr_disestablish)(cc, handler);
}
/*
* XXX this should be merged with cardbus_function_{enable,disable},
* but we don't have a ct when these functions are called.
*/
static void
enable_function(struct cardbus_softc *sc, int cdstatus, int function)
{
if (sc->sc_poweron_func == 0) {
/* switch to 3V and/or wait for power to stabilize */
if (cdstatus & CARDBUS_3V_CARD) {
/*
* sc_poweron_func must be substituted before
* entering sleep, in order to avoid turn on
* power twice.
*/
sc->sc_poweron_func |= (1 << function);
(*sc->sc_cf->cardbus_power)(sc->sc_cc, CARDBUS_VCC_3V);
} else {
/* No cards other than 3.3V cards. */
return;
}
(*sc->sc_cf->cardbus_ctrl)(sc->sc_cc, CARDBUS_RESET);
}
sc->sc_poweron_func |= (1 << function);
}
static void
disable_function(struct cardbus_softc *sc, int function)
{
bool powerdown;
cardbus_devfunc_t ct;
device_t dv;
int i;
sc->sc_poweron_func &= ~(1 << function);
if (sc->sc_poweron_func != 0)
return;
for (i = 0; i < __arraycount(sc->sc_funcs); i++) {
if ((ct = sc->sc_funcs[i]) == NULL)
continue;
dv = ct->ct_device;
if (prop_dictionary_get_bool(device_properties(dv),
"pmf-powerdown", &powerdown) && !powerdown)
return;
}
/* power-off because no functions are enabled */
(*sc->sc_cf->cardbus_power)(sc->sc_cc, CARDBUS_VCC_0V);
}
/*
* int cardbus_function_enable(struct cardbus_softc *sc, int func)
*
* This function enables a function on a card. When no power is
* applied on the card, power will be applied on it.
*/
int
cardbus_function_enable(struct cardbus_softc *sc, int func)
{
cardbus_chipset_tag_t cc = sc->sc_cc;
cardbus_function_tag_t cf = sc->sc_cf;
cardbus_devfunc_t ct;
pcireg_t command;
pcitag_t tag;
DPRINTF(("entering cardbus_function_enable... "));
/* entering critical area */
/* XXX: sc_vold should be used */
enable_function(sc, CARDBUS_3V_CARD, func);
/* exiting critical area */
tag = cardbus_make_tag(cc, cf, sc->sc_bus, func);
command = cardbus_conf_read(cc, cf, tag, PCI_COMMAND_STATUS_REG);
command |= (PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_IO_ENABLE |
PCI_COMMAND_MASTER_ENABLE); /* XXX: good guess needed */
cardbus_conf_write(cc, cf, tag, PCI_COMMAND_STATUS_REG, command);
if ((ct = sc->sc_funcs[func]) != NULL)
Cardbus_conf_write(ct, tag, PCI_BHLC_REG, ct->ct_bhlc);
DPRINTF(("%x\n", sc->sc_poweron_func));
return (0);
}
/*
* int cardbus_function_disable(struct cardbus_softc *, int func)
*
* This function disable a function on a card. When no functions are
* enabled, it turns off the power.
*/
int
cardbus_function_disable(struct cardbus_softc *sc, int func)
{
DPRINTF(("entering cardbus_function_disable... "));
disable_function(sc, func);
return (0);
}
/*
* int cardbus_get_capability(cardbus_chipset_tag_t cc,
* cardbus_function_tag_t cf, pcitag_t tag, int capid, int *offset,
* pcireg_t *value)
*
* Find the specified PCI capability.
*/
int
cardbus_get_capability(cardbus_chipset_tag_t cc, cardbus_function_tag_t cf,
pcitag_t tag, int capid, int *offset, pcireg_t *value)
{
pcireg_t reg;
unsigned int ofs;
reg = cardbus_conf_read(cc, cf, tag, PCI_COMMAND_STATUS_REG);
if (!(reg & PCI_STATUS_CAPLIST_SUPPORT))
return (0);
ofs = PCI_CAPLIST_PTR(cardbus_conf_read(cc, cf, tag,
PCI_CAPLISTPTR_REG));
while (ofs != 0) {
#ifdef DIAGNOSTIC
if ((ofs & 3) || (ofs < 0x40))
panic("cardbus_get_capability");
#endif
reg = cardbus_conf_read(cc, cf, tag, ofs);
if (PCI_CAPLIST_CAP(reg) == capid) {
if (offset)
*offset = ofs;
if (value)
*value = reg;
return (1);
}
ofs = PCI_CAPLIST_NEXT(reg);
}
return (0);
}
/*
* below this line, there are some functions for decoding tuples.
* They should go out from this file.
*/
static u_int8_t *
decode_tuple(u_int8_t *, u_int8_t *, tuple_decode_func, void *);
static int
decode_tuples(u_int8_t *tuple, int buflen, tuple_decode_func func, void *data)
{
u_int8_t *tp = tuple;
if (PCMCIA_CISTPL_LINKTARGET != *tuple) {
DPRINTF(("WRONG TUPLE: 0x%x\n", *tuple));
return (0);
}
while ((tp = decode_tuple(tp, tuple + buflen, func, data)) != NULL)
;
return (1);
}
static u_int8_t *
decode_tuple(u_int8_t *tuple, u_int8_t *end,
tuple_decode_func func, void *data)
{
u_int8_t type;
u_int8_t len;
type = tuple[0];
switch (type) {
case PCMCIA_CISTPL_NULL:
case PCMCIA_CISTPL_END:
len = 1;
break;
default:
if (tuple + 2 > end)
return (NULL);
len = tuple[1] + 2;
break;
}
if (tuple + len > end)
return (NULL);
(*func)(tuple, len, data);
if (type == PCMCIA_CISTPL_END || tuple + len == end)
return (NULL);
return (tuple + len);
}
/*
* XXX: this is another reason why this code should be shared with PCI.
*/
static int
cardbus_get_powerstate_int(cardbus_devfunc_t ct, pcitag_t tag,
pcireg_t *state, int offset)
{
pcireg_t value, now;
cardbus_chipset_tag_t cc = ct->ct_cc;
cardbus_function_tag_t cf = ct->ct_cf;
value = cardbus_conf_read(cc, cf, tag, offset + PCI_PMCSR);
now = value & PCI_PMCSR_STATE_MASK;
switch (now) {
case PCI_PMCSR_STATE_D0:
case PCI_PMCSR_STATE_D1:
case PCI_PMCSR_STATE_D2:
case PCI_PMCSR_STATE_D3:
*state = now;
return 0;
default:
return EINVAL;
}
}
int
cardbus_get_powerstate(cardbus_devfunc_t ct, pcitag_t tag, pcireg_t *state)
{
cardbus_chipset_tag_t cc = ct->ct_cc;
cardbus_function_tag_t cf = ct->ct_cf;
int offset;
pcireg_t value;
if (!cardbus_get_capability(cc, cf, tag, PCI_CAP_PWRMGMT, &offset, &value))
return EOPNOTSUPP;
return cardbus_get_powerstate_int(ct, tag, state, offset);
}
static int
cardbus_set_powerstate_int(cardbus_devfunc_t ct, pcitag_t tag,
pcireg_t state, int offset, pcireg_t cap_reg)
{
cardbus_chipset_tag_t cc = ct->ct_cc;
cardbus_function_tag_t cf = ct->ct_cf;
pcireg_t value, cap, now;
KASSERT((offset & 0x3) == 0);
cap = cap_reg >> PCI_PMCR_SHIFT;
value = cardbus_conf_read(cc, cf, tag, offset + PCI_PMCSR);
now = value & PCI_PMCSR_STATE_MASK;
value &= ~PCI_PMCSR_STATE_MASK;
if (now == state)
return 0;
switch (state) {
case PCI_PMCSR_STATE_D0:
break;
case PCI_PMCSR_STATE_D1:
if (now == PCI_PMCSR_STATE_D2 || now == PCI_PMCSR_STATE_D3) {
printf("invalid transition from %d to D1\n", (int)now);
return EINVAL;
}
if (!(cap & PCI_PMCR_D1SUPP)) {
printf("D1 not supported\n");
return EOPNOTSUPP;
}
break;
case PCI_PMCSR_STATE_D2:
if (now == PCI_PMCSR_STATE_D3) {
printf("invalid transition from %d to D2\n", (int)now);
return EINVAL;
}
if (!(cap & PCI_PMCR_D2SUPP)) {
printf("D2 not supported\n");
return EOPNOTSUPP;
}
break;
case PCI_PMCSR_STATE_D3:
break;
default:
return EINVAL;
}
value |= state;
cardbus_conf_write(cc, cf, tag, offset + PCI_PMCSR, value);
if (state == PCI_PMCSR_STATE_D3 || now == PCI_PMCSR_STATE_D3)
DELAY(10000);
else if (state == PCI_PMCSR_STATE_D2 || now == PCI_PMCSR_STATE_D2)
DELAY(200);
return 0;
}
int
cardbus_set_powerstate(cardbus_devfunc_t ct, pcitag_t tag, pcireg_t state)
{
cardbus_chipset_tag_t cc = ct->ct_cc;
cardbus_function_tag_t cf = ct->ct_cf;
int offset;
pcireg_t value;
if (!cardbus_get_capability(cc, cf, tag, PCI_CAP_PWRMGMT, &offset,
&value))
return EOPNOTSUPP;
return cardbus_set_powerstate_int(ct, tag, state, offset, value);
}
#ifdef CARDBUS_DEBUG
static const char *tuple_name(int);
static const char *tuple_names[] = {
"TPL_NULL", "TPL_DEVICE", "Reserved", "Reserved", /* 0-3 */
"CONFIG_CB", "CFTABLE_ENTRY_CB", "Reserved", "BAR", /* 4-7 */
"Reserved", "Reserved", "Reserved", "Reserved", /* 8-B */
"Reserved", "Reserved", "Reserved", "Reserved", /* C-F */
"CHECKSUM", "LONGLINK_A", "LONGLINK_C", "LINKTARGET", /* 10-13 */
"NO_LINK", "VERS_1", "ALTSTR", "DEVICE_A",
"JEDEC_C", "JEDEC_A", "CONFIG", "CFTABLE_ENTRY",
"DEVICE_OC", "DEVICE_OA", "DEVICE_GEO", "DEVICE_GEO_A",
"MANFID", "FUNCID", "FUNCE", "SWIL", /* 20-23 */
"Reserved", "Reserved", "Reserved", "Reserved", /* 24-27 */
"Reserved", "Reserved", "Reserved", "Reserved", /* 28-2B */
"Reserved", "Reserved", "Reserved", "Reserved", /* 2C-2F */
"Reserved", "Reserved", "Reserved", "Reserved", /* 30-33 */
"Reserved", "Reserved", "Reserved", "Reserved", /* 34-37 */
"Reserved", "Reserved", "Reserved", "Reserved", /* 38-3B */
"Reserved", "Reserved", "Reserved", "Reserved", /* 3C-3F */
"VERS_2", "FORMAT", "GEOMETRY", "BYTEORDER",
"DATE", "BATTERY", "ORG"
};
#define NAME_LEN(x) (sizeof x / sizeof(x[0]))
static const char *
tuple_name(int type)
{
if (0 <= type && type < NAME_LEN(tuple_names)) {
return (tuple_names[type]);
} else if (type == 0xff) {
return ("END");
} else {
return ("Reserved");
}
}
static void
print_tuple(u_int8_t *tuple, int len, void *data)
{
int i;
printf("tuple: %s len %d\n", tuple_name(tuple[0]), len);
for (i = 0; i < len; ++i) {
if (i % 16 == 0) {
printf(" 0x%2x:", i);
}
printf(" %x", tuple[i]);
if (i % 16 == 15) {
printf("\n");
}
}
if (i % 16 != 0) {
printf("\n");
}
}
#endif
void
cardbus_conf_capture(cardbus_chipset_tag_t cc, cardbus_function_tag_t cf,
pcitag_t tag, struct cardbus_conf_state *pcs)
{
int off;
for (off = 0; off < 16; off++)
pcs->reg[off] = cardbus_conf_read(cc, cf, tag, (off * 4));
}
void
cardbus_conf_restore(cardbus_chipset_tag_t cc, cardbus_function_tag_t cf,
pcitag_t tag, struct cardbus_conf_state *pcs)
{
int off;
pcireg_t val;
for (off = 15; off >= 0; off--) {
val = cardbus_conf_read(cc, cf, tag, (off * 4));
if (val != pcs->reg[off])
cardbus_conf_write(cc, cf,tag, (off * 4), pcs->reg[off]);
}
}
struct cardbus_child_power {
struct cardbus_conf_state p_cardbusconf;
cardbus_devfunc_t p_ct;
pcitag_t p_tag;
cardbus_chipset_tag_t p_cc;
cardbus_function_tag_t p_cf;
pcireg_t p_pm_cap;
bool p_has_pm;
int p_pm_offset;
};
static bool
cardbus_child_suspend(device_t dv, const pmf_qual_t *qual)
{
struct cardbus_child_power *priv = device_pmf_bus_private(dv);
cardbus_conf_capture(priv->p_cc, priv->p_cf, priv->p_tag,
&priv->p_cardbusconf);
if (priv->p_has_pm &&
cardbus_set_powerstate_int(priv->p_ct, priv->p_tag,
PCI_PMCSR_STATE_D3, priv->p_pm_offset, priv->p_pm_cap)) {
aprint_error_dev(dv, "unsupported state, continuing.\n");
return false;
}
Cardbus_function_disable(priv->p_ct);
return true;
}
static bool
cardbus_child_resume(device_t dv, const pmf_qual_t *qual)
{
struct cardbus_child_power *priv = device_pmf_bus_private(dv);
Cardbus_function_enable(priv->p_ct);
if (priv->p_has_pm &&
cardbus_set_powerstate_int(priv->p_ct, priv->p_tag,
PCI_PMCSR_STATE_D0, priv->p_pm_offset, priv->p_pm_cap)) {
aprint_error_dev(dv, "unsupported state, continuing.\n");
return false;
}
cardbus_conf_restore(priv->p_cc, priv->p_cf, priv->p_tag,
&priv->p_cardbusconf);
return true;
}
static void
cardbus_child_deregister(device_t dv)
{
struct cardbus_child_power *priv = device_pmf_bus_private(dv);
free(priv, M_DEVBUF);
}
static bool
cardbus_child_register(device_t child)
{
device_t self = device_parent(child);
struct cardbus_softc *sc = device_private(self);
struct cardbus_devfunc *ct;
struct cardbus_child_power *priv;
int off;
pcireg_t reg;
ct = sc->sc_funcs[device_locator(child, CARDBUSCF_FUNCTION)];
priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK);
priv->p_ct = ct;
priv->p_cc = ct->ct_cc;
priv->p_cf = ct->ct_cf;
priv->p_tag = cardbus_make_tag(priv->p_cc, priv->p_cf, ct->ct_bus,
ct->ct_func);
if (cardbus_get_capability(priv->p_cc, priv->p_cf, priv->p_tag,
PCI_CAP_PWRMGMT, &off, &reg)) {
priv->p_has_pm = true;
priv->p_pm_offset = off;
priv->p_pm_cap = reg;
} else {
priv->p_has_pm = false;
priv->p_pm_offset = -1;
}
device_pmf_bus_register(child, priv, cardbus_child_suspend,
cardbus_child_resume, 0, cardbus_child_deregister);
return true;
}