NetBSD/sys/kern/sys_lwp.c

780 lines
17 KiB
C

/* $NetBSD: sys_lwp.c,v 1.79 2020/04/24 03:22:06 thorpej Exp $ */
/*-
* Copyright (c) 2001, 2006, 2007, 2008, 2019, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nathan J. Williams, and Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Lightweight process (LWP) system calls. See kern_lwp.c for a description
* of LWPs.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sys_lwp.c,v 1.79 2020/04/24 03:22:06 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/types.h>
#include <sys/syscallargs.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/ptrace.h>
#include <sys/sleepq.h>
#include <sys/lwpctl.h>
#include <sys/cpu.h>
#include <uvm/uvm_extern.h>
#define LWP_UNPARK_MAX 1024
static const stack_t lwp_ss_init = SS_INIT;
syncobj_t lwp_park_syncobj = {
.sobj_flag = SOBJ_SLEEPQ_NULL,
.sobj_unsleep = sleepq_unsleep,
.sobj_changepri = sleepq_changepri,
.sobj_lendpri = sleepq_lendpri,
.sobj_owner = syncobj_noowner,
};
static void
mi_startlwp(void *arg)
{
struct lwp *l = curlwp;
struct proc *p = l->l_proc;
(p->p_emul->e_startlwp)(arg);
/* If the process is traced, report lwp creation to a debugger */
if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE)) ==
(PSL_TRACED|PSL_TRACELWP_CREATE)) {
/* Paranoid check */
mutex_enter(proc_lock);
if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_CREATE)) !=
(PSL_TRACED|PSL_TRACELWP_CREATE)) {
mutex_exit(proc_lock);
return;
}
mutex_enter(p->p_lock);
eventswitch(TRAP_LWP, PTRACE_LWP_CREATE, l->l_lid);
}
}
int
do_lwp_create(lwp_t *l, void *arg, u_long flags, lwp_t **l2,
const sigset_t *sigmask, const stack_t *sigstk)
{
struct proc *p = l->l_proc;
vaddr_t uaddr;
int error;
/* XXX check against resource limits */
uaddr = uvm_uarea_alloc();
if (__predict_false(uaddr == 0))
return ENOMEM;
error = lwp_create(l, p, uaddr, flags & LWP_DETACHED, NULL, 0,
mi_startlwp, arg, l2, l->l_class, sigmask, &lwp_ss_init);
if (__predict_false(error)) {
uvm_uarea_free(uaddr);
return error;
}
return 0;
}
int
sys__lwp_create(struct lwp *l, const struct sys__lwp_create_args *uap,
register_t *retval)
{
/* {
syscallarg(const ucontext_t *) ucp;
syscallarg(u_long) flags;
syscallarg(lwpid_t *) new_lwp;
} */
struct proc *p = l->l_proc;
ucontext_t *newuc;
lwp_t *l2;
int error;
newuc = kmem_alloc(sizeof(ucontext_t), KM_SLEEP);
error = copyin(SCARG(uap, ucp), newuc, p->p_emul->e_ucsize);
if (error)
goto fail;
/* validate the ucontext */
if ((newuc->uc_flags & _UC_CPU) == 0) {
error = EINVAL;
goto fail;
}
error = cpu_mcontext_validate(l, &newuc->uc_mcontext);
if (error)
goto fail;
const sigset_t *sigmask = newuc->uc_flags & _UC_SIGMASK ?
&newuc->uc_sigmask : &l->l_sigmask;
error = do_lwp_create(l, newuc, SCARG(uap, flags), &l2, sigmask,
&SS_INIT);
if (error)
goto fail;
error = copyout(&l2->l_lid, SCARG(uap, new_lwp), sizeof(l2->l_lid));
if (error == 0) {
lwp_start(l2, SCARG(uap, flags));
return 0;
}
lwp_exit(l2);
fail:
kmem_free(newuc, sizeof(ucontext_t));
return error;
}
int
sys__lwp_exit(struct lwp *l, const void *v, register_t *retval)
{
lwp_exit(l);
return 0;
}
int
sys__lwp_self(struct lwp *l, const void *v, register_t *retval)
{
*retval = l->l_lid;
return 0;
}
int
sys__lwp_getprivate(struct lwp *l, const void *v, register_t *retval)
{
*retval = (uintptr_t)l->l_private;
return 0;
}
int
sys__lwp_setprivate(struct lwp *l, const struct sys__lwp_setprivate_args *uap,
register_t *retval)
{
/* {
syscallarg(void *) ptr;
} */
return lwp_setprivate(l, SCARG(uap, ptr));
}
int
sys__lwp_suspend(struct lwp *l, const struct sys__lwp_suspend_args *uap,
register_t *retval)
{
/* {
syscallarg(lwpid_t) target;
} */
struct proc *p = l->l_proc;
struct lwp *t;
int error;
mutex_enter(p->p_lock);
if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
mutex_exit(p->p_lock);
return ESRCH;
}
/*
* Check for deadlock, which is only possible when we're suspending
* ourself. XXX There is a short race here, as p_nrlwps is only
* incremented when an LWP suspends itself on the kernel/user
* boundary. It's still possible to kill -9 the process so we
* don't bother checking further.
*/
lwp_lock(t);
if ((t == l && p->p_nrlwps == 1) ||
(l->l_flag & (LW_WCORE | LW_WEXIT)) != 0) {
lwp_unlock(t);
mutex_exit(p->p_lock);
return EDEADLK;
}
/*
* Suspend the LWP. XXX If it's on a different CPU, we should wait
* for it to be preempted, where it will put itself to sleep.
*
* Suspension of the current LWP will happen on return to userspace.
*/
error = lwp_suspend(l, t);
if (error) {
mutex_exit(p->p_lock);
return error;
}
/*
* Wait for:
* o process exiting
* o target LWP suspended
* o target LWP not suspended and L_WSUSPEND clear
* o target LWP exited
*/
for (;;) {
error = cv_wait_sig(&p->p_lwpcv, p->p_lock);
if (error) {
error = ERESTART;
break;
}
if (lwp_find(p, SCARG(uap, target)) == NULL) {
error = ESRCH;
break;
}
if ((l->l_flag | t->l_flag) & (LW_WCORE | LW_WEXIT)) {
error = ERESTART;
break;
}
if (t->l_stat == LSSUSPENDED ||
(t->l_flag & LW_WSUSPEND) == 0)
break;
}
mutex_exit(p->p_lock);
return error;
}
int
sys__lwp_continue(struct lwp *l, const struct sys__lwp_continue_args *uap,
register_t *retval)
{
/* {
syscallarg(lwpid_t) target;
} */
int error;
struct proc *p = l->l_proc;
struct lwp *t;
error = 0;
mutex_enter(p->p_lock);
if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
mutex_exit(p->p_lock);
return ESRCH;
}
lwp_lock(t);
lwp_continue(t);
mutex_exit(p->p_lock);
return error;
}
int
sys__lwp_wakeup(struct lwp *l, const struct sys__lwp_wakeup_args *uap,
register_t *retval)
{
/* {
syscallarg(lwpid_t) target;
} */
struct lwp *t;
struct proc *p;
int error;
p = l->l_proc;
mutex_enter(p->p_lock);
if ((t = lwp_find(p, SCARG(uap, target))) == NULL) {
mutex_exit(p->p_lock);
return ESRCH;
}
lwp_lock(t);
t->l_flag |= (LW_CANCELLED | LW_UNPARKED);
if (t->l_stat != LSSLEEP) {
lwp_unlock(t);
error = ENODEV;
} else if ((t->l_flag & LW_SINTR) == 0) {
lwp_unlock(t);
error = EBUSY;
} else {
/* Wake it up. lwp_unsleep() will release the LWP lock. */
lwp_unsleep(t, true);
error = 0;
}
mutex_exit(p->p_lock);
return error;
}
int
sys__lwp_wait(struct lwp *l, const struct sys__lwp_wait_args *uap,
register_t *retval)
{
/* {
syscallarg(lwpid_t) wait_for;
syscallarg(lwpid_t *) departed;
} */
struct proc *p = l->l_proc;
int error;
lwpid_t dep;
mutex_enter(p->p_lock);
error = lwp_wait(l, SCARG(uap, wait_for), &dep, false);
mutex_exit(p->p_lock);
if (!error && SCARG(uap, departed)) {
error = copyout(&dep, SCARG(uap, departed), sizeof(dep));
}
return error;
}
int
sys__lwp_kill(struct lwp *l, const struct sys__lwp_kill_args *uap,
register_t *retval)
{
/* {
syscallarg(lwpid_t) target;
syscallarg(int) signo;
} */
struct proc *p = l->l_proc;
struct lwp *t;
ksiginfo_t ksi;
int signo = SCARG(uap, signo);
int error = 0;
if ((u_int)signo >= NSIG)
return EINVAL;
KSI_INIT(&ksi);
ksi.ksi_signo = signo;
ksi.ksi_code = SI_LWP;
ksi.ksi_pid = p->p_pid;
ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
ksi.ksi_lid = SCARG(uap, target);
mutex_enter(proc_lock);
mutex_enter(p->p_lock);
if ((t = lwp_find(p, ksi.ksi_lid)) == NULL)
error = ESRCH;
else if (signo != 0)
kpsignal2(p, &ksi);
mutex_exit(p->p_lock);
mutex_exit(proc_lock);
return error;
}
int
sys__lwp_detach(struct lwp *l, const struct sys__lwp_detach_args *uap,
register_t *retval)
{
/* {
syscallarg(lwpid_t) target;
} */
struct proc *p;
struct lwp *t;
lwpid_t target;
int error;
target = SCARG(uap, target);
p = l->l_proc;
mutex_enter(p->p_lock);
if (l->l_lid == target)
t = l;
else {
/*
* We can't use lwp_find() here because the target might
* be a zombie.
*/
t = proc_find_lwp(p, target);
KASSERT(t == NULL || t->l_lid == target);
}
/*
* If the LWP is already detached, there's nothing to do.
* If it's a zombie, we need to clean up after it. LSZOMB
* is visible with the proc mutex held.
*
* After we have detached or released the LWP, kick any
* other LWPs that may be sitting in _lwp_wait(), waiting
* for the target LWP to exit.
*/
if (t != NULL && t->l_stat != LSIDL) {
if ((t->l_prflag & LPR_DETACHED) == 0) {
p->p_ndlwps++;
t->l_prflag |= LPR_DETACHED;
if (t->l_stat == LSZOMB) {
/* Releases proc mutex. */
lwp_free(t, false, false);
return 0;
}
error = 0;
/*
* Have any LWPs sleeping in lwp_wait() recheck
* for deadlock.
*/
cv_broadcast(&p->p_lwpcv);
} else
error = EINVAL;
} else
error = ESRCH;
mutex_exit(p->p_lock);
return error;
}
int
lwp_unpark(const lwpid_t *tp, const u_int ntargets)
{
u_int target;
int error;
proc_t *p;
lwp_t *t;
p = curproc;
error = 0;
mutex_enter(p->p_lock);
for (target = 0; target < ntargets; target++) {
/*
* We don't bother excluding idle LWPs here, as
* setting LW_UNPARKED on them won't do any harm.
*/
t = proc_find_lwp(p, tp[target]);
if (__predict_false(t == NULL)) {
error = ESRCH;
continue;
}
/*
* The locking order is p::p_lock -> l::l_mutex,
* but it may not be unsafe to release p::p_lock
* while l::l_mutex is held because l::l_mutex is
* a scheduler lock and we don't want to get tied
* in knots while unwinding priority inheritance.
* So, get a reference count on the LWP and then
* unlock p::p_lock before acquiring l::l_mutex.
*/
if (__predict_false(t->l_stat == LSZOMB)) {
continue;
}
lwp_addref(t);
mutex_exit(p->p_lock);
/*
* Note the LWP cannot become a zombie while we
* hold a reference.
*/
lwp_lock(t);
if (__predict_true(t->l_syncobj == &lwp_park_syncobj)) {
/*
* As expected it's parked, so wake it up.
* lwp_unsleep() will release the LWP lock.
*/
lwp_unsleep(t, true);
} else {
/*
* It hasn't parked yet because the wakeup side won
* the race, or something else has happened to make
* the thread not park. Why doesn't really matter.
* Set the operation pending, so that the next call
* to _lwp_park() in the LWP returns early. If it
* turns out to be a spurious wakeup, no harm done.
*/
t->l_flag |= LW_UNPARKED;
lwp_unlock(t);
}
mutex_enter(p->p_lock);
lwp_delref2(t);
}
mutex_exit(p->p_lock);
return error;
}
int
lwp_park(clockid_t clock_id, int flags, struct timespec *ts)
{
int timo, error;
struct timespec start;
lwp_t *l;
bool timeremain = !(flags & TIMER_ABSTIME) && ts;
if (ts != NULL) {
if ((error = ts2timo(clock_id, flags, ts, &timo,
timeremain ? &start : NULL)) != 0)
return error;
KASSERT(timo != 0);
} else {
timo = 0;
}
/*
* Before going the full route and blocking, check to see if an
* unpark op is pending.
*/
l = curlwp;
lwp_lock(l);
if ((l->l_flag & (LW_CANCELLED | LW_UNPARKED)) != 0) {
l->l_flag &= ~(LW_CANCELLED | LW_UNPARKED);
lwp_unlock(l);
return EALREADY;
}
l->l_biglocks = 0;
sleepq_enqueue(NULL, l, "parked", &lwp_park_syncobj, true);
error = sleepq_block(timo, true);
switch (error) {
case EWOULDBLOCK:
error = ETIMEDOUT;
if (timeremain)
memset(ts, 0, sizeof(*ts));
break;
case ERESTART:
error = EINTR;
/*FALLTHROUGH*/
default:
if (timeremain)
clock_timeleft(clock_id, ts, &start);
break;
}
return error;
}
/*
* 'park' an LWP waiting on a user-level synchronisation object. The LWP
* will remain parked until another LWP in the same process calls in and
* requests that it be unparked.
*/
int
sys____lwp_park60(struct lwp *l, const struct sys____lwp_park60_args *uap,
register_t *retval)
{
/* {
syscallarg(clockid_t) clock_id;
syscallarg(int) flags;
syscallarg(struct timespec *) ts;
syscallarg(lwpid_t) unpark;
syscallarg(const void *) hint;
syscallarg(const void *) unparkhint;
} */
struct timespec ts, *tsp;
int error;
if (SCARG(uap, ts) == NULL)
tsp = NULL;
else {
error = copyin(SCARG(uap, ts), &ts, sizeof(ts));
if (error != 0)
return error;
tsp = &ts;
}
if (SCARG(uap, unpark) != 0) {
error = lwp_unpark(&SCARG(uap, unpark), 1);
if (error != 0)
return error;
}
error = lwp_park(SCARG(uap, clock_id), SCARG(uap, flags), tsp);
if (SCARG(uap, ts) != NULL && (SCARG(uap, flags) & TIMER_ABSTIME) == 0)
(void)copyout(tsp, SCARG(uap, ts), sizeof(*tsp));
return error;
}
int
sys__lwp_unpark(struct lwp *l, const struct sys__lwp_unpark_args *uap,
register_t *retval)
{
/* {
syscallarg(lwpid_t) target;
syscallarg(const void *) hint;
} */
return lwp_unpark(&SCARG(uap, target), 1);
}
int
sys__lwp_unpark_all(struct lwp *l, const struct sys__lwp_unpark_all_args *uap,
register_t *retval)
{
/* {
syscallarg(const lwpid_t *) targets;
syscallarg(size_t) ntargets;
syscallarg(const void *) hint;
} */
lwpid_t targets[32], *tp;
int error;
u_int ntargets;
size_t sz;
ntargets = SCARG(uap, ntargets);
if (SCARG(uap, targets) == NULL) {
/*
* Let the caller know how much we are willing to do, and
* let it unpark the LWPs in blocks.
*/
*retval = LWP_UNPARK_MAX;
return 0;
}
if (ntargets > LWP_UNPARK_MAX || ntargets == 0)
return EINVAL;
/*
* Copy in the target array. If it's a small number of LWPs, then
* place the numbers on the stack.
*/
sz = sizeof(lwpid_t) * ntargets;
if (sz <= sizeof(targets))
tp = targets;
else
tp = kmem_alloc(sz, KM_SLEEP);
error = copyin(SCARG(uap, targets), tp, sz);
if (error != 0) {
if (tp != targets) {
kmem_free(tp, sz);
}
return error;
}
error = lwp_unpark(tp, ntargets);
if (tp != targets)
kmem_free(tp, sz);
return error;
}
int
sys__lwp_setname(struct lwp *l, const struct sys__lwp_setname_args *uap,
register_t *retval)
{
/* {
syscallarg(lwpid_t) target;
syscallarg(const char *) name;
} */
char *name, *oname;
lwpid_t target;
proc_t *p;
lwp_t *t;
int error;
if ((target = SCARG(uap, target)) == 0)
target = l->l_lid;
name = kmem_alloc(MAXCOMLEN, KM_SLEEP);
error = copyinstr(SCARG(uap, name), name, MAXCOMLEN, NULL);
switch (error) {
case ENAMETOOLONG:
case 0:
name[MAXCOMLEN - 1] = '\0';
break;
default:
kmem_free(name, MAXCOMLEN);
return error;
}
p = curproc;
mutex_enter(p->p_lock);
if ((t = lwp_find(p, target)) == NULL) {
mutex_exit(p->p_lock);
kmem_free(name, MAXCOMLEN);
return ESRCH;
}
lwp_lock(t);
oname = t->l_name;
t->l_name = name;
lwp_unlock(t);
mutex_exit(p->p_lock);
if (oname != NULL)
kmem_free(oname, MAXCOMLEN);
return 0;
}
int
sys__lwp_getname(struct lwp *l, const struct sys__lwp_getname_args *uap,
register_t *retval)
{
/* {
syscallarg(lwpid_t) target;
syscallarg(char *) name;
syscallarg(size_t) len;
} */
char name[MAXCOMLEN];
lwpid_t target;
size_t len;
proc_t *p;
lwp_t *t;
if ((target = SCARG(uap, target)) == 0)
target = l->l_lid;
p = curproc;
mutex_enter(p->p_lock);
if ((t = lwp_find(p, target)) == NULL) {
mutex_exit(p->p_lock);
return ESRCH;
}
lwp_lock(t);
if (t->l_name == NULL)
name[0] = '\0';
else
strlcpy(name, t->l_name, sizeof(name));
lwp_unlock(t);
mutex_exit(p->p_lock);
len = uimin(SCARG(uap, len), sizeof(name));
return copyoutstr(name, SCARG(uap, name), len, NULL);
}
int
sys__lwp_ctl(struct lwp *l, const struct sys__lwp_ctl_args *uap,
register_t *retval)
{
/* {
syscallarg(int) features;
syscallarg(struct lwpctl **) address;
} */
int error, features;
vaddr_t vaddr;
features = SCARG(uap, features);
features &= ~(LWPCTL_FEATURE_CURCPU | LWPCTL_FEATURE_PCTR);
if (features != 0)
return ENODEV;
if ((error = lwp_ctl_alloc(&vaddr)) != 0)
return error;
return copyout(&vaddr, SCARG(uap, address), sizeof(void *));
}