1339 lines
32 KiB
C
1339 lines
32 KiB
C
/* $NetBSD: m_netbsd.c,v 1.18 2013/10/20 03:02:27 christos Exp $ */
|
|
|
|
/*
|
|
* top - a top users display for Unix
|
|
*
|
|
* SYNOPSIS: For a NetBSD-1.5 (or later) system
|
|
*
|
|
* DESCRIPTION:
|
|
* Originally written for BSD4.4 system by Christos Zoulas.
|
|
* Based on the FreeBSD 2.0 version by Steven Wallace and Wolfram Schneider.
|
|
* NetBSD-1.0 port by Arne Helme. Process ordering by Luke Mewburn.
|
|
* NetBSD-1.3 port by Luke Mewburn, based on code by Matthew Green.
|
|
* NetBSD-1.4/UVM port by matthew green.
|
|
* NetBSD-1.5 port by Simon Burge.
|
|
* NetBSD-1.6/UBC port by Tomas Svensson.
|
|
* -
|
|
* This is the machine-dependent module for NetBSD-1.5 and later
|
|
* works for:
|
|
* NetBSD-1.6ZC
|
|
* and should work for:
|
|
* NetBSD-2.0 (when released)
|
|
* -
|
|
* top does not need to be installed setuid or setgid with this module.
|
|
*
|
|
* LIBS: -lkvm
|
|
*
|
|
* CFLAGS: -DHAVE_GETOPT -DORDER -DHAVE_STRERROR
|
|
*
|
|
* AUTHORS: Christos Zoulas <christos@ee.cornell.edu>
|
|
* Steven Wallace <swallace@freebsd.org>
|
|
* Wolfram Schneider <wosch@cs.tu-berlin.de>
|
|
* Arne Helme <arne@acm.org>
|
|
* Luke Mewburn <lukem@NetBSD.org>
|
|
* matthew green <mrg@eterna.com.au>
|
|
* Simon Burge <simonb@NetBSD.org>
|
|
* Tomas Svensson <ts@unix1.net>
|
|
* Andrew Doran <ad@NetBSD.org>
|
|
*
|
|
*
|
|
* $Id: m_netbsd.c,v 1.18 2013/10/20 03:02:27 christos Exp $
|
|
*/
|
|
#include <sys/cdefs.h>
|
|
|
|
#ifndef lint
|
|
__RCSID("$NetBSD: m_netbsd.c,v 1.18 2013/10/20 03:02:27 christos Exp $");
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/swap.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <err.h>
|
|
#include <errno.h>
|
|
#include <kvm.h>
|
|
#include <math.h>
|
|
#include <nlist.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include "os.h"
|
|
#include "top.h"
|
|
#include "machine.h"
|
|
#include "utils.h"
|
|
#include "display.h"
|
|
#include "loadavg.h"
|
|
#include "username.h"
|
|
|
|
static void percentages64(int, int *, u_int64_t *, u_int64_t *,
|
|
u_int64_t *);
|
|
|
|
/* get_process_info passes back a handle. This is what it looks like: */
|
|
|
|
struct handle {
|
|
struct process_select *sel;
|
|
struct kinfo_proc2 **next_proc; /* points to next valid proc pointer */
|
|
int remaining; /* number of pointers remaining */
|
|
};
|
|
|
|
/* define what weighted CPU is. */
|
|
#define weighted_cpu(pfx, pct, pp) ((pp)->pfx ## swtime == 0 ? 0.0 : \
|
|
((pct) / (1.0 - exp((pp)->pfx ## swtime * logcpu))))
|
|
|
|
/* what we consider to be process size: */
|
|
/* NetBSD introduced p_vm_msize with RLIMIT_AS */
|
|
#ifdef RLIMIT_AS
|
|
#define PROCSIZE(pp) \
|
|
((pp)->p_vm_msize)
|
|
#else
|
|
#define PROCSIZE(pp) \
|
|
((pp)->p_vm_tsize + (pp)->p_vm_dsize + (pp)->p_vm_ssize)
|
|
#endif
|
|
|
|
|
|
/*
|
|
* These definitions control the format of the per-process area
|
|
*/
|
|
|
|
static char Proc_header[] =
|
|
" PID X PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND";
|
|
/* 0123456 -- field to fill in starts at header+6 */
|
|
#define PROC_UNAME_START 6
|
|
#define Proc_format \
|
|
"%5d %-8.8s %3d %4d%7s %5s %-8.8s%7s %5.*f%% %5.*f%% %s"
|
|
|
|
static char Thread_header[] =
|
|
" PID LID X PRI STATE TIME WCPU CPU NAME COMMAND";
|
|
/* 0123456 -- field to fill in starts at header+6 */
|
|
#define THREAD_UNAME_START 12
|
|
#define Thread_format \
|
|
"%5d %5d %-8.8s %3d %-8.8s%7s %5.2f%% %5.2f%% %-9.9s %s"
|
|
|
|
/*
|
|
* Process state names for the "STATE" column of the display.
|
|
*/
|
|
|
|
const char *state_abbrev[] = {
|
|
"", "IDLE", "RUN", "SLEEP", "STOP", "ZOMB", "DEAD", "CPU"
|
|
};
|
|
|
|
static kvm_t *kd;
|
|
|
|
static char *(*userprint)(int);
|
|
|
|
/* these are retrieved from the kernel in _init */
|
|
|
|
static double logcpu;
|
|
static int hz;
|
|
static int ccpu;
|
|
|
|
/* these are for calculating CPU state percentages */
|
|
|
|
static int ncpu = 0;
|
|
static u_int64_t *cp_time;
|
|
static u_int64_t *cp_old;
|
|
static u_int64_t *cp_diff;
|
|
|
|
/* these are for detailing the process states */
|
|
|
|
int process_states[8];
|
|
const char *procstatenames[] = {
|
|
"", " idle, ", " runnable, ", " sleeping, ", " stopped, ",
|
|
" zombie, ", " dead, ", " on CPU, ",
|
|
NULL
|
|
};
|
|
|
|
/* these are for detailing the CPU states */
|
|
|
|
int *cpu_states;
|
|
const char *cpustatenames[] = {
|
|
"user", "nice", "system", "interrupt", "idle", NULL
|
|
};
|
|
|
|
/* these are for detailing the memory statistics */
|
|
|
|
long memory_stats[7];
|
|
const char *memorynames[] = {
|
|
"K Act, ", "K Inact, ", "K Wired, ", "K Exec, ", "K File, ",
|
|
"K Free, ",
|
|
NULL
|
|
};
|
|
|
|
long swap_stats[4];
|
|
const char *swapnames[] = {
|
|
"K Total, ", "K Used, ", "K Free, ",
|
|
NULL
|
|
};
|
|
|
|
|
|
/* these are names given to allowed sorting orders -- first is default */
|
|
const char *ordernames[] = {
|
|
"cpu",
|
|
"pri",
|
|
"res",
|
|
"size",
|
|
"state",
|
|
"time",
|
|
"pid",
|
|
"command",
|
|
"username",
|
|
NULL
|
|
};
|
|
|
|
/* forward definitions for comparison functions */
|
|
static int compare_cpu(struct proc **, struct proc **);
|
|
static int compare_prio(struct proc **, struct proc **);
|
|
static int compare_res(struct proc **, struct proc **);
|
|
static int compare_size(struct proc **, struct proc **);
|
|
static int compare_state(struct proc **, struct proc **);
|
|
static int compare_time(struct proc **, struct proc **);
|
|
static int compare_pid(struct proc **, struct proc **);
|
|
static int compare_command(struct proc **, struct proc **);
|
|
static int compare_username(struct proc **, struct proc **);
|
|
|
|
int (*proc_compares[])(struct proc **, struct proc **) = {
|
|
compare_cpu,
|
|
compare_prio,
|
|
compare_res,
|
|
compare_size,
|
|
compare_state,
|
|
compare_time,
|
|
compare_pid,
|
|
compare_command,
|
|
compare_username,
|
|
NULL
|
|
};
|
|
|
|
static char *format_next_lwp(caddr_t, char *(*)(int));
|
|
static char *format_next_proc(caddr_t, char *(*)(int));
|
|
|
|
static caddr_t get_proc_info(struct system_info *, struct process_select *,
|
|
int (*)(struct proc **, struct proc **));
|
|
static caddr_t get_lwp_info(struct system_info *, struct process_select *,
|
|
int (*)(struct proc **, struct proc **));
|
|
|
|
/* these are for keeping track of the proc array */
|
|
|
|
static int nproc;
|
|
static int onproc = -1;
|
|
static int nlwp;
|
|
static int onlwp = -1;
|
|
static int pref_len;
|
|
static int lref_len;
|
|
static struct kinfo_proc2 *pbase;
|
|
static struct kinfo_lwp *lbase;
|
|
static struct kinfo_proc2 **pref;
|
|
static struct kinfo_lwp **lref;
|
|
static int maxswap;
|
|
static void *swapp;
|
|
static int procgen;
|
|
static int thread_nproc;
|
|
static int thread_onproc = -1;
|
|
static struct kinfo_proc2 *thread_pbase;
|
|
|
|
/* these are for getting the memory statistics */
|
|
|
|
static int pageshift; /* log base 2 of the pagesize */
|
|
|
|
int threadmode;
|
|
|
|
/* define pagetok in terms of pageshift */
|
|
|
|
#define pagetok(size) ((size) << pageshift)
|
|
|
|
/*
|
|
* Print swapped processes as <pname> and
|
|
* system processes as [pname]
|
|
*/
|
|
static const char *
|
|
get_pretty(const struct kinfo_proc2 *pp)
|
|
{
|
|
if ((pp->p_flag & P_SYSTEM) != 0)
|
|
return "[]";
|
|
if ((pp->p_flag & P_INMEM) == 0)
|
|
return "<>";
|
|
return "";
|
|
}
|
|
|
|
static const char *
|
|
get_command(const struct process_select *sel, struct kinfo_proc2 *pp)
|
|
{
|
|
static char cmdbuf[128];
|
|
const char *pretty;
|
|
char **argv;
|
|
if (pp == NULL)
|
|
return "<gone>";
|
|
pretty = get_pretty(pp);
|
|
|
|
if (sel->fullcmd == 0 || kd == NULL || (argv = kvm_getargv2(kd, pp,
|
|
sizeof(cmdbuf))) == NULL) {
|
|
if (pretty[0] != '\0' && pp->p_comm[0] != pretty[0])
|
|
snprintf(cmdbuf, sizeof(cmdbuf), "%c%s%c", pretty[0],
|
|
printable(pp->p_comm), pretty[1]);
|
|
else
|
|
strlcpy(cmdbuf, printable(pp->p_comm), sizeof(cmdbuf));
|
|
} else {
|
|
char *d = cmdbuf;
|
|
if (pretty[0] != '\0' && argv[0][0] != pretty[0])
|
|
*d++ = pretty[0];
|
|
while (*argv) {
|
|
const char *s = printable(*argv++);
|
|
while (d < cmdbuf + sizeof(cmdbuf) - 2 &&
|
|
(*d++ = *s++) != '\0')
|
|
continue;
|
|
if (d > cmdbuf && d < cmdbuf + sizeof(cmdbuf) - 2 &&
|
|
d[-1] == '\0')
|
|
d[-1] = ' ';
|
|
}
|
|
if (pretty[0] != '\0' && pretty[0] == cmdbuf[0])
|
|
*d++ = pretty[1];
|
|
*d++ = '\0';
|
|
}
|
|
return cmdbuf;
|
|
}
|
|
|
|
int
|
|
machine_init(statics)
|
|
struct statics *statics;
|
|
{
|
|
int pagesize;
|
|
int mib[2];
|
|
size_t size;
|
|
struct clockinfo clockinfo;
|
|
struct timeval boottime;
|
|
|
|
if ((kd = kvm_open(NULL, NULL, NULL, KVM_NO_FILES, "kvm_open")) == NULL)
|
|
return -1;
|
|
|
|
mib[0] = CTL_HW;
|
|
mib[1] = HW_NCPU;
|
|
size = sizeof(ncpu);
|
|
if (sysctl(mib, 2, &ncpu, &size, NULL, 0) == -1) {
|
|
fprintf(stderr, "top: sysctl hw.ncpu failed: %s\n",
|
|
strerror(errno));
|
|
return(-1);
|
|
}
|
|
statics->ncpu = ncpu;
|
|
cp_time = malloc(sizeof(cp_time[0]) * CPUSTATES * ncpu);
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_CP_TIME;
|
|
size = sizeof(cp_time[0]) * CPUSTATES * ncpu;
|
|
if (sysctl(mib, 2, cp_time, &size, NULL, 0) < 0) {
|
|
fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n",
|
|
strerror(errno));
|
|
return(-1);
|
|
}
|
|
|
|
/* Handle old call that returned only aggregate */
|
|
if (size == sizeof(cp_time[0]) * CPUSTATES)
|
|
ncpu = 1;
|
|
|
|
cpu_states = malloc(sizeof(cpu_states[0]) * CPUSTATES * ncpu);
|
|
cp_old = malloc(sizeof(cp_old[0]) * CPUSTATES * ncpu);
|
|
cp_diff = malloc(sizeof(cp_diff[0]) * CPUSTATES * ncpu);
|
|
if (cpu_states == NULL || cp_time == NULL || cp_old == NULL ||
|
|
cp_diff == NULL) {
|
|
fprintf(stderr, "top: machine_init: %s\n",
|
|
strerror(errno));
|
|
return(-1);
|
|
}
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_CCPU;
|
|
size = sizeof(ccpu);
|
|
if (sysctl(mib, 2, &ccpu, &size, NULL, 0) == -1) {
|
|
fprintf(stderr, "top: sysctl kern.ccpu failed: %s\n",
|
|
strerror(errno));
|
|
return(-1);
|
|
}
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_CLOCKRATE;
|
|
size = sizeof(clockinfo);
|
|
if (sysctl(mib, 2, &clockinfo, &size, NULL, 0) == -1) {
|
|
fprintf(stderr, "top: sysctl kern.clockrate failed: %s\n",
|
|
strerror(errno));
|
|
return(-1);
|
|
}
|
|
hz = clockinfo.stathz;
|
|
|
|
/* this is used in calculating WCPU -- calculate it ahead of time */
|
|
logcpu = log(loaddouble(ccpu));
|
|
|
|
pbase = NULL;
|
|
lbase = NULL;
|
|
pref = NULL;
|
|
nproc = 0;
|
|
onproc = -1;
|
|
nlwp = 0;
|
|
onlwp = -1;
|
|
/* get the page size with "getpagesize" and calculate pageshift from it */
|
|
pagesize = getpagesize();
|
|
pageshift = 0;
|
|
while (pagesize > 1) {
|
|
pageshift++;
|
|
pagesize >>= 1;
|
|
}
|
|
|
|
/* we only need the amount of log(2)1024 for our conversion */
|
|
pageshift -= LOG1024;
|
|
|
|
/* fill in the statics information */
|
|
#ifdef notyet
|
|
statics->ncpu = ncpu;
|
|
#endif
|
|
statics->procstate_names = procstatenames;
|
|
statics->cpustate_names = cpustatenames;
|
|
statics->memory_names = memorynames;
|
|
statics->swap_names = swapnames;
|
|
statics->order_names = ordernames;
|
|
statics->flags.threads = 1;
|
|
statics->flags.fullcmds = 1;
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_BOOTTIME;
|
|
size = sizeof(boottime);
|
|
if (sysctl(mib, 2, &boottime, &size, NULL, 0) != -1 &&
|
|
boottime.tv_sec != 0)
|
|
statics->boottime = boottime.tv_sec;
|
|
else
|
|
statics->boottime = 0;
|
|
/* all done! */
|
|
return(0);
|
|
}
|
|
|
|
char *
|
|
format_process_header(struct process_select *sel, caddr_t handle, int count)
|
|
|
|
{
|
|
char *header;
|
|
char *ptr;
|
|
const char *uname_field = sel->usernames ? "USERNAME" : " UID ";
|
|
|
|
if (sel->threads) {
|
|
header = Thread_header;
|
|
ptr = header + THREAD_UNAME_START;
|
|
} else {
|
|
header = Proc_header;
|
|
ptr = header + PROC_UNAME_START;
|
|
}
|
|
|
|
while (*uname_field != '\0') {
|
|
*ptr++ = *uname_field++;
|
|
}
|
|
|
|
return(header);
|
|
}
|
|
|
|
char *
|
|
format_header(char *uname_field)
|
|
{
|
|
char *header = Proc_header;
|
|
char *ptr = header + PROC_UNAME_START;
|
|
|
|
while (*uname_field != '\0') {
|
|
*ptr++ = *uname_field++;
|
|
}
|
|
|
|
return(header);
|
|
}
|
|
|
|
void
|
|
get_system_info(struct system_info *si)
|
|
{
|
|
size_t ssize;
|
|
int mib[2];
|
|
struct uvmexp_sysctl uvmexp;
|
|
struct swapent *sep;
|
|
u_int64_t totalsize, totalinuse;
|
|
int size, inuse, ncounted, i;
|
|
int rnswap, nswap;
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_CP_TIME;
|
|
ssize = sizeof(cp_time[0]) * CPUSTATES * ncpu;
|
|
if (sysctl(mib, 2, cp_time, &ssize, NULL, 0) < 0) {
|
|
fprintf(stderr, "top: sysctl kern.cp_time failed: %s\n",
|
|
strerror(errno));
|
|
quit(23);
|
|
}
|
|
|
|
if (getloadavg(si->load_avg, NUM_AVERAGES) < 0) {
|
|
int j;
|
|
|
|
warn("can't getloadavg");
|
|
for (j = 0; j < NUM_AVERAGES; j++)
|
|
si->load_avg[j] = 0.0;
|
|
}
|
|
|
|
/* convert cp_time counts to percentages */
|
|
for (i = 0; i < ncpu; i++) {
|
|
int j = i * CPUSTATES;
|
|
percentages64(CPUSTATES, cpu_states + j, cp_time + j, cp_old + j,
|
|
cp_diff + j);
|
|
}
|
|
|
|
mib[0] = CTL_VM;
|
|
mib[1] = VM_UVMEXP2;
|
|
ssize = sizeof(uvmexp);
|
|
if (sysctl(mib, 2, &uvmexp, &ssize, NULL, 0) < 0) {
|
|
fprintf(stderr, "top: sysctl vm.uvmexp2 failed: %s\n",
|
|
strerror(errno));
|
|
quit(23);
|
|
}
|
|
|
|
/* convert memory stats to Kbytes */
|
|
memory_stats[0] = pagetok(uvmexp.active);
|
|
memory_stats[1] = pagetok(uvmexp.inactive);
|
|
memory_stats[2] = pagetok(uvmexp.wired);
|
|
memory_stats[3] = pagetok(uvmexp.execpages);
|
|
memory_stats[4] = pagetok(uvmexp.filepages);
|
|
memory_stats[5] = pagetok(uvmexp.free);
|
|
|
|
swap_stats[0] = swap_stats[1] = swap_stats[2] = 0;
|
|
|
|
do {
|
|
nswap = swapctl(SWAP_NSWAP, 0, 0);
|
|
if (nswap < 1)
|
|
break;
|
|
if (nswap > maxswap) {
|
|
if (swapp)
|
|
free(swapp);
|
|
swapp = sep = malloc(nswap * sizeof(*sep));
|
|
if (sep == NULL)
|
|
break;
|
|
maxswap = nswap;
|
|
} else
|
|
sep = swapp;
|
|
rnswap = swapctl(SWAP_STATS, (void *)sep, nswap);
|
|
if (nswap != rnswap)
|
|
break;
|
|
|
|
totalsize = totalinuse = ncounted = 0;
|
|
for (; rnswap-- > 0; sep++) {
|
|
ncounted++;
|
|
size = sep->se_nblks;
|
|
inuse = sep->se_inuse;
|
|
totalsize += size;
|
|
totalinuse += inuse;
|
|
}
|
|
swap_stats[0] = dbtob(totalsize) / 1024;
|
|
swap_stats[1] = dbtob(totalinuse) / 1024;
|
|
swap_stats[2] = dbtob(totalsize) / 1024 - swap_stats[1];
|
|
} while (0);
|
|
|
|
memory_stats[6] = -1;
|
|
swap_stats[3] = -1;
|
|
|
|
/* set arrays and strings */
|
|
si->cpustates = cpu_states;
|
|
si->memory = memory_stats;
|
|
si->swap = swap_stats;
|
|
si->last_pid = -1;
|
|
|
|
}
|
|
|
|
static struct kinfo_proc2 *
|
|
proc_from_thread(struct kinfo_lwp *pl)
|
|
{
|
|
struct kinfo_proc2 *pp = thread_pbase;
|
|
int i;
|
|
|
|
for (i = 0; i < thread_nproc; i++, pp++)
|
|
if ((pid_t)pp->p_pid == (pid_t)pl->l_pid)
|
|
return pp;
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
uid_from_thread(struct kinfo_lwp *pl)
|
|
{
|
|
struct kinfo_proc2 *pp;
|
|
|
|
if ((pp = proc_from_thread(pl)) == NULL)
|
|
return -1;
|
|
return pp->p_ruid;
|
|
}
|
|
|
|
caddr_t
|
|
get_process_info(struct system_info *si, struct process_select *sel, int c)
|
|
{
|
|
userprint = sel->usernames ? username : itoa7;
|
|
|
|
if ((threadmode = sel->threads) != 0)
|
|
return get_lwp_info(si, sel, proc_compares[c]);
|
|
else
|
|
return get_proc_info(si, sel, proc_compares[c]);
|
|
}
|
|
|
|
static caddr_t
|
|
get_proc_info(struct system_info *si, struct process_select *sel,
|
|
int (*compare)(struct proc **, struct proc **))
|
|
{
|
|
int i;
|
|
int total_procs;
|
|
int active_procs;
|
|
struct kinfo_proc2 **prefp, **n;
|
|
struct kinfo_proc2 *pp;
|
|
int op, arg;
|
|
|
|
/* these are copied out of sel for speed */
|
|
int show_idle;
|
|
int show_system;
|
|
int show_uid;
|
|
|
|
static struct handle handle;
|
|
|
|
procgen++;
|
|
|
|
if (sel->pid == (pid_t)-1) {
|
|
op = KERN_PROC_ALL;
|
|
arg = 0;
|
|
} else {
|
|
op = KERN_PROC_PID;
|
|
arg = sel->pid;
|
|
}
|
|
|
|
pbase = kvm_getproc2(kd, op, arg, sizeof(struct kinfo_proc2), &nproc);
|
|
if (pbase == NULL) {
|
|
if (sel->pid != (pid_t)-1) {
|
|
nproc = 0;
|
|
} else {
|
|
(void) fprintf(stderr, "top: Out of memory.\n");
|
|
quit(23);
|
|
}
|
|
}
|
|
if (nproc > onproc) {
|
|
n = (struct kinfo_proc2 **) realloc(pref,
|
|
sizeof(struct kinfo_proc2 *) * nproc);
|
|
if (n == NULL) {
|
|
(void) fprintf(stderr, "top: Out of memory.\n");
|
|
quit(23);
|
|
}
|
|
pref = n;
|
|
onproc = nproc;
|
|
}
|
|
/* get a pointer to the states summary array */
|
|
si->procstates = process_states;
|
|
|
|
/* set up flags which define what we are going to select */
|
|
show_idle = sel->idle;
|
|
show_system = sel->system;
|
|
show_uid = sel->uid != -1;
|
|
|
|
/* count up process states and get pointers to interesting procs */
|
|
total_procs = 0;
|
|
active_procs = 0;
|
|
memset((char *)process_states, 0, sizeof(process_states));
|
|
prefp = pref;
|
|
for (pp = pbase, i = 0; i < nproc; pp++, i++) {
|
|
|
|
/*
|
|
* Place pointers to each valid proc structure in pref[].
|
|
* Process slots that are actually in use have a non-zero
|
|
* status field. Processes with P_SYSTEM set are system
|
|
* processes---these get ignored unless show_sysprocs is set.
|
|
*/
|
|
if (pp->p_stat != 0 && (show_system || ((pp->p_flag & P_SYSTEM) == 0))) {
|
|
total_procs++;
|
|
process_states[(unsigned char) pp->p_stat]++;
|
|
if (pp->p_stat != LSZOMB &&
|
|
(show_idle || (pp->p_pctcpu != 0) ||
|
|
(pp->p_stat == LSRUN || pp->p_stat == LSONPROC)) &&
|
|
(!show_uid || pp->p_ruid == (uid_t)sel->uid)) {
|
|
*prefp++ = pp;
|
|
active_procs++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if requested, sort the "interesting" processes */
|
|
if (compare != NULL) {
|
|
qsort((char *)pref, active_procs, sizeof(struct kinfo_proc2 *),
|
|
(int (*)(const void *, const void *))compare);
|
|
}
|
|
|
|
/* remember active and total counts */
|
|
si->p_total = total_procs;
|
|
si->p_active = pref_len = active_procs;
|
|
|
|
/* pass back a handle */
|
|
handle.next_proc = pref;
|
|
handle.remaining = active_procs;
|
|
handle.sel = sel;
|
|
return((caddr_t)&handle);
|
|
}
|
|
|
|
static caddr_t
|
|
get_lwp_info(struct system_info *si, struct process_select *sel,
|
|
int (*compare)(struct proc **, struct proc **))
|
|
{
|
|
int i;
|
|
int total_lwps;
|
|
int active_lwps;
|
|
struct kinfo_lwp **lrefp, **n;
|
|
struct kinfo_lwp *lp;
|
|
struct kinfo_proc2 *pp;
|
|
|
|
/* these are copied out of sel for speed */
|
|
int show_idle;
|
|
int show_system;
|
|
int show_uid;
|
|
|
|
static struct handle handle;
|
|
|
|
pp = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2),
|
|
&thread_nproc);
|
|
if (pp == NULL) {
|
|
(void) fprintf(stderr, "top: Out of memory.\n");
|
|
quit(23);
|
|
}
|
|
if (thread_pbase == NULL || thread_nproc != thread_onproc) {
|
|
free(thread_pbase);
|
|
thread_onproc = thread_nproc;
|
|
thread_pbase = calloc(sizeof(struct kinfo_proc2), thread_nproc);
|
|
if (thread_pbase == NULL) {
|
|
(void) fprintf(stderr, "top: Out of memory.\n");
|
|
quit(23);
|
|
}
|
|
}
|
|
memcpy(thread_pbase, pp, sizeof(struct kinfo_proc2) * thread_nproc);
|
|
|
|
lbase = kvm_getlwps(kd, -1, 0, sizeof(struct kinfo_lwp), &nlwp);
|
|
if (lbase == NULL) {
|
|
#ifdef notyet
|
|
if (sel->pid != (pid_t)-1) {
|
|
nproc = 0;
|
|
nlwp = 0;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
(void) fprintf(stderr, "top: Out of memory.\n");
|
|
quit(23);
|
|
}
|
|
}
|
|
if (nlwp > onlwp) {
|
|
n = (struct kinfo_lwp **) realloc(lref,
|
|
sizeof(struct kinfo_lwp *) * nlwp);
|
|
if (n == NULL) {
|
|
(void) fprintf(stderr, "top: Out of memory.\n");
|
|
quit(23);
|
|
}
|
|
lref = n;
|
|
onlwp = nlwp;
|
|
}
|
|
/* get a pointer to the states summary array */
|
|
si->procstates = process_states;
|
|
|
|
/* set up flags which define what we are going to select */
|
|
show_idle = sel->idle;
|
|
show_system = sel->system;
|
|
show_uid = sel->uid != -1;
|
|
|
|
/* count up thread states and get pointers to interesting threads */
|
|
total_lwps = 0;
|
|
active_lwps = 0;
|
|
memset((char *)process_states, 0, sizeof(process_states));
|
|
lrefp = lref;
|
|
for (lp = lbase, i = 0; i < nlwp; lp++, i++) {
|
|
if (sel->pid != (pid_t)-1 && sel->pid != (pid_t)lp->l_pid)
|
|
continue;
|
|
|
|
/*
|
|
* Place pointers to each valid lwp structure in lref[].
|
|
* thread slots that are actually in use have a non-zero
|
|
* status field. threads with L_SYSTEM set are system
|
|
* threads---these get ignored unless show_sysprocs is set.
|
|
*/
|
|
if (lp->l_stat != 0 && (show_system || ((lp->l_flag & LW_SYSTEM) == 0))) {
|
|
total_lwps++;
|
|
process_states[(unsigned char) lp->l_stat]++;
|
|
if (lp->l_stat != LSZOMB &&
|
|
(show_idle || (lp->l_pctcpu != 0) ||
|
|
(lp->l_stat == LSRUN || lp->l_stat == LSONPROC)) &&
|
|
(!show_uid || uid_from_thread(lp) == sel->uid)) {
|
|
*lrefp++ = lp;
|
|
active_lwps++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* if requested, sort the "interesting" threads */
|
|
if (compare != NULL) {
|
|
qsort((char *)lref, active_lwps, sizeof(struct kinfo_lwp *),
|
|
(int (*)(const void *, const void *))compare);
|
|
}
|
|
|
|
/* remember active and total counts */
|
|
si->p_total = total_lwps;
|
|
si->p_active = lref_len = active_lwps;
|
|
|
|
/* pass back a handle */
|
|
handle.next_proc = (struct kinfo_proc2 **)lref;
|
|
handle.remaining = active_lwps;
|
|
handle.sel = sel;
|
|
|
|
return((caddr_t)&handle);
|
|
}
|
|
|
|
char *
|
|
format_next_process(caddr_t handle, char *(*get_userid)(int))
|
|
{
|
|
|
|
if (threadmode)
|
|
return format_next_lwp(handle, get_userid);
|
|
else
|
|
return format_next_proc(handle, get_userid);
|
|
}
|
|
|
|
|
|
char *
|
|
format_next_proc(caddr_t handle, char *(*get_userid)(int))
|
|
{
|
|
struct kinfo_proc2 *pp;
|
|
long cputime;
|
|
double pct, wcpu, cpu;
|
|
struct handle *hp;
|
|
const char *statep;
|
|
#ifdef KI_NOCPU
|
|
char state[10];
|
|
#endif
|
|
char wmesg[KI_WMESGLEN + 1];
|
|
static char fmt[MAX_COLS]; /* static area where result is built */
|
|
|
|
/* find and remember the next proc structure */
|
|
hp = (struct handle *)handle;
|
|
pp = *(hp->next_proc++);
|
|
hp->remaining--;
|
|
|
|
/* get the process's user struct and set cputime */
|
|
|
|
#if 0
|
|
/* This does not produce the correct results */
|
|
cputime = pp->p_uticks + pp->p_sticks + pp->p_iticks;
|
|
#else
|
|
cputime = pp->p_rtime_sec; /* This does not count interrupts */
|
|
#endif
|
|
|
|
/* calculate the base for CPU percentages */
|
|
pct = pctdouble(pp->p_pctcpu);
|
|
|
|
if (pp->p_stat == LSSLEEP) {
|
|
strlcpy(wmesg, pp->p_wmesg, sizeof(wmesg));
|
|
statep = wmesg;
|
|
} else
|
|
statep = state_abbrev[(unsigned)pp->p_stat];
|
|
|
|
#ifdef KI_NOCPU
|
|
/* Post-1.5 change: add CPU number if appropriate */
|
|
if (pp->p_cpuid != KI_NOCPU && ncpu > 1) {
|
|
switch (pp->p_stat) {
|
|
case LSONPROC:
|
|
case LSRUN:
|
|
case LSSLEEP:
|
|
case LSIDL:
|
|
(void)snprintf(state, sizeof(state), "%.6s/%u",
|
|
statep, (unsigned int)pp->p_cpuid);
|
|
statep = state;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
wcpu = 100.0 * weighted_cpu(p_, pct, pp);
|
|
cpu = 100.0 * pct;
|
|
|
|
/* format this entry */
|
|
sprintf(fmt,
|
|
Proc_format,
|
|
pp->p_pid,
|
|
(*userprint)(pp->p_ruid),
|
|
pp->p_priority,
|
|
pp->p_nice - NZERO,
|
|
format_k(pagetok(PROCSIZE(pp))),
|
|
format_k(pagetok(pp->p_vm_rssize)),
|
|
statep,
|
|
format_time(cputime),
|
|
(wcpu >= 100.0) ? 0 : 2, wcpu,
|
|
(cpu >= 100.0) ? 0 : 2, cpu,
|
|
get_command(hp->sel, pp));
|
|
|
|
/* return the result */
|
|
return(fmt);
|
|
}
|
|
|
|
static char *
|
|
format_next_lwp(caddr_t handle, char *(*get_userid)(int))
|
|
{
|
|
struct kinfo_proc2 *pp;
|
|
struct kinfo_lwp *pl;
|
|
long cputime;
|
|
double pct;
|
|
struct handle *hp;
|
|
const char *statep;
|
|
#ifdef KI_NOCPU
|
|
char state[10];
|
|
#endif
|
|
char wmesg[KI_WMESGLEN + 1];
|
|
static char fmt[MAX_COLS]; /* static area where result is built */
|
|
int uid;
|
|
|
|
/* find and remember the next proc structure */
|
|
hp = (struct handle *)handle;
|
|
pl = (struct kinfo_lwp *)*(hp->next_proc++);
|
|
hp->remaining--;
|
|
pp = proc_from_thread(pl);
|
|
|
|
/* get the process's user struct and set cputime */
|
|
uid = pp ? pp->p_ruid : 0;
|
|
|
|
cputime = pl->l_rtime_sec;
|
|
|
|
/* calculate the base for CPU percentages */
|
|
pct = pctdouble(pl->l_pctcpu);
|
|
|
|
if (pl->l_stat == LSSLEEP) {
|
|
strlcpy(wmesg, pl->l_wmesg, sizeof(wmesg));
|
|
statep = wmesg;
|
|
} else
|
|
statep = state_abbrev[(unsigned)pl->l_stat];
|
|
|
|
#ifdef KI_NOCPU
|
|
/* Post-1.5 change: add CPU number if appropriate */
|
|
if (pl->l_cpuid != KI_NOCPU && ncpu > 1) {
|
|
switch (pl->l_stat) {
|
|
case LSONPROC:
|
|
case LSRUN:
|
|
case LSSLEEP:
|
|
case LSIDL:
|
|
(void)snprintf(state, sizeof(state), "%.6s/%u",
|
|
statep, (unsigned int)pl->l_cpuid);
|
|
statep = state;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (pl->l_name[0] == '\0') {
|
|
pl->l_name[0] = '-';
|
|
pl->l_name[1] = '\0';
|
|
}
|
|
|
|
/* format this entry */
|
|
sprintf(fmt,
|
|
Thread_format,
|
|
pl->l_pid,
|
|
pl->l_lid,
|
|
(*userprint)(uid),
|
|
pl->l_priority,
|
|
statep,
|
|
format_time(cputime),
|
|
100.0 * weighted_cpu(l_, pct, pl),
|
|
100.0 * pct,
|
|
printable(pl->l_name),
|
|
get_command(hp->sel, pp));
|
|
|
|
/* return the result */
|
|
return(fmt);
|
|
}
|
|
|
|
/* comparison routines for qsort */
|
|
|
|
/*
|
|
* There are currently four possible comparison routines. main selects
|
|
* one of these by indexing in to the array proc_compares.
|
|
*
|
|
* Possible keys are defined as macros below. Currently these keys are
|
|
* defined: percent CPU, CPU ticks, process state, resident set size,
|
|
* total virtual memory usage. The process states are ordered as follows
|
|
* (from least to most important): WAIT, zombie, sleep, stop, start, run.
|
|
* The array declaration below maps a process state index into a number
|
|
* that reflects this ordering.
|
|
*/
|
|
|
|
/*
|
|
* First, the possible comparison keys. These are defined in such a way
|
|
* that they can be merely listed in the source code to define the actual
|
|
* desired ordering.
|
|
*/
|
|
|
|
#define ORDERKEY_PCTCPU(pfx) \
|
|
if (lresult = (pctcpu)(p2)->pfx ## pctcpu - (pctcpu)(p1)->pfx ## pctcpu,\
|
|
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
|
|
|
|
#define ORDERKEY_CPTICKS(pfx) \
|
|
if (lresult = (pctcpu)(p2)->pfx ## rtime_sec \
|
|
- (pctcpu)(p1)->pfx ## rtime_sec,\
|
|
(result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
|
|
|
|
#define ORDERKEY_STATE(pfx) \
|
|
if ((result = sorted_state[(int)(p2)->pfx ## stat] - \
|
|
sorted_state[(int)(p1)->pfx ## stat] ) == 0)
|
|
|
|
#define ORDERKEY_PRIO(pfx) \
|
|
if ((result = (p2)->pfx ## priority - (p1)->pfx ## priority) == 0)
|
|
|
|
#define ORDERKEY_RSSIZE \
|
|
if ((result = p2->p_vm_rssize - p1->p_vm_rssize) == 0)
|
|
|
|
#define ORDERKEY_MEM \
|
|
if ((result = (PROCSIZE(p2) - PROCSIZE(p1))) == 0)
|
|
#define ORDERKEY_SIZE(v1, v2) \
|
|
if ((result = (v2 - v1)) == 0)
|
|
|
|
/*
|
|
* Now the array that maps process state to a weight.
|
|
* The order of the elements should match those in state_abbrev[]
|
|
*/
|
|
|
|
static int sorted_state[] = {
|
|
0, /* (not used) ? */
|
|
1, /* "start" SIDL */
|
|
4, /* "run" SRUN */
|
|
3, /* "sleep" SSLEEP */
|
|
3, /* "stop" SSTOP */
|
|
2, /* "dead" SDEAD */
|
|
1, /* "zomb" SZOMB */
|
|
5, /* "onproc" SONPROC */
|
|
};
|
|
|
|
/* compare_cpu - the comparison function for sorting by CPU percentage */
|
|
|
|
static int
|
|
compare_cpu(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
if (threadmode) {
|
|
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
|
|
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
|
|
|
|
ORDERKEY_PCTCPU(l_)
|
|
ORDERKEY_CPTICKS(l_)
|
|
ORDERKEY_STATE(l_)
|
|
ORDERKEY_PRIO(l_)
|
|
return result;
|
|
} else {
|
|
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
|
|
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
|
|
|
|
ORDERKEY_PCTCPU(p_)
|
|
ORDERKEY_CPTICKS(p_)
|
|
ORDERKEY_STATE(p_)
|
|
ORDERKEY_PRIO(p_)
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
return result;
|
|
}
|
|
|
|
return (result);
|
|
}
|
|
|
|
/* compare_prio - the comparison function for sorting by process priority */
|
|
|
|
static int
|
|
compare_prio(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
if (threadmode) {
|
|
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
|
|
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
|
|
|
|
ORDERKEY_PRIO(l_)
|
|
ORDERKEY_PCTCPU(l_)
|
|
ORDERKEY_CPTICKS(l_)
|
|
ORDERKEY_STATE(l_)
|
|
return result;
|
|
} else {
|
|
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
|
|
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
|
|
|
|
ORDERKEY_PRIO(p_)
|
|
ORDERKEY_PCTCPU(p_)
|
|
ORDERKEY_CPTICKS(p_)
|
|
ORDERKEY_STATE(p_)
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
return result;
|
|
}
|
|
|
|
return (result);
|
|
}
|
|
|
|
/* compare_res - the comparison function for sorting by resident set size */
|
|
|
|
static int
|
|
compare_res(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
if (threadmode) {
|
|
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
|
|
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
|
|
|
|
ORDERKEY_PCTCPU(l_)
|
|
ORDERKEY_CPTICKS(l_)
|
|
ORDERKEY_STATE(l_)
|
|
ORDERKEY_PRIO(l_)
|
|
return result;
|
|
} else {
|
|
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
|
|
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
|
|
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
ORDERKEY_PCTCPU(p_)
|
|
ORDERKEY_CPTICKS(p_)
|
|
ORDERKEY_STATE(p_)
|
|
ORDERKEY_PRIO(p_)
|
|
return result;
|
|
}
|
|
|
|
return (result);
|
|
}
|
|
|
|
static int
|
|
compare_pid(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
if (threadmode) {
|
|
struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1;
|
|
struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2;
|
|
struct kinfo_proc2 *p1 = proc_from_thread(l1);
|
|
struct kinfo_proc2 *p2 = proc_from_thread(l2);
|
|
return p2->p_pid - p1->p_pid;
|
|
} else {
|
|
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
|
|
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
|
|
return p2->p_pid - p1->p_pid;
|
|
}
|
|
}
|
|
|
|
static int
|
|
compare_command(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
if (threadmode) {
|
|
struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1;
|
|
struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2;
|
|
struct kinfo_proc2 *p1 = proc_from_thread(l1);
|
|
struct kinfo_proc2 *p2 = proc_from_thread(l2);
|
|
return strcmp(p2->p_comm, p1->p_comm);
|
|
} else {
|
|
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
|
|
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
|
|
return strcmp(p2->p_comm, p1->p_comm);
|
|
}
|
|
}
|
|
|
|
static int
|
|
compare_username(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
if (threadmode) {
|
|
struct kinfo_lwp *l1 = *(struct kinfo_lwp **) pp1;
|
|
struct kinfo_lwp *l2 = *(struct kinfo_lwp **) pp2;
|
|
struct kinfo_proc2 *p1 = proc_from_thread(l1);
|
|
struct kinfo_proc2 *p2 = proc_from_thread(l2);
|
|
return strcmp(p2->p_login, p1->p_login);
|
|
} else {
|
|
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
|
|
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
|
|
return strcmp(p2->p_login, p1->p_login);
|
|
}
|
|
}
|
|
/* compare_size - the comparison function for sorting by total memory usage */
|
|
|
|
static int
|
|
compare_size(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
if (threadmode) {
|
|
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
|
|
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
|
|
|
|
ORDERKEY_PCTCPU(l_)
|
|
ORDERKEY_CPTICKS(l_)
|
|
ORDERKEY_STATE(l_)
|
|
ORDERKEY_PRIO(l_)
|
|
return result;
|
|
} else {
|
|
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
|
|
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
|
|
|
|
ORDERKEY_MEM
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_PCTCPU(p_)
|
|
ORDERKEY_CPTICKS(p_)
|
|
ORDERKEY_STATE(p_)
|
|
ORDERKEY_PRIO(p_)
|
|
return result;
|
|
}
|
|
|
|
return (result);
|
|
}
|
|
|
|
/* compare_state - the comparison function for sorting by process state */
|
|
|
|
static int
|
|
compare_state(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
if (threadmode) {
|
|
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
|
|
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
|
|
|
|
ORDERKEY_STATE(l_)
|
|
ORDERKEY_PCTCPU(l_)
|
|
ORDERKEY_CPTICKS(l_)
|
|
ORDERKEY_PRIO(l_)
|
|
return result;
|
|
} else {
|
|
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
|
|
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
|
|
|
|
ORDERKEY_STATE(p_)
|
|
ORDERKEY_PCTCPU(p_)
|
|
ORDERKEY_CPTICKS(p_)
|
|
ORDERKEY_PRIO(p_)
|
|
ORDERKEY_RSSIZE
|
|
ORDERKEY_MEM
|
|
return result;
|
|
}
|
|
|
|
return (result);
|
|
}
|
|
|
|
/* compare_time - the comparison function for sorting by total CPU time */
|
|
|
|
static int
|
|
compare_time(pp1, pp2)
|
|
struct proc **pp1, **pp2;
|
|
{
|
|
int result;
|
|
pctcpu lresult;
|
|
|
|
if (threadmode) {
|
|
struct kinfo_lwp *p1 = *(struct kinfo_lwp **) pp1;
|
|
struct kinfo_lwp *p2 = *(struct kinfo_lwp **) pp2;
|
|
|
|
ORDERKEY_CPTICKS(l_)
|
|
ORDERKEY_PCTCPU(l_)
|
|
ORDERKEY_STATE(l_)
|
|
ORDERKEY_PRIO(l_)
|
|
return result;
|
|
} else {
|
|
struct kinfo_proc2 *p1 = *(struct kinfo_proc2 **) pp1;
|
|
struct kinfo_proc2 *p2 = *(struct kinfo_proc2 **) pp2;
|
|
|
|
ORDERKEY_CPTICKS(p_)
|
|
ORDERKEY_PCTCPU(p_)
|
|
ORDERKEY_STATE(p_)
|
|
ORDERKEY_PRIO(p_)
|
|
ORDERKEY_MEM
|
|
ORDERKEY_RSSIZE
|
|
return result;
|
|
}
|
|
|
|
return (result);
|
|
}
|
|
|
|
|
|
/*
|
|
* proc_owner(pid) - returns the uid that owns process "pid", or -1 if
|
|
* the process does not exist.
|
|
* It is EXTREMLY IMPORTANT that this function work correctly.
|
|
* If top runs setuid root (as in SVR4), then this function
|
|
* is the only thing that stands in the way of a serious
|
|
* security problem. It validates requests for the "kill"
|
|
* and "renice" commands.
|
|
*/
|
|
|
|
int
|
|
proc_owner(pid)
|
|
int pid;
|
|
{
|
|
int cnt;
|
|
struct kinfo_proc2 **prefp;
|
|
struct kinfo_proc2 *pp;
|
|
|
|
if (threadmode)
|
|
return(-1);
|
|
|
|
prefp = pref;
|
|
cnt = pref_len;
|
|
while (--cnt >= 0) {
|
|
pp = *prefp++;
|
|
if (pp->p_pid == (pid_t)pid)
|
|
return(pp->p_ruid);
|
|
}
|
|
return(-1);
|
|
}
|
|
|
|
/*
|
|
* percentages(cnt, out, new, old, diffs) - calculate percentage change
|
|
* between array "old" and "new", putting the percentages i "out".
|
|
* "cnt" is size of each array and "diffs" is used for scratch space.
|
|
* The array "old" is updated on each call.
|
|
* The routine assumes modulo arithmetic. This function is especially
|
|
* useful on BSD mchines for calculating CPU state percentages.
|
|
*/
|
|
|
|
static void
|
|
percentages64(cnt, out, new, old, diffs)
|
|
int cnt;
|
|
int *out;
|
|
u_int64_t *new;
|
|
u_int64_t *old;
|
|
u_int64_t *diffs;
|
|
{
|
|
int i;
|
|
u_int64_t change;
|
|
u_int64_t total_change;
|
|
u_int64_t *dp;
|
|
u_int64_t half_total;
|
|
|
|
/* initialization */
|
|
total_change = 0;
|
|
dp = diffs;
|
|
|
|
/* calculate changes for each state and the overall change */
|
|
for (i = 0; i < cnt; i++) {
|
|
/*
|
|
* Don't worry about wrapping - even at hz=1GHz, a
|
|
* u_int64_t will last at least 544 years.
|
|
*/
|
|
change = *new - *old;
|
|
total_change += (*dp++ = change);
|
|
*old++ = *new++;
|
|
}
|
|
|
|
/* avoid divide by zero potential */
|
|
if (total_change == 0)
|
|
total_change = 1;
|
|
|
|
/* calculate percentages based on overall change, rounding up */
|
|
half_total = total_change / 2;
|
|
for (i = 0; i < cnt; i++)
|
|
*out++ = (int)((*diffs++ * 1000 + half_total) / total_change);
|
|
}
|