NetBSD/sys/dev/ic/mfi.c
2014-01-25 10:14:29 +00:00

3630 lines
97 KiB
C

/* $NetBSD: mfi.c,v 1.51 2014/01/25 10:14:29 skrll Exp $ */
/* $OpenBSD: mfi.c,v 1.66 2006/11/28 23:59:45 dlg Exp $ */
/*
* Copyright (c) 2012 Manuel Bouyer.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2006 Marco Peereboom <marco@peereboom.us>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Copyright 1994-2009 The FreeBSD Project.
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FREEBSD PROJECT OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY,OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as representing
* official policies,either expressed or implied, of the FreeBSD Project.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mfi.c,v 1.51 2014/01/25 10:14:29 skrll Exp $");
#include "bio.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/cpu.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <uvm/uvm_param.h>
#include <sys/bus.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsi_spc.h>
#include <dev/scsipi/scsipi_disk.h>
#include <dev/scsipi/scsi_disk.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/ic/mfireg.h>
#include <dev/ic/mfivar.h>
#include <dev/ic/mfiio.h>
#if NBIO > 0
#include <dev/biovar.h>
#endif /* NBIO > 0 */
#ifdef MFI_DEBUG
uint32_t mfi_debug = 0
/* | MFI_D_CMD */
/* | MFI_D_INTR */
/* | MFI_D_MISC */
/* | MFI_D_DMA */
/* | MFI_D_IOCTL */
/* | MFI_D_RW */
/* | MFI_D_MEM */
/* | MFI_D_CCB */
/* | MFI_D_SYNC */
;
#endif
static void mfi_scsipi_request(struct scsipi_channel *,
scsipi_adapter_req_t, void *);
static void mfiminphys(struct buf *bp);
static struct mfi_ccb *mfi_get_ccb(struct mfi_softc *);
static void mfi_put_ccb(struct mfi_ccb *);
static int mfi_init_ccb(struct mfi_softc *);
static struct mfi_mem *mfi_allocmem(struct mfi_softc *, size_t);
static void mfi_freemem(struct mfi_softc *, struct mfi_mem **);
static int mfi_transition_firmware(struct mfi_softc *);
static int mfi_initialize_firmware(struct mfi_softc *);
static int mfi_get_info(struct mfi_softc *);
static int mfi_get_bbu(struct mfi_softc *,
struct mfi_bbu_status *);
/* return codes for mfi_get_bbu */
#define MFI_BBU_GOOD 0
#define MFI_BBU_BAD 1
#define MFI_BBU_UNKNOWN 2
static uint32_t mfi_read(struct mfi_softc *, bus_size_t);
static void mfi_write(struct mfi_softc *, bus_size_t, uint32_t);
static int mfi_poll(struct mfi_ccb *);
static int mfi_create_sgl(struct mfi_ccb *, int);
/* commands */
static int mfi_scsi_ld(struct mfi_ccb *, struct scsipi_xfer *);
static int mfi_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
uint64_t, uint32_t);
static void mfi_scsi_ld_done(struct mfi_ccb *);
static void mfi_scsi_xs_done(struct mfi_ccb *, int, int);
static int mfi_mgmt_internal(struct mfi_softc *, uint32_t,
uint32_t, uint32_t, void *, uint8_t *, bool);
static int mfi_mgmt(struct mfi_ccb *,struct scsipi_xfer *,
uint32_t, uint32_t, uint32_t, void *, uint8_t *);
static void mfi_mgmt_done(struct mfi_ccb *);
#if NBIO > 0
static int mfi_ioctl(device_t, u_long, void *);
static int mfi_ioctl_inq(struct mfi_softc *, struct bioc_inq *);
static int mfi_ioctl_vol(struct mfi_softc *, struct bioc_vol *);
static int mfi_ioctl_disk(struct mfi_softc *, struct bioc_disk *);
static int mfi_ioctl_alarm(struct mfi_softc *,
struct bioc_alarm *);
static int mfi_ioctl_blink(struct mfi_softc *sc,
struct bioc_blink *);
static int mfi_ioctl_setstate(struct mfi_softc *,
struct bioc_setstate *);
static int mfi_bio_hs(struct mfi_softc *, int, int, void *);
static int mfi_create_sensors(struct mfi_softc *);
static int mfi_destroy_sensors(struct mfi_softc *);
static void mfi_sensor_refresh(struct sysmon_envsys *,
envsys_data_t *);
#endif /* NBIO > 0 */
static bool mfi_shutdown(device_t, int);
static bool mfi_suspend(device_t, const pmf_qual_t *);
static bool mfi_resume(device_t, const pmf_qual_t *);
static dev_type_open(mfifopen);
static dev_type_close(mfifclose);
static dev_type_ioctl(mfifioctl);
const struct cdevsw mfi_cdevsw = {
mfifopen, mfifclose, noread, nowrite, mfifioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_OTHER
};
extern struct cfdriver mfi_cd;
static uint32_t mfi_xscale_fw_state(struct mfi_softc *sc);
static void mfi_xscale_intr_ena(struct mfi_softc *sc);
static void mfi_xscale_intr_dis(struct mfi_softc *sc);
static int mfi_xscale_intr(struct mfi_softc *sc);
static void mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
static const struct mfi_iop_ops mfi_iop_xscale = {
mfi_xscale_fw_state,
mfi_xscale_intr_dis,
mfi_xscale_intr_ena,
mfi_xscale_intr,
mfi_xscale_post,
mfi_scsi_ld_io,
};
static uint32_t mfi_ppc_fw_state(struct mfi_softc *sc);
static void mfi_ppc_intr_ena(struct mfi_softc *sc);
static void mfi_ppc_intr_dis(struct mfi_softc *sc);
static int mfi_ppc_intr(struct mfi_softc *sc);
static void mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
static const struct mfi_iop_ops mfi_iop_ppc = {
mfi_ppc_fw_state,
mfi_ppc_intr_dis,
mfi_ppc_intr_ena,
mfi_ppc_intr,
mfi_ppc_post,
mfi_scsi_ld_io,
};
uint32_t mfi_gen2_fw_state(struct mfi_softc *sc);
void mfi_gen2_intr_ena(struct mfi_softc *sc);
void mfi_gen2_intr_dis(struct mfi_softc *sc);
int mfi_gen2_intr(struct mfi_softc *sc);
void mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb);
static const struct mfi_iop_ops mfi_iop_gen2 = {
mfi_gen2_fw_state,
mfi_gen2_intr_dis,
mfi_gen2_intr_ena,
mfi_gen2_intr,
mfi_gen2_post,
mfi_scsi_ld_io,
};
u_int32_t mfi_skinny_fw_state(struct mfi_softc *);
void mfi_skinny_intr_dis(struct mfi_softc *);
void mfi_skinny_intr_ena(struct mfi_softc *);
int mfi_skinny_intr(struct mfi_softc *);
void mfi_skinny_post(struct mfi_softc *, struct mfi_ccb *);
static const struct mfi_iop_ops mfi_iop_skinny = {
mfi_skinny_fw_state,
mfi_skinny_intr_dis,
mfi_skinny_intr_ena,
mfi_skinny_intr,
mfi_skinny_post,
mfi_scsi_ld_io,
};
static int mfi_tbolt_init_desc_pool(struct mfi_softc *);
static int mfi_tbolt_init_MFI_queue(struct mfi_softc *);
static void mfi_tbolt_build_mpt_ccb(struct mfi_ccb *);
int mfi_tbolt_scsi_ld_io(struct mfi_ccb *, struct scsipi_xfer *,
uint64_t, uint32_t);
static void mfi_tbolt_scsi_ld_done(struct mfi_ccb *);
static int mfi_tbolt_create_sgl(struct mfi_ccb *, int);
void mfi_tbolt_sync_map_info(struct work *, void *);
static void mfi_sync_map_complete(struct mfi_ccb *);
u_int32_t mfi_tbolt_fw_state(struct mfi_softc *);
void mfi_tbolt_intr_dis(struct mfi_softc *);
void mfi_tbolt_intr_ena(struct mfi_softc *);
int mfi_tbolt_intr(struct mfi_softc *sc);
void mfi_tbolt_post(struct mfi_softc *, struct mfi_ccb *);
static const struct mfi_iop_ops mfi_iop_tbolt = {
mfi_tbolt_fw_state,
mfi_tbolt_intr_dis,
mfi_tbolt_intr_ena,
mfi_tbolt_intr,
mfi_tbolt_post,
mfi_tbolt_scsi_ld_io,
};
#define mfi_fw_state(_s) ((_s)->sc_iop->mio_fw_state(_s))
#define mfi_intr_enable(_s) ((_s)->sc_iop->mio_intr_ena(_s))
#define mfi_intr_disable(_s) ((_s)->sc_iop->mio_intr_dis(_s))
#define mfi_my_intr(_s) ((_s)->sc_iop->mio_intr(_s))
#define mfi_post(_s, _c) ((_s)->sc_iop->mio_post((_s), (_c)))
static struct mfi_ccb *
mfi_get_ccb(struct mfi_softc *sc)
{
struct mfi_ccb *ccb;
int s;
s = splbio();
ccb = TAILQ_FIRST(&sc->sc_ccb_freeq);
if (ccb) {
TAILQ_REMOVE(&sc->sc_ccb_freeq, ccb, ccb_link);
ccb->ccb_state = MFI_CCB_READY;
}
splx(s);
DNPRINTF(MFI_D_CCB, "%s: mfi_get_ccb: %p\n", DEVNAME(sc), ccb);
if (__predict_false(ccb == NULL && sc->sc_running))
aprint_error_dev(sc->sc_dev, "out of ccb\n");
return ccb;
}
static void
mfi_put_ccb(struct mfi_ccb *ccb)
{
struct mfi_softc *sc = ccb->ccb_sc;
struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
int s;
DNPRINTF(MFI_D_CCB, "%s: mfi_put_ccb: %p\n", DEVNAME(sc), ccb);
hdr->mfh_cmd_status = 0x0;
hdr->mfh_flags = 0x0;
ccb->ccb_state = MFI_CCB_FREE;
ccb->ccb_xs = NULL;
ccb->ccb_flags = 0;
ccb->ccb_done = NULL;
ccb->ccb_direction = 0;
ccb->ccb_frame_size = 0;
ccb->ccb_extra_frames = 0;
ccb->ccb_sgl = NULL;
ccb->ccb_data = NULL;
ccb->ccb_len = 0;
if (sc->sc_ioptype == MFI_IOP_TBOLT) {
/* erase tb_request_desc but preserve SMID */
int index = ccb->ccb_tb_request_desc.header.SMID;
ccb->ccb_tb_request_desc.words = 0;
ccb->ccb_tb_request_desc.header.SMID = index;
}
s = splbio();
TAILQ_INSERT_TAIL(&sc->sc_ccb_freeq, ccb, ccb_link);
splx(s);
}
static int
mfi_destroy_ccb(struct mfi_softc *sc)
{
struct mfi_ccb *ccb;
uint32_t i;
DNPRINTF(MFI_D_CCB, "%s: mfi_destroy_ccb\n", DEVNAME(sc));
for (i = 0; (ccb = mfi_get_ccb(sc)) != NULL; i++) {
/* create a dma map for transfer */
bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
}
if (i < sc->sc_max_cmds)
return EBUSY;
free(sc->sc_ccb, M_DEVBUF);
return 0;
}
static int
mfi_init_ccb(struct mfi_softc *sc)
{
struct mfi_ccb *ccb;
uint32_t i;
int error;
bus_addr_t io_req_base_phys;
uint8_t *io_req_base;
int offset;
DNPRINTF(MFI_D_CCB, "%s: mfi_init_ccb\n", DEVNAME(sc));
sc->sc_ccb = malloc(sizeof(struct mfi_ccb) * sc->sc_max_cmds,
M_DEVBUF, M_WAITOK|M_ZERO);
io_req_base = (uint8_t *)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
io_req_base_phys = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
if (sc->sc_ioptype == MFI_IOP_TBOLT) {
/*
* The first 256 bytes (SMID 0) is not used.
* Don't add to the cmd list.
*/
io_req_base += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
io_req_base_phys += MEGASAS_THUNDERBOLT_NEW_MSG_SIZE;
}
for (i = 0; i < sc->sc_max_cmds; i++) {
ccb = &sc->sc_ccb[i];
ccb->ccb_sc = sc;
/* select i'th frame */
ccb->ccb_frame = (union mfi_frame *)
((char*)MFIMEM_KVA(sc->sc_frames) + sc->sc_frames_size * i);
ccb->ccb_pframe =
MFIMEM_DVA(sc->sc_frames) + sc->sc_frames_size * i;
ccb->ccb_frame->mfr_header.mfh_context = i;
/* select i'th sense */
ccb->ccb_sense = (struct mfi_sense *)
((char*)MFIMEM_KVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
ccb->ccb_psense =
(MFIMEM_DVA(sc->sc_sense) + MFI_SENSE_SIZE * i);
/* create a dma map for transfer */
error = bus_dmamap_create(sc->sc_datadmat,
MAXPHYS, sc->sc_max_sgl, MAXPHYS, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &ccb->ccb_dmamap);
if (error) {
aprint_error_dev(sc->sc_dev,
"cannot create ccb dmamap (%d)\n", error);
goto destroy;
}
if (sc->sc_ioptype == MFI_IOP_TBOLT) {
offset = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * i;
ccb->ccb_tb_io_request =
(struct mfi_mpi2_request_raid_scsi_io *)
(io_req_base + offset);
ccb->ccb_tb_pio_request =
io_req_base_phys + offset;
offset = MEGASAS_MAX_SZ_CHAIN_FRAME * i;
ccb->ccb_tb_sg_frame =
(mpi2_sge_io_union *)(sc->sc_reply_pool_limit +
offset);
ccb->ccb_tb_psg_frame = sc->sc_sg_frame_busaddr +
offset;
/* SMID 0 is reserved. Set SMID/index from 1 */
ccb->ccb_tb_request_desc.header.SMID = i + 1;
}
DNPRINTF(MFI_D_CCB,
"ccb(%d): %p frame: %#lx (%#lx) sense: %#lx (%#lx) map: %#lx\n",
ccb->ccb_frame->mfr_header.mfh_context, ccb,
(u_long)ccb->ccb_frame, (u_long)ccb->ccb_pframe,
(u_long)ccb->ccb_sense, (u_long)ccb->ccb_psense,
(u_long)ccb->ccb_dmamap);
/* add ccb to queue */
mfi_put_ccb(ccb);
}
return 0;
destroy:
/* free dma maps and ccb memory */
while (i) {
i--;
ccb = &sc->sc_ccb[i];
bus_dmamap_destroy(sc->sc_datadmat, ccb->ccb_dmamap);
}
free(sc->sc_ccb, M_DEVBUF);
return 1;
}
static uint32_t
mfi_read(struct mfi_softc *sc, bus_size_t r)
{
uint32_t rv;
bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
BUS_SPACE_BARRIER_READ);
rv = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r);
DNPRINTF(MFI_D_RW, "%s: mr 0x%lx 0x08%x ", DEVNAME(sc), (u_long)r, rv);
return rv;
}
static void
mfi_write(struct mfi_softc *sc, bus_size_t r, uint32_t v)
{
DNPRINTF(MFI_D_RW, "%s: mw 0x%lx 0x%08x", DEVNAME(sc), (u_long)r, v);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v);
bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4,
BUS_SPACE_BARRIER_WRITE);
}
static struct mfi_mem *
mfi_allocmem(struct mfi_softc *sc, size_t size)
{
struct mfi_mem *mm;
int nsegs;
DNPRINTF(MFI_D_MEM, "%s: mfi_allocmem: %ld\n", DEVNAME(sc),
(long)size);
mm = malloc(sizeof(struct mfi_mem), M_DEVBUF, M_NOWAIT|M_ZERO);
if (mm == NULL)
return NULL;
mm->am_size = size;
if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mm->am_map) != 0)
goto amfree;
if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &mm->am_seg, 1,
&nsegs, BUS_DMA_NOWAIT) != 0)
goto destroy;
if (bus_dmamem_map(sc->sc_dmat, &mm->am_seg, nsegs, size, &mm->am_kva,
BUS_DMA_NOWAIT) != 0)
goto free;
if (bus_dmamap_load(sc->sc_dmat, mm->am_map, mm->am_kva, size, NULL,
BUS_DMA_NOWAIT) != 0)
goto unmap;
DNPRINTF(MFI_D_MEM, " kva: %p dva: %p map: %p\n",
mm->am_kva, (void *)mm->am_map->dm_segs[0].ds_addr, mm->am_map);
memset(mm->am_kva, 0, size);
return mm;
unmap:
bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, size);
free:
bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
destroy:
bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
amfree:
free(mm, M_DEVBUF);
return NULL;
}
static void
mfi_freemem(struct mfi_softc *sc, struct mfi_mem **mmp)
{
struct mfi_mem *mm = *mmp;
if (mm == NULL)
return;
*mmp = NULL;
DNPRINTF(MFI_D_MEM, "%s: mfi_freemem: %p\n", DEVNAME(sc), mm);
bus_dmamap_unload(sc->sc_dmat, mm->am_map);
bus_dmamem_unmap(sc->sc_dmat, mm->am_kva, mm->am_size);
bus_dmamem_free(sc->sc_dmat, &mm->am_seg, 1);
bus_dmamap_destroy(sc->sc_dmat, mm->am_map);
free(mm, M_DEVBUF);
}
static int
mfi_transition_firmware(struct mfi_softc *sc)
{
uint32_t fw_state, cur_state;
int max_wait, i;
fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
DNPRINTF(MFI_D_CMD, "%s: mfi_transition_firmware: %#x\n", DEVNAME(sc),
fw_state);
while (fw_state != MFI_STATE_READY) {
DNPRINTF(MFI_D_MISC,
"%s: waiting for firmware to become ready\n",
DEVNAME(sc));
cur_state = fw_state;
switch (fw_state) {
case MFI_STATE_FAULT:
aprint_error_dev(sc->sc_dev, "firmware fault\n");
return 1;
case MFI_STATE_WAIT_HANDSHAKE:
if (sc->sc_ioptype == MFI_IOP_SKINNY ||
sc->sc_ioptype == MFI_IOP_TBOLT)
mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_CLEAR_HANDSHAKE);
else
mfi_write(sc, MFI_IDB, MFI_INIT_CLEAR_HANDSHAKE);
max_wait = 2;
break;
case MFI_STATE_OPERATIONAL:
if (sc->sc_ioptype == MFI_IOP_SKINNY ||
sc->sc_ioptype == MFI_IOP_TBOLT)
mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_READY);
else
mfi_write(sc, MFI_IDB, MFI_INIT_READY);
max_wait = 10;
break;
case MFI_STATE_UNDEFINED:
case MFI_STATE_BB_INIT:
max_wait = 2;
break;
case MFI_STATE_FW_INIT:
case MFI_STATE_DEVICE_SCAN:
case MFI_STATE_FLUSH_CACHE:
max_wait = 20;
break;
case MFI_STATE_BOOT_MESSAGE_PENDING:
if (sc->sc_ioptype == MFI_IOP_SKINNY ||
sc->sc_ioptype == MFI_IOP_TBOLT) {
mfi_write(sc, MFI_SKINNY_IDB, MFI_INIT_HOTPLUG);
} else {
mfi_write(sc, MFI_IDB, MFI_INIT_HOTPLUG);
}
max_wait = 180;
break;
default:
aprint_error_dev(sc->sc_dev,
"unknown firmware state %d\n", fw_state);
return 1;
}
for (i = 0; i < (max_wait * 10); i++) {
fw_state = mfi_fw_state(sc) & MFI_STATE_MASK;
if (fw_state == cur_state)
DELAY(100000);
else
break;
}
if (fw_state == cur_state) {
aprint_error_dev(sc->sc_dev,
"firmware stuck in state %#x\n", fw_state);
return 1;
}
}
return 0;
}
static int
mfi_initialize_firmware(struct mfi_softc *sc)
{
struct mfi_ccb *ccb;
struct mfi_init_frame *init;
struct mfi_init_qinfo *qinfo;
DNPRINTF(MFI_D_MISC, "%s: mfi_initialize_firmware\n", DEVNAME(sc));
if ((ccb = mfi_get_ccb(sc)) == NULL)
return 1;
init = &ccb->ccb_frame->mfr_init;
qinfo = (struct mfi_init_qinfo *)((uint8_t *)init + MFI_FRAME_SIZE);
memset(qinfo, 0, sizeof *qinfo);
qinfo->miq_rq_entries = sc->sc_max_cmds + 1;
qinfo->miq_rq_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
offsetof(struct mfi_prod_cons, mpc_reply_q));
qinfo->miq_pi_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
offsetof(struct mfi_prod_cons, mpc_producer));
qinfo->miq_ci_addr_lo = htole32(MFIMEM_DVA(sc->sc_pcq) +
offsetof(struct mfi_prod_cons, mpc_consumer));
init->mif_header.mfh_cmd = MFI_CMD_INIT;
init->mif_header.mfh_data_len = sizeof *qinfo;
init->mif_qinfo_new_addr_lo = htole32(ccb->ccb_pframe + MFI_FRAME_SIZE);
DNPRINTF(MFI_D_MISC, "%s: entries: %#x rq: %#x pi: %#x ci: %#x\n",
DEVNAME(sc),
qinfo->miq_rq_entries, qinfo->miq_rq_addr_lo,
qinfo->miq_pi_addr_lo, qinfo->miq_ci_addr_lo);
if (mfi_poll(ccb)) {
aprint_error_dev(sc->sc_dev,
"mfi_initialize_firmware failed\n");
return 1;
}
mfi_put_ccb(ccb);
return 0;
}
static int
mfi_get_info(struct mfi_softc *sc)
{
#ifdef MFI_DEBUG
int i;
#endif
DNPRINTF(MFI_D_MISC, "%s: mfi_get_info\n", DEVNAME(sc));
if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_GET_INFO, MFI_DATA_IN,
sizeof(sc->sc_info), &sc->sc_info, NULL, cold ? true : false))
return 1;
#ifdef MFI_DEBUG
for (i = 0; i < sc->sc_info.mci_image_component_count; i++) {
printf("%s: active FW %s Version %s date %s time %s\n",
DEVNAME(sc),
sc->sc_info.mci_image_component[i].mic_name,
sc->sc_info.mci_image_component[i].mic_version,
sc->sc_info.mci_image_component[i].mic_build_date,
sc->sc_info.mci_image_component[i].mic_build_time);
}
for (i = 0; i < sc->sc_info.mci_pending_image_component_count; i++) {
printf("%s: pending FW %s Version %s date %s time %s\n",
DEVNAME(sc),
sc->sc_info.mci_pending_image_component[i].mic_name,
sc->sc_info.mci_pending_image_component[i].mic_version,
sc->sc_info.mci_pending_image_component[i].mic_build_date,
sc->sc_info.mci_pending_image_component[i].mic_build_time);
}
printf("%s: max_arms %d max_spans %d max_arrs %d max_lds %d name %s\n",
DEVNAME(sc),
sc->sc_info.mci_max_arms,
sc->sc_info.mci_max_spans,
sc->sc_info.mci_max_arrays,
sc->sc_info.mci_max_lds,
sc->sc_info.mci_product_name);
printf("%s: serial %s present %#x fw time %d max_cmds %d max_sg %d\n",
DEVNAME(sc),
sc->sc_info.mci_serial_number,
sc->sc_info.mci_hw_present,
sc->sc_info.mci_current_fw_time,
sc->sc_info.mci_max_cmds,
sc->sc_info.mci_max_sg_elements);
printf("%s: max_rq %d lds_pres %d lds_deg %d lds_off %d pd_pres %d\n",
DEVNAME(sc),
sc->sc_info.mci_max_request_size,
sc->sc_info.mci_lds_present,
sc->sc_info.mci_lds_degraded,
sc->sc_info.mci_lds_offline,
sc->sc_info.mci_pd_present);
printf("%s: pd_dsk_prs %d pd_dsk_pred_fail %d pd_dsk_fail %d\n",
DEVNAME(sc),
sc->sc_info.mci_pd_disks_present,
sc->sc_info.mci_pd_disks_pred_failure,
sc->sc_info.mci_pd_disks_failed);
printf("%s: nvram %d mem %d flash %d\n",
DEVNAME(sc),
sc->sc_info.mci_nvram_size,
sc->sc_info.mci_memory_size,
sc->sc_info.mci_flash_size);
printf("%s: ram_cor %d ram_uncor %d clus_all %d clus_act %d\n",
DEVNAME(sc),
sc->sc_info.mci_ram_correctable_errors,
sc->sc_info.mci_ram_uncorrectable_errors,
sc->sc_info.mci_cluster_allowed,
sc->sc_info.mci_cluster_active);
printf("%s: max_strps_io %d raid_lvl %#x adapt_ops %#x ld_ops %#x\n",
DEVNAME(sc),
sc->sc_info.mci_max_strips_per_io,
sc->sc_info.mci_raid_levels,
sc->sc_info.mci_adapter_ops,
sc->sc_info.mci_ld_ops);
printf("%s: strp_sz_min %d strp_sz_max %d pd_ops %#x pd_mix %#x\n",
DEVNAME(sc),
sc->sc_info.mci_stripe_sz_ops.min,
sc->sc_info.mci_stripe_sz_ops.max,
sc->sc_info.mci_pd_ops,
sc->sc_info.mci_pd_mix_support);
printf("%s: ecc_bucket %d pckg_prop %s\n",
DEVNAME(sc),
sc->sc_info.mci_ecc_bucket_count,
sc->sc_info.mci_package_version);
printf("%s: sq_nm %d prd_fail_poll %d intr_thrtl %d intr_thrtl_to %d\n",
DEVNAME(sc),
sc->sc_info.mci_properties.mcp_seq_num,
sc->sc_info.mci_properties.mcp_pred_fail_poll_interval,
sc->sc_info.mci_properties.mcp_intr_throttle_cnt,
sc->sc_info.mci_properties.mcp_intr_throttle_timeout);
printf("%s: rbld_rate %d patr_rd_rate %d bgi_rate %d cc_rate %d\n",
DEVNAME(sc),
sc->sc_info.mci_properties.mcp_rebuild_rate,
sc->sc_info.mci_properties.mcp_patrol_read_rate,
sc->sc_info.mci_properties.mcp_bgi_rate,
sc->sc_info.mci_properties.mcp_cc_rate);
printf("%s: rc_rate %d ch_flsh %d spin_cnt %d spin_dly %d clus_en %d\n",
DEVNAME(sc),
sc->sc_info.mci_properties.mcp_recon_rate,
sc->sc_info.mci_properties.mcp_cache_flush_interval,
sc->sc_info.mci_properties.mcp_spinup_drv_cnt,
sc->sc_info.mci_properties.mcp_spinup_delay,
sc->sc_info.mci_properties.mcp_cluster_enable);
printf("%s: coerc %d alarm %d dis_auto_rbld %d dis_bat_wrn %d ecc %d\n",
DEVNAME(sc),
sc->sc_info.mci_properties.mcp_coercion_mode,
sc->sc_info.mci_properties.mcp_alarm_enable,
sc->sc_info.mci_properties.mcp_disable_auto_rebuild,
sc->sc_info.mci_properties.mcp_disable_battery_warn,
sc->sc_info.mci_properties.mcp_ecc_bucket_size);
printf("%s: ecc_leak %d rest_hs %d exp_encl_dev %d\n",
DEVNAME(sc),
sc->sc_info.mci_properties.mcp_ecc_bucket_leak_rate,
sc->sc_info.mci_properties.mcp_restore_hotspare_on_insertion,
sc->sc_info.mci_properties.mcp_expose_encl_devices);
printf("%s: vendor %#x device %#x subvendor %#x subdevice %#x\n",
DEVNAME(sc),
sc->sc_info.mci_pci.mip_vendor,
sc->sc_info.mci_pci.mip_device,
sc->sc_info.mci_pci.mip_subvendor,
sc->sc_info.mci_pci.mip_subdevice);
printf("%s: type %#x port_count %d port_addr ",
DEVNAME(sc),
sc->sc_info.mci_host.mih_type,
sc->sc_info.mci_host.mih_port_count);
for (i = 0; i < 8; i++)
printf("%.0" PRIx64 " ", sc->sc_info.mci_host.mih_port_addr[i]);
printf("\n");
printf("%s: type %.x port_count %d port_addr ",
DEVNAME(sc),
sc->sc_info.mci_device.mid_type,
sc->sc_info.mci_device.mid_port_count);
for (i = 0; i < 8; i++) {
printf("%.0" PRIx64 " ",
sc->sc_info.mci_device.mid_port_addr[i]);
}
printf("\n");
#endif /* MFI_DEBUG */
return 0;
}
static int
mfi_get_bbu(struct mfi_softc *sc, struct mfi_bbu_status *stat)
{
DNPRINTF(MFI_D_MISC, "%s: mfi_get_bbu\n", DEVNAME(sc));
if (mfi_mgmt_internal(sc, MR_DCMD_BBU_GET_STATUS, MFI_DATA_IN,
sizeof(*stat), stat, NULL, cold ? true : false))
return MFI_BBU_UNKNOWN;
#ifdef MFI_DEBUG
printf("bbu type %d, voltage %d, current %d, temperature %d, "
"status 0x%x\n", stat->battery_type, stat->voltage, stat->current,
stat->temperature, stat->fw_status);
printf("details: ");
switch(stat->battery_type) {
case MFI_BBU_TYPE_IBBU:
printf("guage %d relative charge %d charger state %d "
"charger ctrl %d\n", stat->detail.ibbu.gas_guage_status,
stat->detail.ibbu.relative_charge ,
stat->detail.ibbu.charger_system_state ,
stat->detail.ibbu.charger_system_ctrl);
printf("\tcurrent %d abs charge %d max error %d\n",
stat->detail.ibbu.charging_current ,
stat->detail.ibbu.absolute_charge ,
stat->detail.ibbu.max_error);
break;
case MFI_BBU_TYPE_BBU:
printf("guage %d relative charge %d charger state %d\n",
stat->detail.ibbu.gas_guage_status,
stat->detail.bbu.relative_charge ,
stat->detail.bbu.charger_status );
printf("\trem capacity %d fyll capacity %d SOH %d\n",
stat->detail.bbu.remaining_capacity ,
stat->detail.bbu.full_charge_capacity ,
stat->detail.bbu.is_SOH_good);
default:
printf("\n");
}
#endif
switch(stat->battery_type) {
case MFI_BBU_TYPE_BBU:
return (stat->detail.bbu.is_SOH_good ?
MFI_BBU_GOOD : MFI_BBU_BAD);
case MFI_BBU_TYPE_NONE:
return MFI_BBU_UNKNOWN;
default:
if (stat->fw_status &
(MFI_BBU_STATE_PACK_MISSING |
MFI_BBU_STATE_VOLTAGE_LOW |
MFI_BBU_STATE_TEMPERATURE_HIGH |
MFI_BBU_STATE_LEARN_CYC_FAIL |
MFI_BBU_STATE_LEARN_CYC_TIMEOUT |
MFI_BBU_STATE_I2C_ERR_DETECT))
return MFI_BBU_BAD;
return MFI_BBU_GOOD;
}
}
static void
mfiminphys(struct buf *bp)
{
DNPRINTF(MFI_D_MISC, "mfiminphys: %d\n", bp->b_bcount);
/* XXX currently using MFI_MAXFER = MAXPHYS */
if (bp->b_bcount > MFI_MAXFER)
bp->b_bcount = MFI_MAXFER;
minphys(bp);
}
int
mfi_rescan(device_t self, const char *ifattr, const int *locators)
{
struct mfi_softc *sc = device_private(self);
if (sc->sc_child != NULL)
return 0;
sc->sc_child = config_found_sm_loc(self, ifattr, locators, &sc->sc_chan,
scsiprint, NULL);
return 0;
}
void
mfi_childdetached(device_t self, device_t child)
{
struct mfi_softc *sc = device_private(self);
KASSERT(self == sc->sc_dev);
KASSERT(child == sc->sc_child);
if (child == sc->sc_child)
sc->sc_child = NULL;
}
int
mfi_detach(struct mfi_softc *sc, int flags)
{
int error;
DNPRINTF(MFI_D_MISC, "%s: mfi_detach\n", DEVNAME(sc));
if ((error = config_detach_children(sc->sc_dev, flags)) != 0)
return error;
#if NBIO > 0
mfi_destroy_sensors(sc);
bio_unregister(sc->sc_dev);
#endif /* NBIO > 0 */
mfi_intr_disable(sc);
mfi_shutdown(sc->sc_dev, 0);
if (sc->sc_ioptype == MFI_IOP_TBOLT) {
workqueue_destroy(sc->sc_ldsync_wq);
mfi_put_ccb(sc->sc_ldsync_ccb);
mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
mfi_freemem(sc, &sc->sc_tbolt_ioc_init);
mfi_freemem(sc, &sc->sc_tbolt_verbuf);
}
if ((error = mfi_destroy_ccb(sc)) != 0)
return error;
mfi_freemem(sc, &sc->sc_sense);
mfi_freemem(sc, &sc->sc_frames);
mfi_freemem(sc, &sc->sc_pcq);
return 0;
}
static bool
mfi_shutdown(device_t dev, int how)
{
struct mfi_softc *sc = device_private(dev);
uint8_t mbox[MFI_MBOX_SIZE];
int s = splbio();
DNPRINTF(MFI_D_MISC, "%s: mfi_shutdown\n", DEVNAME(sc));
if (sc->sc_running) {
mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_CACHE_FLUSH,
MFI_DATA_NONE, 0, NULL, mbox, true)) {
aprint_error_dev(dev, "shutdown: cache flush failed\n");
goto fail;
}
mbox[0] = 0;
if (mfi_mgmt_internal(sc, MR_DCMD_CTRL_SHUTDOWN,
MFI_DATA_NONE, 0, NULL, mbox, true)) {
aprint_error_dev(dev, "shutdown: "
"firmware shutdown failed\n");
goto fail;
}
sc->sc_running = false;
}
splx(s);
return true;
fail:
splx(s);
return false;
}
static bool
mfi_suspend(device_t dev, const pmf_qual_t *q)
{
/* XXX to be implemented */
return false;
}
static bool
mfi_resume(device_t dev, const pmf_qual_t *q)
{
/* XXX to be implemented */
return false;
}
int
mfi_attach(struct mfi_softc *sc, enum mfi_iop iop)
{
struct scsipi_adapter *adapt = &sc->sc_adapt;
struct scsipi_channel *chan = &sc->sc_chan;
uint32_t status, frames, max_sgl;
int i;
DNPRINTF(MFI_D_MISC, "%s: mfi_attach\n", DEVNAME(sc));
sc->sc_ioptype = iop;
switch (iop) {
case MFI_IOP_XSCALE:
sc->sc_iop = &mfi_iop_xscale;
break;
case MFI_IOP_PPC:
sc->sc_iop = &mfi_iop_ppc;
break;
case MFI_IOP_GEN2:
sc->sc_iop = &mfi_iop_gen2;
break;
case MFI_IOP_SKINNY:
sc->sc_iop = &mfi_iop_skinny;
break;
case MFI_IOP_TBOLT:
sc->sc_iop = &mfi_iop_tbolt;
break;
default:
panic("%s: unknown iop %d", DEVNAME(sc), iop);
}
if (mfi_transition_firmware(sc))
return 1;
TAILQ_INIT(&sc->sc_ccb_freeq);
status = mfi_fw_state(sc);
sc->sc_max_cmds = status & MFI_STATE_MAXCMD_MASK;
max_sgl = (status & MFI_STATE_MAXSGL_MASK) >> 16;
if (sc->sc_ioptype == MFI_IOP_TBOLT) {
sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
sc->sc_sgl_size = sizeof(struct mfi_sg_ieee);
} else if (sc->sc_64bit_dma) {
sc->sc_max_sgl = min(max_sgl, (128 * 1024) / PAGE_SIZE + 1);
sc->sc_sgl_size = sizeof(struct mfi_sg64);
} else {
sc->sc_max_sgl = max_sgl;
sc->sc_sgl_size = sizeof(struct mfi_sg32);
}
DNPRINTF(MFI_D_MISC, "%s: max commands: %u, max sgl: %u\n",
DEVNAME(sc), sc->sc_max_cmds, sc->sc_max_sgl);
if (sc->sc_ioptype == MFI_IOP_TBOLT) {
uint32_t tb_mem_size;
/* for Alignment */
tb_mem_size = MEGASAS_THUNDERBOLT_MSG_ALLIGNMENT;
tb_mem_size +=
MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1);
sc->sc_reply_pool_size =
((sc->sc_max_cmds + 1 + 15) / 16) * 16;
tb_mem_size +=
MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
/* this is for SGL's */
tb_mem_size += MEGASAS_MAX_SZ_CHAIN_FRAME * sc->sc_max_cmds;
sc->sc_tbolt_reqmsgpool = mfi_allocmem(sc, tb_mem_size);
if (sc->sc_tbolt_reqmsgpool == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate thunderbolt "
"request message pool\n");
goto nopcq;
}
if (mfi_tbolt_init_desc_pool(sc)) {
aprint_error_dev(sc->sc_dev,
"Thunderbolt pool preparation error\n");
goto nopcq;
}
/*
* Allocate DMA memory mapping for MPI2 IOC Init descriptor,
* we are taking it diffrent from what we have allocated for
* Request and reply descriptors to avoid confusion later
*/
sc->sc_tbolt_ioc_init = mfi_allocmem(sc,
sizeof(struct mpi2_ioc_init_request));
if (sc->sc_tbolt_ioc_init == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate thunderbolt IOC init memory");
goto nopcq;
}
sc->sc_tbolt_verbuf = mfi_allocmem(sc,
MEGASAS_MAX_NAME*sizeof(bus_addr_t));
if (sc->sc_tbolt_verbuf == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate thunderbolt version buffer\n");
goto nopcq;
}
}
/* consumer/producer and reply queue memory */
sc->sc_pcq = mfi_allocmem(sc, (sizeof(uint32_t) * sc->sc_max_cmds) +
sizeof(struct mfi_prod_cons));
if (sc->sc_pcq == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate reply queue memory\n");
goto nopcq;
}
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* frame memory */
frames = (sc->sc_sgl_size * sc->sc_max_sgl + MFI_FRAME_SIZE - 1) /
MFI_FRAME_SIZE + 1;
sc->sc_frames_size = frames * MFI_FRAME_SIZE;
sc->sc_frames = mfi_allocmem(sc, sc->sc_frames_size * sc->sc_max_cmds);
if (sc->sc_frames == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate frame memory\n");
goto noframe;
}
/* XXX hack, fix this */
if (MFIMEM_DVA(sc->sc_frames) & 0x3f) {
aprint_error_dev(sc->sc_dev,
"improper frame alignment (%#llx) FIXME\n",
(long long int)MFIMEM_DVA(sc->sc_frames));
goto noframe;
}
/* sense memory */
sc->sc_sense = mfi_allocmem(sc, sc->sc_max_cmds * MFI_SENSE_SIZE);
if (sc->sc_sense == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate sense memory\n");
goto nosense;
}
/* now that we have all memory bits go initialize ccbs */
if (mfi_init_ccb(sc)) {
aprint_error_dev(sc->sc_dev, "could not init ccb list\n");
goto noinit;
}
/* kickstart firmware with all addresses and pointers */
if (sc->sc_ioptype == MFI_IOP_TBOLT) {
if (mfi_tbolt_init_MFI_queue(sc)) {
aprint_error_dev(sc->sc_dev,
"could not initialize firmware\n");
goto noinit;
}
} else {
if (mfi_initialize_firmware(sc)) {
aprint_error_dev(sc->sc_dev,
"could not initialize firmware\n");
goto noinit;
}
}
sc->sc_running = true;
if (mfi_get_info(sc)) {
aprint_error_dev(sc->sc_dev,
"could not retrieve controller information\n");
goto noinit;
}
aprint_normal_dev(sc->sc_dev,
"%s version %s\n",
sc->sc_info.mci_product_name,
sc->sc_info.mci_package_version);
aprint_normal_dev(sc->sc_dev, "logical drives %d, %dMB RAM, ",
sc->sc_info.mci_lds_present,
sc->sc_info.mci_memory_size);
sc->sc_bbuok = false;
if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) {
struct mfi_bbu_status bbu_stat;
int mfi_bbu_status = mfi_get_bbu(sc, &bbu_stat);
aprint_normal("BBU type ");
switch (bbu_stat.battery_type) {
case MFI_BBU_TYPE_BBU:
aprint_normal("BBU");
break;
case MFI_BBU_TYPE_IBBU:
aprint_normal("IBBU");
break;
default:
aprint_normal("unknown type %d", bbu_stat.battery_type);
}
aprint_normal(", status ");
switch(mfi_bbu_status) {
case MFI_BBU_GOOD:
aprint_normal("good\n");
sc->sc_bbuok = true;
break;
case MFI_BBU_BAD:
aprint_normal("bad\n");
break;
case MFI_BBU_UNKNOWN:
aprint_normal("unknown\n");
break;
default:
panic("mfi_bbu_status");
}
} else {
aprint_normal("BBU not present\n");
}
sc->sc_ld_cnt = sc->sc_info.mci_lds_present;
sc->sc_max_ld = sc->sc_ld_cnt;
for (i = 0; i < sc->sc_ld_cnt; i++)
sc->sc_ld[i].ld_present = 1;
memset(adapt, 0, sizeof(*adapt));
adapt->adapt_dev = sc->sc_dev;
adapt->adapt_nchannels = 1;
/* keep a few commands for management */
if (sc->sc_max_cmds > 4)
adapt->adapt_openings = sc->sc_max_cmds - 4;
else
adapt->adapt_openings = sc->sc_max_cmds;
adapt->adapt_max_periph = adapt->adapt_openings;
adapt->adapt_request = mfi_scsipi_request;
adapt->adapt_minphys = mfiminphys;
memset(chan, 0, sizeof(*chan));
chan->chan_adapter = adapt;
chan->chan_bustype = &scsi_sas_bustype;
chan->chan_channel = 0;
chan->chan_flags = 0;
chan->chan_nluns = 8;
chan->chan_ntargets = MFI_MAX_LD;
chan->chan_id = MFI_MAX_LD;
mfi_rescan(sc->sc_dev, "scsi", NULL);
/* enable interrupts */
mfi_intr_enable(sc);
#if NBIO > 0
if (bio_register(sc->sc_dev, mfi_ioctl) != 0)
panic("%s: controller registration failed", DEVNAME(sc));
if (mfi_create_sensors(sc) != 0)
aprint_error_dev(sc->sc_dev, "unable to create sensors\n");
#endif /* NBIO > 0 */
if (!pmf_device_register1(sc->sc_dev, mfi_suspend, mfi_resume,
mfi_shutdown)) {
aprint_error_dev(sc->sc_dev,
"couldn't establish power handler\n");
}
return 0;
noinit:
mfi_freemem(sc, &sc->sc_sense);
nosense:
mfi_freemem(sc, &sc->sc_frames);
noframe:
mfi_freemem(sc, &sc->sc_pcq);
nopcq:
if (sc->sc_ioptype == MFI_IOP_TBOLT) {
if (sc->sc_tbolt_reqmsgpool)
mfi_freemem(sc, &sc->sc_tbolt_reqmsgpool);
if (sc->sc_tbolt_verbuf)
mfi_freemem(sc, &sc->sc_tbolt_verbuf);
}
return 1;
}
static int
mfi_poll(struct mfi_ccb *ccb)
{
struct mfi_softc *sc = ccb->ccb_sc;
struct mfi_frame_header *hdr;
int to = 0;
int rv = 0;
DNPRINTF(MFI_D_CMD, "%s: mfi_poll\n", DEVNAME(sc));
hdr = &ccb->ccb_frame->mfr_header;
hdr->mfh_cmd_status = 0xff;
if (!sc->sc_MFA_enabled)
hdr->mfh_flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
/* no callback, caller is supposed to do the cleanup */
ccb->ccb_done = NULL;
mfi_post(sc, ccb);
if (sc->sc_MFA_enabled) {
/*
* depending on the command type, result may be posted
* to *hdr, or not. In addition it seems there's
* no way to avoid posting the SMID to the reply queue.
* So pool using the interrupt routine.
*/
while (ccb->ccb_state != MFI_CCB_DONE) {
delay(1000);
if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
rv = 1;
break;
}
mfi_tbolt_intrh(sc);
}
} else {
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
while (hdr->mfh_cmd_status == 0xff) {
delay(1000);
if (to++ > 5000) { /* XXX 5 seconds busywait sucks */
rv = 1;
break;
}
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
sc->sc_frames_size, BUS_DMASYNC_POSTREAD);
}
}
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
sc->sc_frames_size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (ccb->ccb_data != NULL) {
DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
DEVNAME(sc));
bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize,
(ccb->ccb_direction & MFI_DATA_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
}
if (rv != 0) {
aprint_error_dev(sc->sc_dev, "timeout on ccb %d\n",
hdr->mfh_context);
ccb->ccb_flags |= MFI_CCB_F_ERR;
return 1;
}
return 0;
}
int
mfi_intr(void *arg)
{
struct mfi_softc *sc = arg;
struct mfi_prod_cons *pcq;
struct mfi_ccb *ccb;
uint32_t producer, consumer, ctx;
int claimed = 0;
if (!mfi_my_intr(sc))
return 0;
pcq = MFIMEM_KVA(sc->sc_pcq);
DNPRINTF(MFI_D_INTR, "%s: mfi_intr %#lx %#lx\n", DEVNAME(sc),
(u_long)sc, (u_long)pcq);
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
producer = pcq->mpc_producer;
consumer = pcq->mpc_consumer;
while (consumer != producer) {
DNPRINTF(MFI_D_INTR, "%s: mfi_intr pi %#x ci %#x\n",
DEVNAME(sc), producer, consumer);
ctx = pcq->mpc_reply_q[consumer];
pcq->mpc_reply_q[consumer] = MFI_INVALID_CTX;
if (ctx == MFI_INVALID_CTX)
aprint_error_dev(sc->sc_dev,
"invalid context, p: %d c: %d\n",
producer, consumer);
else {
/* XXX remove from queue and call scsi_done */
ccb = &sc->sc_ccb[ctx];
DNPRINTF(MFI_D_INTR, "%s: mfi_intr context %#x\n",
DEVNAME(sc), ctx);
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
sc->sc_frames_size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ccb->ccb_done(ccb);
claimed = 1;
}
consumer++;
if (consumer == (sc->sc_max_cmds + 1))
consumer = 0;
}
pcq->mpc_consumer = consumer;
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_pcq), 0,
sizeof(uint32_t) * sc->sc_max_cmds + sizeof(struct mfi_prod_cons),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return claimed;
}
static int
mfi_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs, uint64_t blockno,
uint32_t blockcnt)
{
struct scsipi_periph *periph = xs->xs_periph;
struct mfi_io_frame *io;
DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld_io: %d\n",
device_xname(periph->periph_channel->chan_adapter->adapt_dev),
periph->periph_target);
if (!xs->data)
return 1;
io = &ccb->ccb_frame->mfr_io;
if (xs->xs_control & XS_CTL_DATA_IN) {
io->mif_header.mfh_cmd = MFI_CMD_LD_READ;
ccb->ccb_direction = MFI_DATA_IN;
} else {
io->mif_header.mfh_cmd = MFI_CMD_LD_WRITE;
ccb->ccb_direction = MFI_DATA_OUT;
}
io->mif_header.mfh_target_id = periph->periph_target;
io->mif_header.mfh_timeout = 0;
io->mif_header.mfh_flags = 0;
io->mif_header.mfh_sense_len = MFI_SENSE_SIZE;
io->mif_header.mfh_data_len= blockcnt;
io->mif_lba_hi = (blockno >> 32);
io->mif_lba_lo = (blockno & 0xffffffff);
io->mif_sense_addr_lo = htole32(ccb->ccb_psense);
io->mif_sense_addr_hi = 0;
ccb->ccb_done = mfi_scsi_ld_done;
ccb->ccb_xs = xs;
ccb->ccb_frame_size = MFI_IO_FRAME_SIZE;
ccb->ccb_sgl = &io->mif_sgl;
ccb->ccb_data = xs->data;
ccb->ccb_len = xs->datalen;
if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
return 1;
return 0;
}
static void
mfi_scsi_ld_done(struct mfi_ccb *ccb)
{
struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
mfi_scsi_xs_done(ccb, hdr->mfh_cmd_status, hdr->mfh_scsi_status);
}
static void
mfi_scsi_xs_done(struct mfi_ccb *ccb, int status, int scsi_status)
{
struct scsipi_xfer *xs = ccb->ccb_xs;
struct mfi_softc *sc = ccb->ccb_sc;
DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done %#lx %#lx\n",
DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
if (xs->data != NULL) {
DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done sync\n",
DEVNAME(sc));
bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize,
(xs->xs_control & XS_CTL_DATA_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
}
if (status != MFI_STAT_OK) {
xs->error = XS_DRIVER_STUFFUP;
DNPRINTF(MFI_D_INTR, "%s: mfi_scsi_xs_done stuffup %#x\n",
DEVNAME(sc), status);
if (scsi_status != 0) {
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
MFI_SENSE_SIZE, BUS_DMASYNC_POSTREAD);
DNPRINTF(MFI_D_INTR,
"%s: mfi_scsi_xs_done sense %#x %lx %lx\n",
DEVNAME(sc), scsi_status,
(u_long)&xs->sense, (u_long)ccb->ccb_sense);
memset(&xs->sense, 0, sizeof(xs->sense));
memcpy(&xs->sense, ccb->ccb_sense,
sizeof(struct scsi_sense_data));
xs->error = XS_SENSE;
}
} else {
xs->error = XS_NOERROR;
xs->status = SCSI_OK;
xs->resid = 0;
}
mfi_put_ccb(ccb);
scsipi_done(xs);
}
static int
mfi_scsi_ld(struct mfi_ccb *ccb, struct scsipi_xfer *xs)
{
struct mfi_pass_frame *pf;
struct scsipi_periph *periph = xs->xs_periph;
DNPRINTF(MFI_D_CMD, "%s: mfi_scsi_ld: %d\n",
device_xname(periph->periph_channel->chan_adapter->adapt_dev),
periph->periph_target);
pf = &ccb->ccb_frame->mfr_pass;
pf->mpf_header.mfh_cmd = MFI_CMD_LD_SCSI_IO;
pf->mpf_header.mfh_target_id = periph->periph_target;
pf->mpf_header.mfh_lun_id = 0;
pf->mpf_header.mfh_cdb_len = xs->cmdlen;
pf->mpf_header.mfh_timeout = 0;
pf->mpf_header.mfh_data_len= xs->datalen; /* XXX */
pf->mpf_header.mfh_sense_len = MFI_SENSE_SIZE;
pf->mpf_sense_addr_hi = 0;
pf->mpf_sense_addr_lo = htole32(ccb->ccb_psense);
memset(pf->mpf_cdb, 0, 16);
memcpy(pf->mpf_cdb, &xs->cmdstore, xs->cmdlen);
ccb->ccb_done = mfi_scsi_ld_done;
ccb->ccb_xs = xs;
ccb->ccb_frame_size = MFI_PASS_FRAME_SIZE;
ccb->ccb_sgl = &pf->mpf_sgl;
if (xs->xs_control & (XS_CTL_DATA_IN | XS_CTL_DATA_OUT))
ccb->ccb_direction = (xs->xs_control & XS_CTL_DATA_IN) ?
MFI_DATA_IN : MFI_DATA_OUT;
else
ccb->ccb_direction = MFI_DATA_NONE;
if (xs->data) {
ccb->ccb_data = xs->data;
ccb->ccb_len = xs->datalen;
if (mfi_create_sgl(ccb, (xs->xs_control & XS_CTL_NOSLEEP) ?
BUS_DMA_NOWAIT : BUS_DMA_WAITOK))
return 1;
}
return 0;
}
static void
mfi_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
void *arg)
{
struct scsipi_periph *periph;
struct scsipi_xfer *xs;
struct scsipi_adapter *adapt = chan->chan_adapter;
struct mfi_softc *sc = device_private(adapt->adapt_dev);
struct mfi_ccb *ccb;
struct scsi_rw_6 *rw;
struct scsipi_rw_10 *rwb;
struct scsipi_rw_12 *rw12;
struct scsipi_rw_16 *rw16;
uint64_t blockno;
uint32_t blockcnt;
uint8_t target;
uint8_t mbox[MFI_MBOX_SIZE];
int s;
switch (req) {
case ADAPTER_REQ_GROW_RESOURCES:
/* Not supported. */
return;
case ADAPTER_REQ_SET_XFER_MODE:
{
struct scsipi_xfer_mode *xm = arg;
xm->xm_mode = PERIPH_CAP_TQING;
xm->xm_period = 0;
xm->xm_offset = 0;
scsipi_async_event(&sc->sc_chan, ASYNC_EVENT_XFER_MODE, xm);
return;
}
case ADAPTER_REQ_RUN_XFER:
break;
}
xs = arg;
periph = xs->xs_periph;
target = periph->periph_target;
DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request req %d opcode: %#x "
"target %d lun %d\n", DEVNAME(sc), req, xs->cmd->opcode,
periph->periph_target, periph->periph_lun);
s = splbio();
if (target >= MFI_MAX_LD || !sc->sc_ld[target].ld_present ||
periph->periph_lun != 0) {
DNPRINTF(MFI_D_CMD, "%s: invalid target %d\n",
DEVNAME(sc), target);
xs->error = XS_SELTIMEOUT;
scsipi_done(xs);
splx(s);
return;
}
if ((xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_10 ||
xs->cmd->opcode == SCSI_SYNCHRONIZE_CACHE_16) && sc->sc_bbuok) {
/* the cache is stable storage, don't flush */
xs->error = XS_NOERROR;
xs->status = SCSI_OK;
xs->resid = 0;
scsipi_done(xs);
splx(s);
return;
}
if ((ccb = mfi_get_ccb(sc)) == NULL) {
DNPRINTF(MFI_D_CMD, "%s: mfi_scsipi_request no ccb\n", DEVNAME(sc));
xs->error = XS_RESOURCE_SHORTAGE;
scsipi_done(xs);
splx(s);
return;
}
switch (xs->cmd->opcode) {
/* IO path */
case READ_16:
case WRITE_16:
rw16 = (struct scsipi_rw_16 *)xs->cmd;
blockno = _8btol(rw16->addr);
blockcnt = _4btol(rw16->length);
if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
goto stuffup;
}
break;
case READ_12:
case WRITE_12:
rw12 = (struct scsipi_rw_12 *)xs->cmd;
blockno = _4btol(rw12->addr);
blockcnt = _4btol(rw12->length);
if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
goto stuffup;
}
break;
case READ_10:
case WRITE_10:
rwb = (struct scsipi_rw_10 *)xs->cmd;
blockno = _4btol(rwb->addr);
blockcnt = _2btol(rwb->length);
if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
goto stuffup;
}
break;
case SCSI_READ_6_COMMAND:
case SCSI_WRITE_6_COMMAND:
rw = (struct scsi_rw_6 *)xs->cmd;
blockno = _3btol(rw->addr) & (SRW_TOPADDR << 16 | 0xffff);
blockcnt = rw->length ? rw->length : 0x100;
if (sc->sc_iop->mio_ld_io(ccb, xs, blockno, blockcnt)) {
goto stuffup;
}
break;
case SCSI_SYNCHRONIZE_CACHE_10:
case SCSI_SYNCHRONIZE_CACHE_16:
mbox[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
if (mfi_mgmt(ccb, xs,
MR_DCMD_CTRL_CACHE_FLUSH, MFI_DATA_NONE, 0, NULL, mbox)) {
goto stuffup;
}
break;
/* hand it of to the firmware and let it deal with it */
case SCSI_TEST_UNIT_READY:
/* save off sd? after autoconf */
if (!cold) /* XXX bogus */
strlcpy(sc->sc_ld[target].ld_dev, device_xname(sc->sc_dev),
sizeof(sc->sc_ld[target].ld_dev));
/* FALLTHROUGH */
default:
if (mfi_scsi_ld(ccb, xs)) {
goto stuffup;
}
break;
}
DNPRINTF(MFI_D_CMD, "%s: start io %d\n", DEVNAME(sc), target);
if (xs->xs_control & XS_CTL_POLL) {
if (mfi_poll(ccb)) {
/* XXX check for sense in ccb->ccb_sense? */
aprint_error_dev(sc->sc_dev,
"mfi_scsipi_request poll failed\n");
memset(&xs->sense, 0, sizeof(xs->sense));
xs->sense.scsi_sense.response_code =
SSD_RCODE_VALID | SSD_RCODE_CURRENT;
xs->sense.scsi_sense.flags = SKEY_ILLEGAL_REQUEST;
xs->sense.scsi_sense.asc = 0x20; /* invalid opcode */
xs->error = XS_SENSE;
xs->status = SCSI_CHECK;
} else {
DNPRINTF(MFI_D_DMA,
"%s: mfi_scsipi_request poll complete %d\n",
DEVNAME(sc), ccb->ccb_dmamap->dm_nsegs);
xs->error = XS_NOERROR;
xs->status = SCSI_OK;
xs->resid = 0;
}
mfi_put_ccb(ccb);
scsipi_done(xs);
splx(s);
return;
}
mfi_post(sc, ccb);
DNPRINTF(MFI_D_DMA, "%s: mfi_scsipi_request queued %d\n", DEVNAME(sc),
ccb->ccb_dmamap->dm_nsegs);
splx(s);
return;
stuffup:
mfi_put_ccb(ccb);
xs->error = XS_DRIVER_STUFFUP;
scsipi_done(xs);
splx(s);
}
static int
mfi_create_sgl(struct mfi_ccb *ccb, int flags)
{
struct mfi_softc *sc = ccb->ccb_sc;
struct mfi_frame_header *hdr;
bus_dma_segment_t *sgd;
union mfi_sgl *sgl;
int error, i;
DNPRINTF(MFI_D_DMA, "%s: mfi_create_sgl %#lx\n", DEVNAME(sc),
(u_long)ccb->ccb_data);
if (!ccb->ccb_data)
return 1;
KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
ccb->ccb_data, ccb->ccb_len, NULL, flags);
if (error) {
if (error == EFBIG) {
aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
sc->sc_max_sgl);
} else {
aprint_error_dev(sc->sc_dev,
"error %d loading dma map\n", error);
}
return 1;
}
hdr = &ccb->ccb_frame->mfr_header;
sgl = ccb->ccb_sgl;
sgd = ccb->ccb_dmamap->dm_segs;
for (i = 0; i < ccb->ccb_dmamap->dm_nsegs; i++) {
if (sc->sc_ioptype == MFI_IOP_TBOLT &&
(hdr->mfh_cmd == MFI_CMD_PD_SCSI_IO ||
hdr->mfh_cmd == MFI_CMD_LD_READ ||
hdr->mfh_cmd == MFI_CMD_LD_WRITE)) {
sgl->sg_ieee[i].addr = htole64(sgd[i].ds_addr);
sgl->sg_ieee[i].len = htole32(sgd[i].ds_len);
sgl->sg_ieee[i].flags = 0;
DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
PRIx32 "\n",
DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
hdr->mfh_flags |= MFI_FRAME_IEEE_SGL | MFI_FRAME_SGL64;
} else if (sc->sc_64bit_dma) {
sgl->sg64[i].addr = htole64(sgd[i].ds_addr);
sgl->sg64[i].len = htole32(sgd[i].ds_len);
DNPRINTF(MFI_D_DMA, "%s: addr: %#" PRIx64 " len: %#"
PRIx32 "\n",
DEVNAME(sc), sgl->sg64[i].addr, sgl->sg64[i].len);
hdr->mfh_flags |= MFI_FRAME_SGL64;
} else {
sgl->sg32[i].addr = htole32(sgd[i].ds_addr);
sgl->sg32[i].len = htole32(sgd[i].ds_len);
DNPRINTF(MFI_D_DMA, "%s: addr: %#x len: %#x\n",
DEVNAME(sc), sgl->sg32[i].addr, sgl->sg32[i].len);
hdr->mfh_flags |= MFI_FRAME_SGL32;
}
}
if (ccb->ccb_direction == MFI_DATA_IN) {
hdr->mfh_flags |= MFI_FRAME_DIR_READ;
bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
} else {
hdr->mfh_flags |= MFI_FRAME_DIR_WRITE;
bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
hdr->mfh_sg_count = ccb->ccb_dmamap->dm_nsegs;
ccb->ccb_frame_size += sc->sc_sgl_size * ccb->ccb_dmamap->dm_nsegs;
ccb->ccb_extra_frames = (ccb->ccb_frame_size - 1) / MFI_FRAME_SIZE;
DNPRINTF(MFI_D_DMA, "%s: sg_count: %d frame_size: %d frames_size: %d"
" dm_nsegs: %d extra_frames: %d\n",
DEVNAME(sc),
hdr->mfh_sg_count,
ccb->ccb_frame_size,
sc->sc_frames_size,
ccb->ccb_dmamap->dm_nsegs,
ccb->ccb_extra_frames);
return 0;
}
static int
mfi_mgmt_internal(struct mfi_softc *sc, uint32_t opc, uint32_t dir,
uint32_t len, void *buf, uint8_t *mbox, bool poll)
{
struct mfi_ccb *ccb;
int rv = 1;
if ((ccb = mfi_get_ccb(sc)) == NULL)
return rv;
rv = mfi_mgmt(ccb, NULL, opc, dir, len, buf, mbox);
if (rv)
return rv;
if (poll) {
rv = 1;
if (mfi_poll(ccb))
goto done;
} else {
mfi_post(sc, ccb);
DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt_internal sleeping\n",
DEVNAME(sc));
while (ccb->ccb_state != MFI_CCB_DONE)
tsleep(ccb, PRIBIO, "mfi_mgmt", 0);
if (ccb->ccb_flags & MFI_CCB_F_ERR)
goto done;
}
rv = 0;
done:
mfi_put_ccb(ccb);
return rv;
}
static int
mfi_mgmt(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
uint32_t opc, uint32_t dir, uint32_t len, void *buf, uint8_t *mbox)
{
struct mfi_dcmd_frame *dcmd;
DNPRINTF(MFI_D_MISC, "%s: mfi_mgmt %#x\n", DEVNAME(ccb->ccb_sc), opc);
dcmd = &ccb->ccb_frame->mfr_dcmd;
memset(dcmd->mdf_mbox, 0, MFI_MBOX_SIZE);
dcmd->mdf_header.mfh_cmd = MFI_CMD_DCMD;
dcmd->mdf_header.mfh_timeout = 0;
dcmd->mdf_opcode = opc;
dcmd->mdf_header.mfh_data_len = 0;
ccb->ccb_direction = dir;
ccb->ccb_xs = xs;
ccb->ccb_done = mfi_mgmt_done;
ccb->ccb_frame_size = MFI_DCMD_FRAME_SIZE;
/* handle special opcodes */
if (mbox)
memcpy(dcmd->mdf_mbox, mbox, MFI_MBOX_SIZE);
if (dir != MFI_DATA_NONE) {
dcmd->mdf_header.mfh_data_len = len;
ccb->ccb_data = buf;
ccb->ccb_len = len;
ccb->ccb_sgl = &dcmd->mdf_sgl;
if (mfi_create_sgl(ccb, BUS_DMA_WAITOK))
return 1;
}
return 0;
}
static void
mfi_mgmt_done(struct mfi_ccb *ccb)
{
struct scsipi_xfer *xs = ccb->ccb_xs;
struct mfi_softc *sc = ccb->ccb_sc;
struct mfi_frame_header *hdr = &ccb->ccb_frame->mfr_header;
DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done %#lx %#lx\n",
DEVNAME(sc), (u_long)ccb, (u_long)ccb->ccb_frame);
if (ccb->ccb_data != NULL) {
DNPRINTF(MFI_D_INTR, "%s: mfi_mgmt_done sync\n",
DEVNAME(sc));
bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize,
(ccb->ccb_direction & MFI_DATA_IN) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_datadmat, ccb->ccb_dmamap);
}
if (hdr->mfh_cmd_status != MFI_STAT_OK)
ccb->ccb_flags |= MFI_CCB_F_ERR;
ccb->ccb_state = MFI_CCB_DONE;
if (xs) {
if (hdr->mfh_cmd_status != MFI_STAT_OK) {
xs->error = XS_DRIVER_STUFFUP;
} else {
xs->error = XS_NOERROR;
xs->status = SCSI_OK;
xs->resid = 0;
}
mfi_put_ccb(ccb);
scsipi_done(xs);
} else
wakeup(ccb);
}
#if NBIO > 0
int
mfi_ioctl(device_t dev, u_long cmd, void *addr)
{
struct mfi_softc *sc = device_private(dev);
int error = 0;
int s;
KERNEL_LOCK(1, curlwp);
s = splbio();
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl ", DEVNAME(sc));
switch (cmd) {
case BIOCINQ:
DNPRINTF(MFI_D_IOCTL, "inq\n");
error = mfi_ioctl_inq(sc, (struct bioc_inq *)addr);
break;
case BIOCVOL:
DNPRINTF(MFI_D_IOCTL, "vol\n");
error = mfi_ioctl_vol(sc, (struct bioc_vol *)addr);
break;
case BIOCDISK:
DNPRINTF(MFI_D_IOCTL, "disk\n");
error = mfi_ioctl_disk(sc, (struct bioc_disk *)addr);
break;
case BIOCALARM:
DNPRINTF(MFI_D_IOCTL, "alarm\n");
error = mfi_ioctl_alarm(sc, (struct bioc_alarm *)addr);
break;
case BIOCBLINK:
DNPRINTF(MFI_D_IOCTL, "blink\n");
error = mfi_ioctl_blink(sc, (struct bioc_blink *)addr);
break;
case BIOCSETSTATE:
DNPRINTF(MFI_D_IOCTL, "setstate\n");
error = mfi_ioctl_setstate(sc, (struct bioc_setstate *)addr);
break;
default:
DNPRINTF(MFI_D_IOCTL, " invalid ioctl\n");
error = EINVAL;
}
splx(s);
KERNEL_UNLOCK_ONE(curlwp);
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl return %x\n", DEVNAME(sc), error);
return error;
}
static int
mfi_ioctl_inq(struct mfi_softc *sc, struct bioc_inq *bi)
{
struct mfi_conf *cfg;
int rv = EINVAL;
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq\n", DEVNAME(sc));
if (mfi_get_info(sc)) {
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_inq failed\n",
DEVNAME(sc));
return EIO;
}
/* get figures */
cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
sizeof *cfg, cfg, NULL, false))
goto freeme;
strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev));
bi->bi_novol = cfg->mfc_no_ld + cfg->mfc_no_hs;
bi->bi_nodisk = sc->sc_info.mci_pd_disks_present;
rv = 0;
freeme:
free(cfg, M_DEVBUF);
return rv;
}
static int
mfi_ioctl_vol(struct mfi_softc *sc, struct bioc_vol *bv)
{
int i, per, rv = EINVAL;
uint8_t mbox[MFI_MBOX_SIZE];
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol %#x\n",
DEVNAME(sc), bv->bv_volid);
if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false))
goto done;
i = bv->bv_volid;
mbox[0] = sc->sc_ld_list.mll_list[i].mll_ld.mld_target;
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol target %#x\n",
DEVNAME(sc), mbox[0]);
if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_INFO, MFI_DATA_IN,
sizeof(sc->sc_ld_details), &sc->sc_ld_details, mbox, false))
goto done;
if (bv->bv_volid >= sc->sc_ld_list.mll_no_ld) {
/* go do hotspares */
rv = mfi_bio_hs(sc, bv->bv_volid, MFI_MGMT_VD, bv);
goto done;
}
strlcpy(bv->bv_dev, sc->sc_ld[i].ld_dev, sizeof(bv->bv_dev));
switch(sc->sc_ld_list.mll_list[i].mll_state) {
case MFI_LD_OFFLINE:
bv->bv_status = BIOC_SVOFFLINE;
break;
case MFI_LD_PART_DEGRADED:
case MFI_LD_DEGRADED:
bv->bv_status = BIOC_SVDEGRADED;
break;
case MFI_LD_ONLINE:
bv->bv_status = BIOC_SVONLINE;
break;
default:
bv->bv_status = BIOC_SVINVALID;
DNPRINTF(MFI_D_IOCTL, "%s: invalid logical disk state %#x\n",
DEVNAME(sc),
sc->sc_ld_list.mll_list[i].mll_state);
}
/* additional status can modify MFI status */
switch (sc->sc_ld_details.mld_progress.mlp_in_prog) {
case MFI_LD_PROG_CC:
case MFI_LD_PROG_BGI:
bv->bv_status = BIOC_SVSCRUB;
per = (int)sc->sc_ld_details.mld_progress.mlp_cc.mp_progress;
bv->bv_percent = (per * 100) / 0xffff;
bv->bv_seconds =
sc->sc_ld_details.mld_progress.mlp_cc.mp_elapsed_seconds;
break;
case MFI_LD_PROG_FGI:
case MFI_LD_PROG_RECONSTRUCT:
/* nothing yet */
break;
}
/*
* The RAID levels are determined per the SNIA DDF spec, this is only
* a subset that is valid for the MFI contrller.
*/
bv->bv_level = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_pri_raid;
if (sc->sc_ld_details.mld_cfg.mlc_parm.mpa_sec_raid ==
MFI_DDF_SRL_SPANNED)
bv->bv_level *= 10;
bv->bv_nodisk = sc->sc_ld_details.mld_cfg.mlc_parm.mpa_no_drv_per_span *
sc->sc_ld_details.mld_cfg.mlc_parm.mpa_span_depth;
bv->bv_size = sc->sc_ld_details.mld_size * 512; /* bytes per block */
rv = 0;
done:
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_vol done %x\n",
DEVNAME(sc), rv);
return rv;
}
static int
mfi_ioctl_disk(struct mfi_softc *sc, struct bioc_disk *bd)
{
struct mfi_conf *cfg;
struct mfi_array *ar;
struct mfi_ld_cfg *ld;
struct mfi_pd_details *pd;
struct scsipi_inquiry_data *inqbuf;
char vend[8+16+4+1];
int i, rv = EINVAL;
int arr, vol, disk;
uint32_t size;
uint8_t mbox[MFI_MBOX_SIZE];
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_disk %#x\n",
DEVNAME(sc), bd->bd_diskid);
pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
/* send single element command to retrieve size for full structure */
cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
sizeof *cfg, cfg, NULL, false))
goto freeme;
size = cfg->mfc_size;
free(cfg, M_DEVBUF);
/* memory for read config */
cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
size, cfg, NULL, false))
goto freeme;
ar = cfg->mfc_array;
/* calculate offset to ld structure */
ld = (struct mfi_ld_cfg *)(
((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
cfg->mfc_array_size * cfg->mfc_no_array);
vol = bd->bd_volid;
if (vol >= cfg->mfc_no_ld) {
/* do hotspares */
rv = mfi_bio_hs(sc, bd->bd_volid, MFI_MGMT_SD, bd);
goto freeme;
}
/* find corresponding array for ld */
for (i = 0, arr = 0; i < vol; i++)
arr += ld[i].mlc_parm.mpa_span_depth;
/* offset disk into pd list */
disk = bd->bd_diskid % ld[vol].mlc_parm.mpa_no_drv_per_span;
/* offset array index into the next spans */
arr += bd->bd_diskid / ld[vol].mlc_parm.mpa_no_drv_per_span;
bd->bd_target = ar[arr].pd[disk].mar_enc_slot;
switch (ar[arr].pd[disk].mar_pd_state){
case MFI_PD_UNCONFIG_GOOD:
bd->bd_status = BIOC_SDUNUSED;
break;
case MFI_PD_HOTSPARE: /* XXX dedicated hotspare part of array? */
bd->bd_status = BIOC_SDHOTSPARE;
break;
case MFI_PD_OFFLINE:
bd->bd_status = BIOC_SDOFFLINE;
break;
case MFI_PD_FAILED:
bd->bd_status = BIOC_SDFAILED;
break;
case MFI_PD_REBUILD:
bd->bd_status = BIOC_SDREBUILD;
break;
case MFI_PD_ONLINE:
bd->bd_status = BIOC_SDONLINE;
break;
case MFI_PD_UNCONFIG_BAD: /* XXX define new state in bio */
default:
bd->bd_status = BIOC_SDINVALID;
break;
}
/* get the remaining fields */
*((uint16_t *)&mbox) = ar[arr].pd[disk].mar_pd.mfp_id;
memset(pd, 0, sizeof(*pd));
if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
sizeof *pd, pd, mbox, false))
goto freeme;
bd->bd_size = pd->mpd_size * 512; /* bytes per block */
/* if pd->mpd_enc_idx is 0 then it is not in an enclosure */
bd->bd_channel = pd->mpd_enc_idx;
inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
memcpy(vend, inqbuf->vendor, sizeof vend - 1);
vend[sizeof vend - 1] = '\0';
strlcpy(bd->bd_vendor, vend, sizeof(bd->bd_vendor));
/* XXX find a way to retrieve serial nr from drive */
/* XXX find a way to get bd_procdev */
rv = 0;
freeme:
free(pd, M_DEVBUF);
free(cfg, M_DEVBUF);
return rv;
}
static int
mfi_ioctl_alarm(struct mfi_softc *sc, struct bioc_alarm *ba)
{
uint32_t opc, dir = MFI_DATA_NONE;
int rv = 0;
int8_t ret;
switch(ba->ba_opcode) {
case BIOC_SADISABLE:
opc = MR_DCMD_SPEAKER_DISABLE;
break;
case BIOC_SAENABLE:
opc = MR_DCMD_SPEAKER_ENABLE;
break;
case BIOC_SASILENCE:
opc = MR_DCMD_SPEAKER_SILENCE;
break;
case BIOC_GASTATUS:
opc = MR_DCMD_SPEAKER_GET;
dir = MFI_DATA_IN;
break;
case BIOC_SATEST:
opc = MR_DCMD_SPEAKER_TEST;
break;
default:
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_alarm biocalarm invalid "
"opcode %x\n", DEVNAME(sc), ba->ba_opcode);
return EINVAL;
}
if (mfi_mgmt_internal(sc, opc, dir, sizeof(ret), &ret, NULL, false))
rv = EINVAL;
else
if (ba->ba_opcode == BIOC_GASTATUS)
ba->ba_status = ret;
else
ba->ba_status = 0;
return rv;
}
static int
mfi_ioctl_blink(struct mfi_softc *sc, struct bioc_blink *bb)
{
int i, found, rv = EINVAL;
uint8_t mbox[MFI_MBOX_SIZE];
uint32_t cmd;
struct mfi_pd_list *pd;
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink %x\n", DEVNAME(sc),
bb->bb_status);
/* channel 0 means not in an enclosure so can't be blinked */
if (bb->bb_channel == 0)
return EINVAL;
pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
MFI_PD_LIST_SIZE, pd, NULL, false))
goto done;
for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
if (bb->bb_channel == pd->mpl_address[i].mpa_enc_index &&
bb->bb_target == pd->mpl_address[i].mpa_enc_slot) {
found = 1;
break;
}
if (!found)
goto done;
memset(mbox, 0, sizeof mbox);
*((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
switch (bb->bb_status) {
case BIOC_SBUNBLINK:
cmd = MR_DCMD_PD_UNBLINK;
break;
case BIOC_SBBLINK:
cmd = MR_DCMD_PD_BLINK;
break;
case BIOC_SBALARM:
default:
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_blink biocblink invalid "
"opcode %x\n", DEVNAME(sc), bb->bb_status);
goto done;
}
if (mfi_mgmt_internal(sc, cmd, MFI_DATA_NONE, 0, NULL, mbox, false))
goto done;
rv = 0;
done:
free(pd, M_DEVBUF);
return rv;
}
static int
mfi_ioctl_setstate(struct mfi_softc *sc, struct bioc_setstate *bs)
{
struct mfi_pd_list *pd;
int i, found, rv = EINVAL;
uint8_t mbox[MFI_MBOX_SIZE];
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate %x\n", DEVNAME(sc),
bs->bs_status);
pd = malloc(MFI_PD_LIST_SIZE, M_DEVBUF, M_WAITOK);
if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_LIST, MFI_DATA_IN,
MFI_PD_LIST_SIZE, pd, NULL, false))
goto done;
for (i = 0, found = 0; i < pd->mpl_no_pd; i++)
if (bs->bs_channel == pd->mpl_address[i].mpa_enc_index &&
bs->bs_target == pd->mpl_address[i].mpa_enc_slot) {
found = 1;
break;
}
if (!found)
goto done;
memset(mbox, 0, sizeof mbox);
*((uint16_t *)&mbox) = pd->mpl_address[i].mpa_pd_id;
switch (bs->bs_status) {
case BIOC_SSONLINE:
mbox[2] = MFI_PD_ONLINE;
break;
case BIOC_SSOFFLINE:
mbox[2] = MFI_PD_OFFLINE;
break;
case BIOC_SSHOTSPARE:
mbox[2] = MFI_PD_HOTSPARE;
break;
/*
case BIOC_SSREBUILD:
break;
*/
default:
DNPRINTF(MFI_D_IOCTL, "%s: mfi_ioctl_setstate invalid "
"opcode %x\n", DEVNAME(sc), bs->bs_status);
goto done;
}
if (mfi_mgmt_internal(sc, MD_DCMD_PD_SET_STATE, MFI_DATA_NONE,
0, NULL, mbox, false))
goto done;
rv = 0;
done:
free(pd, M_DEVBUF);
return rv;
}
static int
mfi_bio_hs(struct mfi_softc *sc, int volid, int type, void *bio_hs)
{
struct mfi_conf *cfg;
struct mfi_hotspare *hs;
struct mfi_pd_details *pd;
struct bioc_disk *sdhs;
struct bioc_vol *vdhs;
struct scsipi_inquiry_data *inqbuf;
char vend[8+16+4+1];
int i, rv = EINVAL;
uint32_t size;
uint8_t mbox[MFI_MBOX_SIZE];
DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs %d\n", DEVNAME(sc), volid);
if (!bio_hs)
return EINVAL;
pd = malloc(sizeof *pd, M_DEVBUF, M_WAITOK | M_ZERO);
/* send single element command to retrieve size for full structure */
cfg = malloc(sizeof *cfg, M_DEVBUF, M_WAITOK);
if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
sizeof *cfg, cfg, NULL, false))
goto freeme;
size = cfg->mfc_size;
free(cfg, M_DEVBUF);
/* memory for read config */
cfg = malloc(size, M_DEVBUF, M_WAITOK|M_ZERO);
if (mfi_mgmt_internal(sc, MD_DCMD_CONF_GET, MFI_DATA_IN,
size, cfg, NULL, false))
goto freeme;
/* calculate offset to hs structure */
hs = (struct mfi_hotspare *)(
((uint8_t *)cfg) + offsetof(struct mfi_conf, mfc_array) +
cfg->mfc_array_size * cfg->mfc_no_array +
cfg->mfc_ld_size * cfg->mfc_no_ld);
if (volid < cfg->mfc_no_ld)
goto freeme; /* not a hotspare */
if (volid > (cfg->mfc_no_ld + cfg->mfc_no_hs))
goto freeme; /* not a hotspare */
/* offset into hotspare structure */
i = volid - cfg->mfc_no_ld;
DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs i %d volid %d no_ld %d no_hs %d "
"hs %p cfg %p id %02x\n", DEVNAME(sc), i, volid, cfg->mfc_no_ld,
cfg->mfc_no_hs, hs, cfg, hs[i].mhs_pd.mfp_id);
/* get pd fields */
memset(mbox, 0, sizeof mbox);
*((uint16_t *)&mbox) = hs[i].mhs_pd.mfp_id;
if (mfi_mgmt_internal(sc, MR_DCMD_PD_GET_INFO, MFI_DATA_IN,
sizeof *pd, pd, mbox, false)) {
DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs illegal PD\n",
DEVNAME(sc));
goto freeme;
}
switch (type) {
case MFI_MGMT_VD:
vdhs = bio_hs;
vdhs->bv_status = BIOC_SVONLINE;
vdhs->bv_size = pd->mpd_size * 512; /* bytes per block */
vdhs->bv_level = -1; /* hotspare */
vdhs->bv_nodisk = 1;
break;
case MFI_MGMT_SD:
sdhs = bio_hs;
sdhs->bd_status = BIOC_SDHOTSPARE;
sdhs->bd_size = pd->mpd_size * 512; /* bytes per block */
sdhs->bd_channel = pd->mpd_enc_idx;
sdhs->bd_target = pd->mpd_enc_slot;
inqbuf = (struct scsipi_inquiry_data *)&pd->mpd_inq_data;
memcpy(vend, inqbuf->vendor, sizeof(vend) - 1);
vend[sizeof vend - 1] = '\0';
strlcpy(sdhs->bd_vendor, vend, sizeof(sdhs->bd_vendor));
break;
default:
goto freeme;
}
DNPRINTF(MFI_D_IOCTL, "%s: mfi_vol_hs 6\n", DEVNAME(sc));
rv = 0;
freeme:
free(pd, M_DEVBUF);
free(cfg, M_DEVBUF);
return rv;
}
static int
mfi_destroy_sensors(struct mfi_softc *sc)
{
if (sc->sc_sme == NULL)
return 0;
sysmon_envsys_unregister(sc->sc_sme);
sc->sc_sme = NULL;
free(sc->sc_sensor, M_DEVBUF);
return 0;
}
static int
mfi_create_sensors(struct mfi_softc *sc)
{
int i;
int nsensors = sc->sc_ld_cnt + 1;
int rv;
sc->sc_sme = sysmon_envsys_create();
sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
M_DEVBUF, M_NOWAIT | M_ZERO);
if (sc->sc_sensor == NULL) {
aprint_error_dev(sc->sc_dev, "can't allocate envsys_data_t\n");
return ENOMEM;
}
/* BBU */
sc->sc_sensor[0].units = ENVSYS_INDICATOR;
sc->sc_sensor[0].state = ENVSYS_SINVALID;
sc->sc_sensor[0].value_cur = 0;
/* Enable monitoring for BBU state changes, if present */
if (sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU)
sc->sc_sensor[0].flags |= ENVSYS_FMONCRITICAL;
snprintf(sc->sc_sensor[0].desc,
sizeof(sc->sc_sensor[0].desc), "%s BBU", DEVNAME(sc));
if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[0]))
goto out;
for (i = 1; i < nsensors; i++) {
sc->sc_sensor[i].units = ENVSYS_DRIVE;
sc->sc_sensor[i].state = ENVSYS_SINVALID;
sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
/* Enable monitoring for drive state changes */
sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
/* logical drives */
snprintf(sc->sc_sensor[i].desc,
sizeof(sc->sc_sensor[i].desc), "%s:%d",
DEVNAME(sc), i - 1);
if (sysmon_envsys_sensor_attach(sc->sc_sme,
&sc->sc_sensor[i]))
goto out;
}
sc->sc_sme->sme_name = DEVNAME(sc);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = mfi_sensor_refresh;
rv = sysmon_envsys_register(sc->sc_sme);
if (rv != 0) {
aprint_error_dev(sc->sc_dev,
"unable to register with sysmon (rv = %d)\n", rv);
goto out;
}
return 0;
out:
free(sc->sc_sensor, M_DEVBUF);
sysmon_envsys_destroy(sc->sc_sme);
sc->sc_sme = NULL;
return EINVAL;
}
static void
mfi_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct mfi_softc *sc = sme->sme_cookie;
struct bioc_vol bv;
int s;
int error;
if (edata->sensor >= sc->sc_ld_cnt + 1)
return;
if (edata->sensor == 0) {
/* BBU */
struct mfi_bbu_status bbu_stat;
int bbu_status;
if ((sc->sc_info.mci_hw_present & MFI_INFO_HW_BBU) == 0)
return;
KERNEL_LOCK(1, curlwp);
s = splbio();
bbu_status = mfi_get_bbu(sc, &bbu_stat);
splx(s);
KERNEL_UNLOCK_ONE(curlwp);
switch(bbu_status) {
case MFI_BBU_GOOD:
edata->value_cur = 1;
edata->state = ENVSYS_SVALID;
if (!sc->sc_bbuok)
aprint_normal_dev(sc->sc_dev,
"BBU state changed to good\n");
sc->sc_bbuok = true;
break;
case MFI_BBU_BAD:
edata->value_cur = 0;
edata->state = ENVSYS_SCRITICAL;
if (sc->sc_bbuok)
aprint_normal_dev(sc->sc_dev,
"BBU state changed to bad\n");
sc->sc_bbuok = false;
break;
case MFI_BBU_UNKNOWN:
default:
edata->value_cur = 0;
edata->state = ENVSYS_SINVALID;
sc->sc_bbuok = false;
break;
}
return;
}
memset(&bv, 0, sizeof(bv));
bv.bv_volid = edata->sensor - 1;
KERNEL_LOCK(1, curlwp);
s = splbio();
error = mfi_ioctl_vol(sc, &bv);
splx(s);
KERNEL_UNLOCK_ONE(curlwp);
if (error)
return;
switch(bv.bv_status) {
case BIOC_SVOFFLINE:
edata->value_cur = ENVSYS_DRIVE_FAIL;
edata->state = ENVSYS_SCRITICAL;
break;
case BIOC_SVDEGRADED:
edata->value_cur = ENVSYS_DRIVE_PFAIL;
edata->state = ENVSYS_SCRITICAL;
break;
case BIOC_SVSCRUB:
case BIOC_SVONLINE:
edata->value_cur = ENVSYS_DRIVE_ONLINE;
edata->state = ENVSYS_SVALID;
break;
case BIOC_SVINVALID:
/* FALLTRHOUGH */
default:
edata->value_cur = 0; /* unknown */
edata->state = ENVSYS_SINVALID;
}
}
#endif /* NBIO > 0 */
static uint32_t
mfi_xscale_fw_state(struct mfi_softc *sc)
{
return mfi_read(sc, MFI_OMSG0);
}
static void
mfi_xscale_intr_dis(struct mfi_softc *sc)
{
mfi_write(sc, MFI_OMSK, 0);
}
static void
mfi_xscale_intr_ena(struct mfi_softc *sc)
{
mfi_write(sc, MFI_OMSK, MFI_ENABLE_INTR);
}
static int
mfi_xscale_intr(struct mfi_softc *sc)
{
uint32_t status;
status = mfi_read(sc, MFI_OSTS);
if (!ISSET(status, MFI_OSTS_INTR_VALID))
return 0;
/* write status back to acknowledge interrupt */
mfi_write(sc, MFI_OSTS, status);
return 1;
}
static void
mfi_xscale_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
{
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_frames),
ccb->ccb_pframe - MFIMEM_DVA(sc->sc_frames),
sc->sc_frames_size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_sense),
ccb->ccb_psense - MFIMEM_DVA(sc->sc_sense),
MFI_SENSE_SIZE, BUS_DMASYNC_PREREAD);
mfi_write(sc, MFI_IQP, (ccb->ccb_pframe >> 3) |
ccb->ccb_extra_frames);
ccb->ccb_state = MFI_CCB_RUNNING;
}
static uint32_t
mfi_ppc_fw_state(struct mfi_softc *sc)
{
return mfi_read(sc, MFI_OSP);
}
static void
mfi_ppc_intr_dis(struct mfi_softc *sc)
{
/* Taking a wild guess --dyoung */
mfi_write(sc, MFI_OMSK, ~(uint32_t)0x0);
mfi_write(sc, MFI_ODC, 0xffffffff);
}
static void
mfi_ppc_intr_ena(struct mfi_softc *sc)
{
mfi_write(sc, MFI_ODC, 0xffffffff);
mfi_write(sc, MFI_OMSK, ~0x80000004);
}
static int
mfi_ppc_intr(struct mfi_softc *sc)
{
uint32_t status;
status = mfi_read(sc, MFI_OSTS);
if (!ISSET(status, MFI_OSTS_PPC_INTR_VALID))
return 0;
/* write status back to acknowledge interrupt */
mfi_write(sc, MFI_ODC, status);
return 1;
}
static void
mfi_ppc_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
{
mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
(ccb->ccb_extra_frames << 1));
ccb->ccb_state = MFI_CCB_RUNNING;
}
u_int32_t
mfi_gen2_fw_state(struct mfi_softc *sc)
{
return (mfi_read(sc, MFI_OSP));
}
void
mfi_gen2_intr_dis(struct mfi_softc *sc)
{
mfi_write(sc, MFI_OMSK, 0xffffffff);
mfi_write(sc, MFI_ODC, 0xffffffff);
}
void
mfi_gen2_intr_ena(struct mfi_softc *sc)
{
mfi_write(sc, MFI_ODC, 0xffffffff);
mfi_write(sc, MFI_OMSK, ~MFI_OSTS_GEN2_INTR_VALID);
}
int
mfi_gen2_intr(struct mfi_softc *sc)
{
u_int32_t status;
status = mfi_read(sc, MFI_OSTS);
if (!ISSET(status, MFI_OSTS_GEN2_INTR_VALID))
return (0);
/* write status back to acknowledge interrupt */
mfi_write(sc, MFI_ODC, status);
return (1);
}
void
mfi_gen2_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
{
mfi_write(sc, MFI_IQP, 0x1 | ccb->ccb_pframe |
(ccb->ccb_extra_frames << 1));
ccb->ccb_state = MFI_CCB_RUNNING;
}
u_int32_t
mfi_skinny_fw_state(struct mfi_softc *sc)
{
return (mfi_read(sc, MFI_OSP));
}
void
mfi_skinny_intr_dis(struct mfi_softc *sc)
{
mfi_write(sc, MFI_OMSK, 0);
}
void
mfi_skinny_intr_ena(struct mfi_softc *sc)
{
mfi_write(sc, MFI_OMSK, ~0x00000001);
}
int
mfi_skinny_intr(struct mfi_softc *sc)
{
u_int32_t status;
status = mfi_read(sc, MFI_OSTS);
if (!ISSET(status, MFI_OSTS_SKINNY_INTR_VALID))
return (0);
/* write status back to acknowledge interrupt */
mfi_write(sc, MFI_OSTS, status);
return (1);
}
void
mfi_skinny_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
{
mfi_write(sc, MFI_IQPL, 0x1 | ccb->ccb_pframe |
(ccb->ccb_extra_frames << 1));
mfi_write(sc, MFI_IQPH, 0x00000000);
ccb->ccb_state = MFI_CCB_RUNNING;
}
#define MFI_FUSION_ENABLE_INTERRUPT_MASK (0x00000008)
void
mfi_tbolt_intr_ena(struct mfi_softc *sc)
{
mfi_write(sc, MFI_OMSK, ~MFI_FUSION_ENABLE_INTERRUPT_MASK);
mfi_read(sc, MFI_OMSK);
}
void
mfi_tbolt_intr_dis(struct mfi_softc *sc)
{
mfi_write(sc, MFI_OMSK, 0xFFFFFFFF);
mfi_read(sc, MFI_OMSK);
}
int
mfi_tbolt_intr(struct mfi_softc *sc)
{
int32_t status;
status = mfi_read(sc, MFI_OSTS);
if (ISSET(status, 0x1)) {
mfi_write(sc, MFI_OSTS, status);
mfi_read(sc, MFI_OSTS);
if (ISSET(status, MFI_STATE_CHANGE_INTERRUPT))
return 0;
return 1;
}
if (!ISSET(status, MFI_FUSION_ENABLE_INTERRUPT_MASK))
return 0;
mfi_read(sc, MFI_OSTS);
return 1;
}
u_int32_t
mfi_tbolt_fw_state(struct mfi_softc *sc)
{
return mfi_read(sc, MFI_OSP);
}
void
mfi_tbolt_post(struct mfi_softc *sc, struct mfi_ccb *ccb)
{
if (sc->sc_MFA_enabled) {
if ((ccb->ccb_flags & MFI_CCB_F_TBOLT) == 0)
mfi_tbolt_build_mpt_ccb(ccb);
mfi_write(sc, MFI_IQPL,
ccb->ccb_tb_request_desc.words & 0xFFFFFFFF);
mfi_write(sc, MFI_IQPH,
ccb->ccb_tb_request_desc.words >> 32);
ccb->ccb_state = MFI_CCB_RUNNING;
return;
}
uint64_t bus_add = ccb->ccb_pframe;
bus_add |= (MFI_REQ_DESCRIPT_FLAGS_MFA
<< MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
mfi_write(sc, MFI_IQPL, bus_add);
mfi_write(sc, MFI_IQPH, bus_add >> 32);
ccb->ccb_state = MFI_CCB_RUNNING;
}
static void
mfi_tbolt_build_mpt_ccb(struct mfi_ccb *ccb)
{
union mfi_mpi2_request_descriptor *req_desc = &ccb->ccb_tb_request_desc;
struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
struct mpi25_ieee_sge_chain64 *mpi25_ieee_chain;
io_req->Function = MPI2_FUNCTION_PASSTHRU_IO_REQUEST;
io_req->SGLOffset0 =
offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
io_req->ChainOffset =
offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 16;
mpi25_ieee_chain =
(struct mpi25_ieee_sge_chain64 *)&io_req->SGL.IeeeChain;
mpi25_ieee_chain->Address = ccb->ccb_pframe;
/*
In MFI pass thru, nextChainOffset will always be zero to
indicate the end of the chain.
*/
mpi25_ieee_chain->Flags= MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT
| MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR;
/* setting the length to the maximum length */
mpi25_ieee_chain->Length = 1024;
req_desc->header.RequestFlags = (MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO <<
MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
ccb->ccb_flags |= MFI_CCB_F_TBOLT;
bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
ccb->ccb_tb_pio_request -
MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/*
* Description:
* This function will prepare message pools for the Thunderbolt controller
*/
static int
mfi_tbolt_init_desc_pool(struct mfi_softc *sc)
{
uint32_t offset = 0;
uint8_t *addr = MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
/* Request Decriptors alignment restrictions */
KASSERT(((uintptr_t)addr & 0xFF) == 0);
/* Skip request message pool */
addr = &addr[MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1)];
/* Reply Frame Pool is initialized */
sc->sc_reply_frame_pool = (struct mfi_mpi2_reply_header *) addr;
KASSERT(((uintptr_t)addr & 0xFF) == 0);
offset = (uintptr_t)sc->sc_reply_frame_pool
- (uintptr_t)MFIMEM_KVA(sc->sc_tbolt_reqmsgpool);
sc->sc_reply_frame_busaddr =
MFIMEM_DVA(sc->sc_tbolt_reqmsgpool) + offset;
/* initializing reply address to 0xFFFFFFFF */
memset((uint8_t *)sc->sc_reply_frame_pool, 0xFF,
(MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size));
/* Skip Reply Frame Pool */
addr += MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
sc->sc_reply_pool_limit = (void *)addr;
offset = MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size;
sc->sc_sg_frame_busaddr = sc->sc_reply_frame_busaddr + offset;
/* initialize the last_reply_idx to 0 */
sc->sc_last_reply_idx = 0;
offset = (sc->sc_sg_frame_busaddr + (MEGASAS_MAX_SZ_CHAIN_FRAME *
sc->sc_max_cmds)) - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
KASSERT(offset <= sc->sc_tbolt_reqmsgpool->am_size);
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_reqmsgpool), 0,
MFIMEM_MAP(sc->sc_tbolt_reqmsgpool)->dm_mapsize,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return 0;
}
/*
* This routine prepare and issue INIT2 frame to the Firmware
*/
static int
mfi_tbolt_init_MFI_queue(struct mfi_softc *sc)
{
struct mpi2_ioc_init_request *mpi2IocInit;
struct mfi_init_frame *mfi_init;
struct mfi_ccb *ccb;
bus_addr_t phyAddress;
mfi_address *mfiAddressTemp;
int s;
char *verbuf;
char wqbuf[10];
/* Check if initialization is already completed */
if (sc->sc_MFA_enabled) {
return 1;
}
mpi2IocInit =
(struct mpi2_ioc_init_request *)MFIMEM_KVA(sc->sc_tbolt_ioc_init);
s = splbio();
if ((ccb = mfi_get_ccb(sc)) == NULL) {
splx(s);
return (EBUSY);
}
mfi_init = &ccb->ccb_frame->mfr_init;
memset(mpi2IocInit, 0, sizeof(struct mpi2_ioc_init_request));
mpi2IocInit->Function = MPI2_FUNCTION_IOC_INIT;
mpi2IocInit->WhoInit = MPI2_WHOINIT_HOST_DRIVER;
/* set MsgVersion and HeaderVersion host driver was built with */
mpi2IocInit->MsgVersion = MPI2_VERSION;
mpi2IocInit->HeaderVersion = MPI2_HEADER_VERSION;
mpi2IocInit->SystemRequestFrameSize = MEGASAS_THUNDERBOLT_NEW_MSG_SIZE/4;
mpi2IocInit->ReplyDescriptorPostQueueDepth =
(uint16_t)sc->sc_reply_pool_size;
mpi2IocInit->ReplyFreeQueueDepth = 0; /* Not supported by MR. */
/* Get physical address of reply frame pool */
phyAddress = sc->sc_reply_frame_busaddr;
mfiAddressTemp =
(mfi_address *)&mpi2IocInit->ReplyDescriptorPostQueueAddress;
mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
/* Get physical address of request message pool */
phyAddress = MFIMEM_DVA(sc->sc_tbolt_reqmsgpool);
mfiAddressTemp = (mfi_address *)&mpi2IocInit->SystemRequestFrameBaseAddress;
mfiAddressTemp->u.addressLow = (uint32_t)phyAddress;
mfiAddressTemp->u.addressHigh = (uint32_t)((uint64_t)phyAddress >> 32);
mpi2IocInit->ReplyFreeQueueAddress = 0; /* Not supported by MR. */
mpi2IocInit->TimeStamp = time_uptime;
verbuf = MFIMEM_KVA(sc->sc_tbolt_verbuf);
snprintf(verbuf, strlen(MEGASAS_VERSION) + 2, "%s\n",
MEGASAS_VERSION);
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_PREWRITE);
mfi_init->driver_ver_lo = htole32(MFIMEM_DVA(sc->sc_tbolt_verbuf));
mfi_init->driver_ver_hi =
htole32((uint64_t)MFIMEM_DVA(sc->sc_tbolt_verbuf) >> 32);
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Get the physical address of the mpi2 ioc init command */
phyAddress = MFIMEM_DVA(sc->sc_tbolt_ioc_init);
mfi_init->mif_qinfo_new_addr_lo = htole32(phyAddress);
mfi_init->mif_qinfo_new_addr_hi = htole32((uint64_t)phyAddress >> 32);
mfi_init->mif_header.mfh_cmd = MFI_CMD_INIT;
mfi_init->mif_header.mfh_data_len = sizeof(struct mpi2_ioc_init_request);
if (mfi_poll(ccb) != 0) {
aprint_error_dev(sc->sc_dev, "failed to send IOC init2 "
"command at 0x%" PRIx64 "\n",
(uint64_t)ccb->ccb_pframe);
splx(s);
return 1;
}
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_verbuf), 0,
MFIMEM_MAP(sc->sc_tbolt_verbuf)->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, MFIMEM_MAP(sc->sc_tbolt_ioc_init), 0,
MFIMEM_MAP(sc->sc_tbolt_ioc_init)->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
mfi_put_ccb(ccb);
splx(s);
if (mfi_init->mif_header.mfh_cmd_status == 0) {
sc->sc_MFA_enabled = 1;
}
else {
aprint_error_dev(sc->sc_dev, "Init command Failed %x\n",
mfi_init->mif_header.mfh_cmd_status);
return 1;
}
snprintf(wqbuf, sizeof(wqbuf), "%swq", DEVNAME(sc));
if (workqueue_create(&sc->sc_ldsync_wq, wqbuf, mfi_tbolt_sync_map_info,
sc, PRIBIO, IPL_BIO, 0) != 0) {
aprint_error_dev(sc->sc_dev, "workqueue_create failed\n");
return 1;
}
workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
return 0;
}
int
mfi_tbolt_intrh(void *arg)
{
struct mfi_softc *sc = arg;
struct mfi_ccb *ccb;
union mfi_mpi2_reply_descriptor *desc;
int smid, num_completed;
if (!mfi_tbolt_intr(sc))
return 0;
DNPRINTF(MFI_D_INTR, "%s: mfi_tbolt_intrh %#lx %#lx\n", DEVNAME(sc),
(u_long)sc, (u_long)sc->sc_last_reply_idx);
KASSERT(sc->sc_last_reply_idx < sc->sc_reply_pool_size);
desc = (union mfi_mpi2_reply_descriptor *)
((uintptr_t)sc->sc_reply_frame_pool +
sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
bus_dmamap_sync(sc->sc_dmat,
MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
num_completed = 0;
while ((desc->header.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK) !=
MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
smid = desc->header.SMID;
KASSERT(smid > 0 && smid <= sc->sc_max_cmds);
ccb = &sc->sc_ccb[smid - 1];
DNPRINTF(MFI_D_INTR,
"%s: mfi_tbolt_intr SMID %#x reply_idx %#x "
"desc %#" PRIx64 " ccb %p\n", DEVNAME(sc), smid,
sc->sc_last_reply_idx, desc->words, ccb);
KASSERT(ccb->ccb_state == MFI_CCB_RUNNING);
if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO &&
ccb->ccb_tb_io_request->ChainOffset != 0) {
bus_dmamap_sync(sc->sc_dmat,
MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
ccb->ccb_tb_psg_frame -
MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_POSTREAD);
}
if (ccb->ccb_flags & MFI_CCB_F_TBOLT_IO) {
bus_dmamap_sync(sc->sc_dmat,
MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
ccb->ccb_tb_pio_request -
MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
}
if (ccb->ccb_done)
ccb->ccb_done(ccb);
else
ccb->ccb_state = MFI_CCB_DONE;
sc->sc_last_reply_idx++;
if (sc->sc_last_reply_idx >= sc->sc_reply_pool_size) {
sc->sc_last_reply_idx = 0;
}
desc->words = ~0x0;
/* Get the next reply descriptor */
desc = (union mfi_mpi2_reply_descriptor *)
((uintptr_t)sc->sc_reply_frame_pool +
sc->sc_last_reply_idx * MEGASAS_THUNDERBOLT_REPLY_SIZE);
num_completed++;
}
if (num_completed == 0)
return 0;
bus_dmamap_sync(sc->sc_dmat,
MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
MEGASAS_THUNDERBOLT_NEW_MSG_SIZE * (sc->sc_max_cmds + 1),
MEGASAS_THUNDERBOLT_REPLY_SIZE * sc->sc_reply_pool_size,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
mfi_write(sc, MFI_RPI, sc->sc_last_reply_idx);
return 1;
}
int
mfi_tbolt_scsi_ld_io(struct mfi_ccb *ccb, struct scsipi_xfer *xs,
uint64_t blockno, uint32_t blockcnt)
{
struct scsipi_periph *periph = xs->xs_periph;
struct mfi_mpi2_request_raid_scsi_io *io_req;
int sge_count;
DNPRINTF(MFI_D_CMD, "%s: mfi_tbolt_scsi_ld_io: %d\n",
device_xname(periph->periph_channel->chan_adapter->adapt_dev),
periph->periph_target);
if (!xs->data)
return 1;
ccb->ccb_done = mfi_tbolt_scsi_ld_done;
ccb->ccb_xs = xs;
ccb->ccb_data = xs->data;
ccb->ccb_len = xs->datalen;
io_req = ccb->ccb_tb_io_request;
/* Just the CDB length,rest of the Flags are zero */
io_req->IoFlags = xs->cmdlen;
memset(io_req->CDB.CDB32, 0, 32);
memcpy(io_req->CDB.CDB32, &xs->cmdstore, xs->cmdlen);
io_req->RaidContext.TargetID = periph->periph_target;
io_req->RaidContext.Status = 0;
io_req->RaidContext.exStatus = 0;
io_req->RaidContext.timeoutValue = MFI_FUSION_FP_DEFAULT_TIMEOUT;
io_req->Function = MPI2_FUNCTION_LD_IO_REQUEST;
io_req->DevHandle = periph->periph_target;
ccb->ccb_tb_request_desc.header.RequestFlags =
(MFI_REQ_DESCRIPT_FLAGS_LD_IO << MFI_REQ_DESCRIPT_FLAGS_TYPE_SHIFT);
io_req->DataLength = blockcnt * MFI_SECTOR_LEN;
if (xs->xs_control & XS_CTL_DATA_IN) {
io_req->Control = MPI2_SCSIIO_CONTROL_READ;
ccb->ccb_direction = MFI_DATA_IN;
} else {
io_req->Control = MPI2_SCSIIO_CONTROL_WRITE;
ccb->ccb_direction = MFI_DATA_OUT;
}
sge_count = mfi_tbolt_create_sgl(ccb,
(xs->xs_control & XS_CTL_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK
);
if (sge_count < 0)
return 1;
KASSERT(sge_count <= ccb->ccb_sc->sc_max_sgl);
io_req->RaidContext.numSGE = sge_count;
io_req->SGLFlags = MPI2_SGE_FLAGS_64_BIT_ADDRESSING;
io_req->SGLOffset0 =
offsetof(struct mfi_mpi2_request_raid_scsi_io, SGL) / 4;
io_req->SenseBufferLowAddress = htole32(ccb->ccb_psense);
io_req->SenseBufferLength = MFI_SENSE_SIZE;
ccb->ccb_flags |= MFI_CCB_F_TBOLT | MFI_CCB_F_TBOLT_IO;
bus_dmamap_sync(ccb->ccb_sc->sc_dmat,
MFIMEM_MAP(ccb->ccb_sc->sc_tbolt_reqmsgpool),
ccb->ccb_tb_pio_request -
MFIMEM_DVA(ccb->ccb_sc->sc_tbolt_reqmsgpool),
MEGASAS_THUNDERBOLT_NEW_MSG_SIZE,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
return 0;
}
static void
mfi_tbolt_scsi_ld_done(struct mfi_ccb *ccb)
{
struct mfi_mpi2_request_raid_scsi_io *io_req = ccb->ccb_tb_io_request;
mfi_scsi_xs_done(ccb, io_req->RaidContext.Status,
io_req->RaidContext.exStatus);
}
static int
mfi_tbolt_create_sgl(struct mfi_ccb *ccb, int flags)
{
struct mfi_softc *sc = ccb->ccb_sc;
bus_dma_segment_t *sgd;
int error, i, sge_idx, sge_count;
struct mfi_mpi2_request_raid_scsi_io *io_req;
struct mpi25_ieee_sge_chain64 *sgl_ptr;
DNPRINTF(MFI_D_DMA, "%s: mfi_tbolt_create_sgl %#lx\n", DEVNAME(sc),
(u_long)ccb->ccb_data);
if (!ccb->ccb_data)
return -1;
KASSERT(flags == BUS_DMA_NOWAIT || !cpu_intr_p());
error = bus_dmamap_load(sc->sc_datadmat, ccb->ccb_dmamap,
ccb->ccb_data, ccb->ccb_len, NULL, flags);
if (error) {
if (error == EFBIG)
aprint_error_dev(sc->sc_dev, "more than %d dma segs\n",
sc->sc_max_sgl);
else
aprint_error_dev(sc->sc_dev,
"error %d loading dma map\n", error);
return -1;
}
io_req = ccb->ccb_tb_io_request;
sgl_ptr = &io_req->SGL.IeeeChain.Chain64;
sge_count = ccb->ccb_dmamap->dm_nsegs;
sgd = ccb->ccb_dmamap->dm_segs;
KASSERT(sge_count <= sc->sc_max_sgl);
KASSERT(sge_count <=
(MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1 +
MEGASAS_THUNDERBOLT_MAX_SGE_IN_CHAINMSG));
if (sge_count > MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG) {
/* One element to store the chain info */
sge_idx = MEGASAS_THUNDERBOLT_MAX_SGE_IN_MAINMSG - 1;
DNPRINTF(MFI_D_DMA,
"mfi sge_idx %d sge_count %d io_req paddr 0x%" PRIx64 "\n",
sge_idx, sge_count, ccb->ccb_tb_pio_request);
} else {
sge_idx = sge_count;
}
for (i = 0; i < sge_idx; i++) {
sgl_ptr->Address = htole64(sgd[i].ds_addr);
sgl_ptr->Length = htole32(sgd[i].ds_len);
sgl_ptr->Flags = 0;
if (sge_idx < sge_count) {
DNPRINTF(MFI_D_DMA,
"sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
" flags 0x%x\n", sgl_ptr, i,
sgl_ptr->Address, sgl_ptr->Length,
sgl_ptr->Flags);
}
sgl_ptr++;
}
io_req->ChainOffset = 0;
if (sge_idx < sge_count) {
struct mpi25_ieee_sge_chain64 *sg_chain;
io_req->ChainOffset = MEGASAS_THUNDERBOLT_CHAIN_OFF_MAINMSG;
sg_chain = sgl_ptr;
/* Prepare chain element */
sg_chain->NextChainOffset = 0;
sg_chain->Flags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR);
sg_chain->Length = (sizeof(mpi2_sge_io_union) *
(sge_count - sge_idx));
sg_chain->Address = ccb->ccb_tb_psg_frame;
DNPRINTF(MFI_D_DMA,
"sgl %p chain 0x%" PRIx64 " len 0x%" PRIx32
" flags 0x%x\n", sg_chain, sg_chain->Address,
sg_chain->Length, sg_chain->Flags);
sgl_ptr = &ccb->ccb_tb_sg_frame->IeeeChain.Chain64;
for (; i < sge_count; i++) {
sgl_ptr->Address = htole64(sgd[i].ds_addr);
sgl_ptr->Length = htole32(sgd[i].ds_len);
sgl_ptr->Flags = 0;
DNPRINTF(MFI_D_DMA,
"sgl %p %d 0x%" PRIx64 " len 0x%" PRIx32
" flags 0x%x\n", sgl_ptr, i, sgl_ptr->Address,
sgl_ptr->Length, sgl_ptr->Flags);
sgl_ptr++;
}
bus_dmamap_sync(sc->sc_dmat,
MFIMEM_MAP(sc->sc_tbolt_reqmsgpool),
ccb->ccb_tb_psg_frame - MFIMEM_DVA(sc->sc_tbolt_reqmsgpool),
MEGASAS_MAX_SZ_CHAIN_FRAME, BUS_DMASYNC_PREREAD);
}
if (ccb->ccb_direction == MFI_DATA_IN) {
bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
} else {
bus_dmamap_sync(sc->sc_datadmat, ccb->ccb_dmamap, 0,
ccb->ccb_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
}
return sge_count;
}
/*
* The ThunderBolt HW has an option for the driver to directly
* access the underlying disks and operate on the RAID. To
* do this there needs to be a capability to keep the RAID controller
* and driver in sync. The FreeBSD driver does not take advantage
* of this feature since it adds a lot of complexity and slows down
* performance. Performance is gained by using the controller's
* cache etc.
*
* Even though this driver doesn't access the disks directly, an
* AEN like command is used to inform the RAID firmware to "sync"
* with all LD's via the MFI_DCMD_LD_MAP_GET_INFO command. This
* command in write mode will return when the RAID firmware has
* detected a change to the RAID state. Examples of this type
* of change are removing a disk. Once the command returns then
* the driver needs to acknowledge this and "sync" all LD's again.
* This repeats until we shutdown. Then we need to cancel this
* pending command.
*
* If this is not done right the RAID firmware will not remove a
* pulled drive and the RAID won't go degraded etc. Effectively,
* stopping any RAID mangement to functions.
*
* Doing another LD sync, requires the use of an event since the
* driver needs to do a mfi_wait_command and can't do that in an
* interrupt thread.
*
* The driver could get the RAID state via the MFI_DCMD_LD_MAP_GET_INFO
* That requires a bunch of structure and it is simplier to just do
* the MFI_DCMD_LD_GET_LIST versus walking the RAID map.
*/
void
mfi_tbolt_sync_map_info(struct work *w, void *v)
{
struct mfi_softc *sc = v;
int i;
struct mfi_ccb *ccb = NULL;
uint8_t mbox[MFI_MBOX_SIZE];
struct mfi_ld *ld_sync = NULL;
size_t ld_size;
int s;
DNPRINTF(MFI_D_SYNC, "%s: mfi_tbolt_sync_map_info\n", DEVNAME(sc));
again:
s = splbio();
if (sc->sc_ldsync_ccb != NULL) {
splx(s);
return;
}
if (mfi_mgmt_internal(sc, MR_DCMD_LD_GET_LIST, MFI_DATA_IN,
sizeof(sc->sc_ld_list), &sc->sc_ld_list, NULL, false)) {
aprint_error_dev(sc->sc_dev, "MR_DCMD_LD_GET_LIST failed\n");
goto err;
}
ld_size = sizeof(*ld_sync) * sc->sc_ld_list.mll_no_ld;
ld_sync = (struct mfi_ld *) malloc(ld_size, M_DEVBUF,
M_WAITOK | M_ZERO);
if (ld_sync == NULL) {
aprint_error_dev(sc->sc_dev, "Failed to allocate sync\n");
goto err;
}
for (i = 0; i < sc->sc_ld_list.mll_no_ld; i++) {
ld_sync[i] = sc->sc_ld_list.mll_list[i].mll_ld;
}
if ((ccb = mfi_get_ccb(sc)) == NULL) {
aprint_error_dev(sc->sc_dev, "Failed to get sync command\n");
free(ld_sync, M_DEVBUF);
goto err;
}
sc->sc_ldsync_ccb = ccb;
memset(mbox, 0, MFI_MBOX_SIZE);
mbox[0] = sc->sc_ld_list.mll_no_ld;
mbox[1] = MFI_DCMD_MBOX_PEND_FLAG;
if (mfi_mgmt(ccb, NULL, MR_DCMD_LD_MAP_GET_INFO, MFI_DATA_OUT,
ld_size, ld_sync, mbox)) {
aprint_error_dev(sc->sc_dev, "Failed to create sync command\n");
goto err;
}
/*
* we won't sleep on this command, so we have to override
* the callback set up by mfi_mgmt()
*/
ccb->ccb_done = mfi_sync_map_complete;
mfi_post(sc, ccb);
splx(s);
return;
err:
if (ld_sync)
free(ld_sync, M_DEVBUF);
if (ccb)
mfi_put_ccb(ccb);
sc->sc_ldsync_ccb = NULL;
splx(s);
kpause("ldsyncp", 0, hz, NULL);
goto again;
}
static void
mfi_sync_map_complete(struct mfi_ccb *ccb)
{
struct mfi_softc *sc = ccb->ccb_sc;
bool aborted = !sc->sc_running;
DNPRINTF(MFI_D_SYNC, "%s: mfi_sync_map_complete\n",
DEVNAME(ccb->ccb_sc));
KASSERT(sc->sc_ldsync_ccb == ccb);
mfi_mgmt_done(ccb);
free(ccb->ccb_data, M_DEVBUF);
if (ccb->ccb_flags & MFI_CCB_F_ERR) {
aprint_error_dev(sc->sc_dev, "sync command failed\n");
aborted = true;
}
mfi_put_ccb(ccb);
sc->sc_ldsync_ccb = NULL;
/* set it up again so the driver can catch more events */
if (!aborted) {
workqueue_enqueue(sc->sc_ldsync_wq, &sc->sc_ldsync_wk, NULL);
}
}
static int
mfifopen(dev_t dev, int flag, int mode, struct lwp *l)
{
struct mfi_softc *sc;
if ((sc = device_lookup_private(&mfi_cd, minor(dev))) == NULL)
return (ENXIO);
return (0);
}
static int
mfifclose(dev_t dev, int flag, int mode, struct lwp *l)
{
return (0);
}
static int
mfifioctl(dev_t dev, u_long cmd, void *data, int flag,
struct lwp *l)
{
struct mfi_softc *sc;
struct mfi_ioc_packet *ioc = data;
uint8_t *udata;
struct mfi_ccb *ccb = NULL;
int ctx, i, s, error;
union mfi_sense_ptr sense_ptr;
switch(cmd) {
case MFI_CMD:
sc = device_lookup_private(&mfi_cd, ioc->mfi_adapter_no);
break;
default:
return ENOTTY;
}
if (sc == NULL)
return (ENXIO);
if (sc->sc_opened)
return (EBUSY);
switch(cmd) {
case MFI_CMD:
error = kauth_authorize_device_passthru(l->l_cred, dev,
KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
if (error)
return error;
if (ioc->mfi_sge_count > MAX_IOCTL_SGE)
return EINVAL;
s = splbio();
if ((ccb = mfi_get_ccb(sc)) == NULL)
return ENOMEM;
ccb->ccb_data = NULL;
ctx = ccb->ccb_frame->mfr_header.mfh_context;
memcpy(ccb->ccb_frame, ioc->mfi_frame.raw,
sizeof(*ccb->ccb_frame));
ccb->ccb_frame->mfr_header.mfh_context = ctx;
ccb->ccb_frame->mfr_header.mfh_scsi_status = 0;
ccb->ccb_frame->mfr_header.mfh_pad0 = 0;
ccb->ccb_frame_size =
(sizeof(union mfi_sgl) * ioc->mfi_sge_count) +
ioc->mfi_sgl_off;
if (ioc->mfi_sge_count > 0) {
ccb->ccb_sgl = (union mfi_sgl *)
&ccb->ccb_frame->mfr_bytes[ioc->mfi_sgl_off];
}
if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_READ)
ccb->ccb_direction = MFI_DATA_IN;
if (ccb->ccb_frame->mfr_header.mfh_flags & MFI_FRAME_DIR_WRITE)
ccb->ccb_direction = MFI_DATA_OUT;
ccb->ccb_len = ccb->ccb_frame->mfr_header.mfh_data_len;
if (ccb->ccb_len > MAXPHYS) {
error = ENOMEM;
goto out;
}
if (ccb->ccb_len &&
(ccb->ccb_direction & (MFI_DATA_IN | MFI_DATA_OUT)) != 0) {
udata = malloc(ccb->ccb_len, M_DEVBUF, M_WAITOK|M_ZERO);
if (udata == NULL) {
error = ENOMEM;
goto out;
}
ccb->ccb_data = udata;
if (ccb->ccb_direction & MFI_DATA_OUT) {
for (i = 0; i < ioc->mfi_sge_count; i++) {
error = copyin(ioc->mfi_sgl[i].iov_base,
udata, ioc->mfi_sgl[i].iov_len);
if (error)
goto out;
udata = &udata[
ioc->mfi_sgl[i].iov_len];
}
}
if (mfi_create_sgl(ccb, BUS_DMA_WAITOK)) {
error = EIO;
goto out;
}
}
if (ccb->ccb_frame->mfr_header.mfh_cmd == MFI_CMD_PD_SCSI_IO) {
ccb->ccb_frame->mfr_io.mif_sense_addr_lo =
htole32(ccb->ccb_psense);
ccb->ccb_frame->mfr_io.mif_sense_addr_hi = 0;
}
ccb->ccb_done = mfi_mgmt_done;
mfi_post(sc, ccb);
while (ccb->ccb_state != MFI_CCB_DONE)
tsleep(ccb, PRIBIO, "mfi_fioc", 0);
if (ccb->ccb_direction & MFI_DATA_IN) {
udata = ccb->ccb_data;
for (i = 0; i < ioc->mfi_sge_count; i++) {
error = copyout(udata,
ioc->mfi_sgl[i].iov_base,
ioc->mfi_sgl[i].iov_len);
if (error)
goto out;
udata = &udata[
ioc->mfi_sgl[i].iov_len];
}
}
if (ioc->mfi_sense_len) {
memcpy(&sense_ptr.sense_ptr_data[0],
&ioc->mfi_frame.raw[ioc->mfi_sense_off],
sizeof(sense_ptr.sense_ptr_data));
error = copyout(ccb->ccb_sense,
sense_ptr.user_space,
sizeof(sense_ptr.sense_ptr_data));
if (error)
goto out;
}
memcpy(ioc->mfi_frame.raw, ccb->ccb_frame,
sizeof(*ccb->ccb_frame));
break;
default:
printf("mfifioctl unhandled cmd 0x%lx\n", cmd);
return ENOTTY;
}
out:
if (ccb->ccb_data)
free(ccb->ccb_data, M_DEVBUF);
if (ccb)
mfi_put_ccb(ccb);
splx(s);
return error;
}