db3eb68fb5
warning: conversion from 'long long' to 'int' may lose accuracy
983 lines
23 KiB
C
983 lines
23 KiB
C
/* $NetBSD: kvm.c,v 1.109 2020/05/02 14:31:13 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1989, 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software developed by the Computer Systems
|
|
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
|
|
* BG 91-66 and contributed to Berkeley.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
#if 0
|
|
static char sccsid[] = "@(#)kvm.c 8.2 (Berkeley) 2/13/94";
|
|
#else
|
|
__RCSID("$NetBSD: kvm.c,v 1.109 2020/05/02 14:31:13 christos Exp $");
|
|
#endif
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/lwp.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <sys/core.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/kcore.h>
|
|
#include <sys/ksyms.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <limits.h>
|
|
#include <nlist.h>
|
|
#include <paths.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <kvm.h>
|
|
|
|
#include "kvm_private.h"
|
|
|
|
static int _kvm_get_header(kvm_t *);
|
|
static kvm_t *_kvm_open(kvm_t *, const char *, const char *,
|
|
const char *, int, char *);
|
|
static int clear_gap(kvm_t *, bool (*)(void *, const void *, size_t),
|
|
void *, size_t);
|
|
static off_t Lseek(kvm_t *, int, off_t, int);
|
|
static ssize_t Pread(kvm_t *, int, void *, size_t, off_t);
|
|
|
|
char *
|
|
kvm_geterr(kvm_t *kd)
|
|
{
|
|
return (kd->errbuf);
|
|
}
|
|
|
|
const char *
|
|
kvm_getkernelname(kvm_t *kd)
|
|
{
|
|
return kd->kernelname;
|
|
}
|
|
|
|
/*
|
|
* Report an error using printf style arguments. "program" is kd->program
|
|
* on hard errors, and 0 on soft errors, so that under sun error emulation,
|
|
* only hard errors are printed out (otherwise, programs like gdb will
|
|
* generate tons of error messages when trying to access bogus pointers).
|
|
*/
|
|
void
|
|
_kvm_err(kvm_t *kd, const char *program, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
if (program != NULL) {
|
|
(void)fprintf(stderr, "%s: ", program);
|
|
(void)vfprintf(stderr, fmt, ap);
|
|
(void)fputc('\n', stderr);
|
|
} else
|
|
(void)vsnprintf(kd->errbuf,
|
|
sizeof(kd->errbuf), fmt, ap);
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
void
|
|
_kvm_syserr(kvm_t *kd, const char *program, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
size_t n;
|
|
|
|
va_start(ap, fmt);
|
|
if (program != NULL) {
|
|
(void)fprintf(stderr, "%s: ", program);
|
|
(void)vfprintf(stderr, fmt, ap);
|
|
(void)fprintf(stderr, ": %s\n", strerror(errno));
|
|
} else {
|
|
char *cp = kd->errbuf;
|
|
|
|
(void)vsnprintf(cp, sizeof(kd->errbuf), fmt, ap);
|
|
n = strlen(cp);
|
|
(void)snprintf(&cp[n], sizeof(kd->errbuf) - n, ": %s",
|
|
strerror(errno));
|
|
}
|
|
va_end(ap);
|
|
}
|
|
|
|
void *
|
|
_kvm_malloc(kvm_t *kd, size_t n)
|
|
{
|
|
void *p;
|
|
|
|
if ((p = malloc(n)) == NULL)
|
|
_kvm_err(kd, kd->program, "%s", strerror(errno));
|
|
return (p);
|
|
}
|
|
|
|
/*
|
|
* Wrapper around the lseek(2) system call; calls _kvm_syserr() for us
|
|
* in the event of emergency.
|
|
*/
|
|
static off_t
|
|
Lseek(kvm_t *kd, int fd, off_t offset, int whence)
|
|
{
|
|
off_t off;
|
|
|
|
errno = 0;
|
|
|
|
if ((off = lseek(fd, offset, whence)) == -1 && errno != 0) {
|
|
_kvm_syserr(kd, kd->program, "Lseek");
|
|
return ((off_t)-1);
|
|
}
|
|
return (off);
|
|
}
|
|
|
|
ssize_t
|
|
_kvm_pread(kvm_t *kd, int fd, void *buf, size_t size, off_t off)
|
|
{
|
|
ptrdiff_t moff;
|
|
void *newbuf;
|
|
size_t dsize;
|
|
ssize_t rv;
|
|
off_t doff;
|
|
|
|
if (kd->dump_mem != MAP_FAILED) {
|
|
if (size + off > kd->dump_size) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
memcpy(buf, (char *)kd->dump_mem + (size_t)off, size);
|
|
return size;
|
|
}
|
|
|
|
/* If aligned nothing to do. */
|
|
if (((off % kd->fdalign) | (size % kd->fdalign)) == 0) {
|
|
return pread(fd, buf, size, off);
|
|
}
|
|
|
|
/*
|
|
* Otherwise must buffer. We can't tolerate short reads in this
|
|
* case (lazy bum).
|
|
*/
|
|
moff = (ptrdiff_t)off % kd->fdalign;
|
|
doff = off - moff;
|
|
dsize = moff + size + kd->fdalign - 1;
|
|
dsize -= dsize % kd->fdalign;
|
|
if (kd->iobufsz < dsize) {
|
|
newbuf = realloc(kd->iobuf, dsize);
|
|
if (newbuf == NULL) {
|
|
_kvm_syserr(kd, 0, "cannot allocate I/O buffer");
|
|
return (-1);
|
|
}
|
|
kd->iobuf = newbuf;
|
|
kd->iobufsz = dsize;
|
|
}
|
|
rv = pread(fd, kd->iobuf, dsize, doff);
|
|
if (rv < size + moff)
|
|
return -1;
|
|
memcpy(buf, kd->iobuf + moff, size);
|
|
return size;
|
|
}
|
|
|
|
static ssize_t
|
|
_kvm_pwrite(kvm_t *kd, const void *buf, size_t size, off_t off)
|
|
{
|
|
char *mem = kd->dump_mem;
|
|
|
|
if (size + off > kd->dump_size) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
memcpy(mem + (size_t)off, buf, size);
|
|
return size;
|
|
}
|
|
|
|
/*
|
|
* Wrapper around the pread(2) system call; calls _kvm_syserr() for us
|
|
* in the event of emergency.
|
|
*/
|
|
static ssize_t
|
|
Pread(kvm_t *kd, int fd, void *buf, size_t nbytes, off_t offset)
|
|
{
|
|
ssize_t rv;
|
|
|
|
errno = 0;
|
|
|
|
if ((rv = _kvm_pread(kd, fd, buf, nbytes, offset)) != nbytes &&
|
|
errno != 0)
|
|
_kvm_syserr(kd, kd->program, "Pread");
|
|
return (rv);
|
|
}
|
|
|
|
static kvm_t *
|
|
_kvm_open(kvm_t *kd, const char *uf, const char *mf, const char *sf, int flag,
|
|
char *errout)
|
|
{
|
|
struct stat st;
|
|
int ufgiven;
|
|
|
|
kd->pmfd = -1;
|
|
kd->vmfd = -1;
|
|
kd->swfd = -1;
|
|
kd->nlfd = -1;
|
|
kd->alive = KVM_ALIVE_DEAD;
|
|
kd->procbase = NULL;
|
|
kd->procbase_len = 0;
|
|
kd->procbase2 = NULL;
|
|
kd->procbase2_len = 0;
|
|
kd->lwpbase = NULL;
|
|
kd->lwpbase_len = 0;
|
|
kd->nbpg = getpagesize();
|
|
kd->swapspc = NULL;
|
|
kd->argspc = NULL;
|
|
kd->argspc_len = 0;
|
|
kd->argbuf = NULL;
|
|
kd->argv = NULL;
|
|
kd->vmst = NULL;
|
|
kd->vm_page_buckets = NULL;
|
|
kd->kcore_hdr = NULL;
|
|
kd->cpu_dsize = 0;
|
|
kd->cpu_data = NULL;
|
|
kd->dump_off = 0;
|
|
kd->fdalign = 1;
|
|
kd->iobuf = NULL;
|
|
kd->iobufsz = 0;
|
|
kd->errbuf[0] = '\0';
|
|
kd->dump_mem = MAP_FAILED;
|
|
kd->dump_size = 0;
|
|
|
|
if (flag & KVM_NO_FILES) {
|
|
kd->alive = KVM_ALIVE_SYSCTL;
|
|
return(kd);
|
|
}
|
|
|
|
/*
|
|
* Call the MD open hook. This sets:
|
|
* usrstack, min_uva, max_uva
|
|
*/
|
|
if (_kvm_mdopen(kd)) {
|
|
_kvm_err(kd, kd->program, "md init failed");
|
|
goto failed;
|
|
}
|
|
|
|
ufgiven = (uf != NULL);
|
|
if (!ufgiven) {
|
|
#ifdef CPU_BOOTED_KERNEL
|
|
/* 130 is 128 + '/' + '\0' */
|
|
static char booted_kernel[130];
|
|
int mib[2], rc;
|
|
size_t len;
|
|
|
|
mib[0] = CTL_MACHDEP;
|
|
mib[1] = CPU_BOOTED_KERNEL;
|
|
booted_kernel[0] = '/';
|
|
booted_kernel[1] = '\0';
|
|
len = sizeof(booted_kernel) - 2;
|
|
rc = sysctl(&mib[0], 2, &booted_kernel[1], &len, NULL, 0);
|
|
booted_kernel[sizeof(booted_kernel) - 1] = '\0';
|
|
uf = (booted_kernel[1] == '/') ?
|
|
&booted_kernel[1] : &booted_kernel[0];
|
|
if (rc != -1)
|
|
rc = stat(uf, &st);
|
|
if (rc != -1 && !S_ISREG(st.st_mode))
|
|
rc = -1;
|
|
if (rc == -1)
|
|
#endif /* CPU_BOOTED_KERNEL */
|
|
uf = _PATH_UNIX;
|
|
}
|
|
else if (strlen(uf) >= MAXPATHLEN) {
|
|
_kvm_err(kd, kd->program, "exec file name too long");
|
|
goto failed;
|
|
}
|
|
if (flag & ~O_RDWR) {
|
|
_kvm_err(kd, kd->program, "bad flags arg");
|
|
goto failed;
|
|
}
|
|
if (mf == 0)
|
|
mf = _PATH_MEM;
|
|
if (sf == 0)
|
|
sf = _PATH_DRUM;
|
|
|
|
/*
|
|
* Open the kernel namelist. If /dev/ksyms doesn't
|
|
* exist, open the current kernel.
|
|
*/
|
|
if (ufgiven == 0)
|
|
kd->nlfd = open(_PATH_KSYMS, O_RDONLY | O_CLOEXEC, 0);
|
|
if (kd->nlfd < 0) {
|
|
if ((kd->nlfd = open(uf, O_RDONLY | O_CLOEXEC, 0)) < 0) {
|
|
_kvm_syserr(kd, kd->program, "%s", uf);
|
|
goto failed;
|
|
}
|
|
strlcpy(kd->kernelname, uf, sizeof(kd->kernelname));
|
|
} else {
|
|
strlcpy(kd->kernelname, _PATH_KSYMS, sizeof(kd->kernelname));
|
|
}
|
|
|
|
if ((kd->pmfd = open(mf, flag | O_CLOEXEC, 0)) < 0) {
|
|
_kvm_syserr(kd, kd->program, "%s", mf);
|
|
goto failed;
|
|
}
|
|
if (fstat(kd->pmfd, &st) < 0) {
|
|
_kvm_syserr(kd, kd->program, "%s", mf);
|
|
goto failed;
|
|
}
|
|
if (S_ISCHR(st.st_mode) && strcmp(mf, _PATH_MEM) == 0) {
|
|
/*
|
|
* If this is /dev/mem, open kmem too. (Maybe we should
|
|
* make it work for either /dev/mem or /dev/kmem -- in either
|
|
* case you're working with a live kernel.)
|
|
*/
|
|
if ((kd->vmfd = open(_PATH_KMEM, flag | O_CLOEXEC, 0)) < 0) {
|
|
_kvm_syserr(kd, kd->program, "%s", _PATH_KMEM);
|
|
goto failed;
|
|
}
|
|
kd->alive = KVM_ALIVE_FILES;
|
|
if ((kd->swfd = open(sf, flag | O_CLOEXEC, 0)) < 0) {
|
|
if (errno != ENXIO) {
|
|
_kvm_syserr(kd, kd->program, "%s", sf);
|
|
goto failed;
|
|
}
|
|
/* swap is not configured? not fatal */
|
|
}
|
|
} else {
|
|
if (S_ISCHR(st.st_mode)) {
|
|
kd->fdalign = DEV_BSIZE;
|
|
} else {
|
|
kd->fdalign = 1;
|
|
}
|
|
|
|
/*
|
|
* This is a crash dump.
|
|
* Initialize the virtual address translation machinery.
|
|
*
|
|
* If there is no valid core header, fail silently here.
|
|
* The address translations however will fail without
|
|
* header. Things can be made to run by calling
|
|
* kvm_dump_mkheader() before doing any translation.
|
|
*/
|
|
if (_kvm_get_header(kd) == 0) {
|
|
if (_kvm_initvtop(kd) < 0)
|
|
goto failed;
|
|
}
|
|
kd->dump_size = (size_t)st.st_size;
|
|
kd->dump_mem = mmap(NULL, kd->dump_size, PROT_READ|PROT_WRITE,
|
|
MAP_FILE|MAP_PRIVATE, kd->pmfd, 0);
|
|
}
|
|
return (kd);
|
|
failed:
|
|
/*
|
|
* Copy out the error if doing sane error semantics.
|
|
*/
|
|
if (errout != 0)
|
|
(void)strlcpy(errout, kd->errbuf, _POSIX2_LINE_MAX);
|
|
(void)kvm_close(kd);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The kernel dump file (from savecore) contains:
|
|
* kcore_hdr_t kcore_hdr;
|
|
* kcore_seg_t cpu_hdr;
|
|
* (opaque) cpu_data; (size is cpu_hdr.c_size)
|
|
* kcore_seg_t mem_hdr;
|
|
* (memory) mem_data; (size is mem_hdr.c_size)
|
|
*
|
|
* Note: khdr is padded to khdr.c_hdrsize;
|
|
* cpu_hdr and mem_hdr are padded to khdr.c_seghdrsize
|
|
*/
|
|
static int
|
|
_kvm_get_header(kvm_t *kd)
|
|
{
|
|
kcore_hdr_t kcore_hdr;
|
|
kcore_seg_t cpu_hdr;
|
|
kcore_seg_t mem_hdr;
|
|
size_t offset;
|
|
ssize_t sz;
|
|
|
|
/*
|
|
* Read the kcore_hdr_t
|
|
*/
|
|
sz = Pread(kd, kd->pmfd, &kcore_hdr, sizeof(kcore_hdr), (off_t)0);
|
|
if (sz != sizeof(kcore_hdr))
|
|
return (-1);
|
|
|
|
/*
|
|
* Currently, we only support dump-files made by the current
|
|
* architecture...
|
|
*/
|
|
if ((CORE_GETMAGIC(kcore_hdr) != KCORE_MAGIC) ||
|
|
(CORE_GETMID(kcore_hdr) != MID_MACHINE))
|
|
return (-1);
|
|
|
|
/*
|
|
* Currently, we only support exactly 2 segments: cpu-segment
|
|
* and data-segment in exactly that order.
|
|
*/
|
|
if (kcore_hdr.c_nseg != 2)
|
|
return (-1);
|
|
|
|
/*
|
|
* Save away the kcore_hdr. All errors after this
|
|
* should do a to "goto fail" to deallocate things.
|
|
*/
|
|
kd->kcore_hdr = _kvm_malloc(kd, sizeof(kcore_hdr));
|
|
memcpy(kd->kcore_hdr, &kcore_hdr, sizeof(kcore_hdr));
|
|
offset = kcore_hdr.c_hdrsize;
|
|
|
|
/*
|
|
* Read the CPU segment header
|
|
*/
|
|
sz = Pread(kd, kd->pmfd, &cpu_hdr, sizeof(cpu_hdr), (off_t)offset);
|
|
if (sz != sizeof(cpu_hdr))
|
|
goto fail;
|
|
if ((CORE_GETMAGIC(cpu_hdr) != KCORESEG_MAGIC) ||
|
|
(CORE_GETFLAG(cpu_hdr) != CORE_CPU))
|
|
goto fail;
|
|
offset += kcore_hdr.c_seghdrsize;
|
|
|
|
/*
|
|
* Read the CPU segment DATA.
|
|
*/
|
|
kd->cpu_dsize = cpu_hdr.c_size;
|
|
kd->cpu_data = _kvm_malloc(kd, cpu_hdr.c_size);
|
|
if (kd->cpu_data == NULL)
|
|
goto fail;
|
|
sz = Pread(kd, kd->pmfd, kd->cpu_data, cpu_hdr.c_size, (off_t)offset);
|
|
if (sz != cpu_hdr.c_size)
|
|
goto fail;
|
|
offset += cpu_hdr.c_size;
|
|
|
|
/*
|
|
* Read the next segment header: data segment
|
|
*/
|
|
sz = Pread(kd, kd->pmfd, &mem_hdr, sizeof(mem_hdr), (off_t)offset);
|
|
if (sz != sizeof(mem_hdr))
|
|
goto fail;
|
|
offset += kcore_hdr.c_seghdrsize;
|
|
|
|
if ((CORE_GETMAGIC(mem_hdr) != KCORESEG_MAGIC) ||
|
|
(CORE_GETFLAG(mem_hdr) != CORE_DATA))
|
|
goto fail;
|
|
|
|
kd->dump_off = offset;
|
|
return (0);
|
|
|
|
fail:
|
|
if (kd->kcore_hdr != NULL) {
|
|
free(kd->kcore_hdr);
|
|
kd->kcore_hdr = NULL;
|
|
}
|
|
if (kd->cpu_data != NULL) {
|
|
free(kd->cpu_data);
|
|
kd->cpu_data = NULL;
|
|
kd->cpu_dsize = 0;
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* The format while on the dump device is: (new format)
|
|
* kcore_seg_t cpu_hdr;
|
|
* (opaque) cpu_data; (size is cpu_hdr.c_size)
|
|
* kcore_seg_t mem_hdr;
|
|
* (memory) mem_data; (size is mem_hdr.c_size)
|
|
*/
|
|
int
|
|
kvm_dump_mkheader(kvm_t *kd, off_t dump_off)
|
|
{
|
|
kcore_seg_t cpu_hdr;
|
|
size_t hdr_size;
|
|
ssize_t sz;
|
|
|
|
if (kd->kcore_hdr != NULL) {
|
|
_kvm_err(kd, kd->program, "already has a dump header");
|
|
return (-1);
|
|
}
|
|
if (ISALIVE(kd)) {
|
|
_kvm_err(kd, kd->program, "don't use on live kernel");
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Validate new format crash dump
|
|
*/
|
|
sz = Pread(kd, kd->pmfd, &cpu_hdr, sizeof(cpu_hdr), dump_off);
|
|
if (sz != sizeof(cpu_hdr)) {
|
|
if (sz == -1)
|
|
_kvm_err(kd, 0, "read %zx bytes at offset %"PRIx64
|
|
" for cpu_hdr failed: %s", sizeof(cpu_hdr),
|
|
dump_off, strerror(errno));
|
|
else
|
|
_kvm_err(kd, 0, "read %zx bytes at offset %"PRIx64
|
|
" for cpu_hdr instead of requested %zu",
|
|
sz, dump_off, sizeof(cpu_hdr));
|
|
return (-1);
|
|
}
|
|
if ((CORE_GETMAGIC(cpu_hdr) != KCORE_MAGIC)
|
|
|| (CORE_GETMID(cpu_hdr) != MID_MACHINE)) {
|
|
_kvm_err(kd, 0, "invalid magic in cpu_hdr");
|
|
return (0);
|
|
}
|
|
hdr_size = ALIGN(sizeof(cpu_hdr));
|
|
|
|
/*
|
|
* Read the CPU segment.
|
|
*/
|
|
kd->cpu_dsize = cpu_hdr.c_size;
|
|
kd->cpu_data = _kvm_malloc(kd, kd->cpu_dsize);
|
|
if (kd->cpu_data == NULL) {
|
|
_kvm_err(kd, kd->program, "no cpu_data");
|
|
goto fail;
|
|
}
|
|
sz = Pread(kd, kd->pmfd, kd->cpu_data, cpu_hdr.c_size,
|
|
dump_off + hdr_size);
|
|
if (sz != cpu_hdr.c_size) {
|
|
_kvm_err(kd, kd->program, "size %zu != cpu_hdr.csize %"PRIu32,
|
|
sz, cpu_hdr.c_size);
|
|
goto fail;
|
|
}
|
|
hdr_size += kd->cpu_dsize;
|
|
|
|
/*
|
|
* Leave phys mem pointer at beginning of memory data
|
|
*/
|
|
kd->dump_off = dump_off + hdr_size;
|
|
if (Lseek(kd, kd->pmfd, kd->dump_off, SEEK_SET) == -1) {
|
|
_kvm_err(kd, kd->program, "failed to seek to %" PRId64,
|
|
(int64_t)kd->dump_off);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Create a kcore_hdr.
|
|
*/
|
|
kd->kcore_hdr = _kvm_malloc(kd, sizeof(kcore_hdr_t));
|
|
if (kd->kcore_hdr == NULL) {
|
|
_kvm_err(kd, kd->program, "failed to allocate header");
|
|
goto fail;
|
|
}
|
|
|
|
kd->kcore_hdr->c_hdrsize = ALIGN(sizeof(kcore_hdr_t));
|
|
kd->kcore_hdr->c_seghdrsize = ALIGN(sizeof(kcore_seg_t));
|
|
kd->kcore_hdr->c_nseg = 2;
|
|
CORE_SETMAGIC(*(kd->kcore_hdr), KCORE_MAGIC, MID_MACHINE,0);
|
|
|
|
/*
|
|
* Now that we have a valid header, enable translations.
|
|
*/
|
|
if (_kvm_initvtop(kd) == 0)
|
|
/* Success */
|
|
return (hdr_size);
|
|
|
|
fail:
|
|
if (kd->kcore_hdr != NULL) {
|
|
free(kd->kcore_hdr);
|
|
kd->kcore_hdr = NULL;
|
|
}
|
|
if (kd->cpu_data != NULL) {
|
|
free(kd->cpu_data);
|
|
kd->cpu_data = NULL;
|
|
kd->cpu_dsize = 0;
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
static int
|
|
clear_gap(kvm_t *kd, bool (*write_buf)(void *, const void *, size_t),
|
|
void *cookie, size_t size)
|
|
{
|
|
char buf[1024];
|
|
size_t len;
|
|
|
|
(void)memset(buf, 0, size > sizeof(buf) ? sizeof(buf) : size);
|
|
|
|
while (size > 0) {
|
|
len = size > sizeof(buf) ? sizeof(buf) : size;
|
|
if (!(*write_buf)(cookie, buf, len)) {
|
|
_kvm_syserr(kd, kd->program, "clear_gap");
|
|
return -1;
|
|
}
|
|
size -= len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write the dump header by calling write_buf with cookie as first argument.
|
|
*/
|
|
int
|
|
kvm_dump_header(kvm_t *kd, bool (*write_buf)(void *, const void *, size_t),
|
|
void *cookie, int dumpsize)
|
|
{
|
|
kcore_seg_t seghdr;
|
|
long offset;
|
|
size_t gap;
|
|
|
|
if (kd->kcore_hdr == NULL || kd->cpu_data == NULL) {
|
|
_kvm_err(kd, kd->program, "no valid dump header(s)");
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Write the generic header
|
|
*/
|
|
offset = 0;
|
|
if (!(*write_buf)(cookie, kd->kcore_hdr, sizeof(kcore_hdr_t))) {
|
|
_kvm_syserr(kd, kd->program, "kvm_dump_header");
|
|
return (-1);
|
|
}
|
|
offset += kd->kcore_hdr->c_hdrsize;
|
|
gap = kd->kcore_hdr->c_hdrsize - sizeof(kcore_hdr_t);
|
|
if (clear_gap(kd, write_buf, cookie, gap) == -1)
|
|
return (-1);
|
|
|
|
/*
|
|
* Write the CPU header
|
|
*/
|
|
CORE_SETMAGIC(seghdr, KCORESEG_MAGIC, 0, CORE_CPU);
|
|
seghdr.c_size = ALIGN(kd->cpu_dsize);
|
|
if (!(*write_buf)(cookie, &seghdr, sizeof(seghdr))) {
|
|
_kvm_syserr(kd, kd->program, "kvm_dump_header");
|
|
return (-1);
|
|
}
|
|
offset += kd->kcore_hdr->c_seghdrsize;
|
|
gap = kd->kcore_hdr->c_seghdrsize - sizeof(seghdr);
|
|
if (clear_gap(kd, write_buf, cookie, gap) == -1)
|
|
return (-1);
|
|
|
|
if (!(*write_buf)(cookie, kd->cpu_data, kd->cpu_dsize)) {
|
|
_kvm_syserr(kd, kd->program, "kvm_dump_header");
|
|
return (-1);
|
|
}
|
|
offset += seghdr.c_size;
|
|
gap = seghdr.c_size - kd->cpu_dsize;
|
|
if (clear_gap(kd, write_buf, cookie, gap) == -1)
|
|
return (-1);
|
|
|
|
/*
|
|
* Write the actual dump data segment header
|
|
*/
|
|
CORE_SETMAGIC(seghdr, KCORESEG_MAGIC, 0, CORE_DATA);
|
|
seghdr.c_size = dumpsize;
|
|
if (!(*write_buf)(cookie, &seghdr, sizeof(seghdr))) {
|
|
_kvm_syserr(kd, kd->program, "kvm_dump_header");
|
|
return (-1);
|
|
}
|
|
offset += kd->kcore_hdr->c_seghdrsize;
|
|
gap = kd->kcore_hdr->c_seghdrsize - sizeof(seghdr);
|
|
if (clear_gap(kd, write_buf, cookie, gap) == -1)
|
|
return (-1);
|
|
|
|
return (int)offset;
|
|
}
|
|
|
|
static bool
|
|
kvm_dump_header_stdio(void *cookie, const void *buf, size_t len)
|
|
{
|
|
return fwrite(buf, len, 1, (FILE *)cookie) == 1;
|
|
}
|
|
|
|
int
|
|
kvm_dump_wrtheader(kvm_t *kd, FILE *fp, int dumpsize)
|
|
{
|
|
return kvm_dump_header(kd, kvm_dump_header_stdio, fp, dumpsize);
|
|
}
|
|
|
|
kvm_t *
|
|
kvm_openfiles(const char *uf, const char *mf, const char *sf,
|
|
int flag, char *errout)
|
|
{
|
|
kvm_t *kd;
|
|
|
|
if ((kd = malloc(sizeof(*kd))) == NULL) {
|
|
(void)strlcpy(errout, strerror(errno), _POSIX2_LINE_MAX);
|
|
return (0);
|
|
}
|
|
kd->program = 0;
|
|
return (_kvm_open(kd, uf, mf, sf, flag, errout));
|
|
}
|
|
|
|
kvm_t *
|
|
kvm_open(const char *uf, const char *mf, const char *sf, int flag,
|
|
const char *program)
|
|
{
|
|
kvm_t *kd;
|
|
|
|
if ((kd = malloc(sizeof(*kd))) == NULL) {
|
|
(void)fprintf(stderr, "%s: %s\n",
|
|
program ? program : getprogname(), strerror(errno));
|
|
return (0);
|
|
}
|
|
kd->program = program;
|
|
return (_kvm_open(kd, uf, mf, sf, flag, NULL));
|
|
}
|
|
|
|
int
|
|
kvm_close(kvm_t *kd)
|
|
{
|
|
int error = 0;
|
|
|
|
if (kd->pmfd >= 0)
|
|
error |= close(kd->pmfd);
|
|
if (kd->vmfd >= 0)
|
|
error |= close(kd->vmfd);
|
|
if (kd->nlfd >= 0)
|
|
error |= close(kd->nlfd);
|
|
if (kd->swfd >= 0)
|
|
error |= close(kd->swfd);
|
|
if (kd->vmst)
|
|
_kvm_freevtop(kd);
|
|
kd->cpu_dsize = 0;
|
|
if (kd->cpu_data != NULL)
|
|
free(kd->cpu_data);
|
|
if (kd->kcore_hdr != NULL)
|
|
free(kd->kcore_hdr);
|
|
if (kd->procbase != 0)
|
|
free(kd->procbase);
|
|
if (kd->procbase2 != 0)
|
|
free(kd->procbase2);
|
|
if (kd->lwpbase != 0)
|
|
free(kd->lwpbase);
|
|
if (kd->swapspc != 0)
|
|
free(kd->swapspc);
|
|
if (kd->argspc != 0)
|
|
free(kd->argspc);
|
|
if (kd->argbuf != 0)
|
|
free(kd->argbuf);
|
|
if (kd->argv != 0)
|
|
free(kd->argv);
|
|
if (kd->iobuf != 0)
|
|
free(kd->iobuf);
|
|
if (kd->dump_mem != MAP_FAILED)
|
|
munmap(kd->dump_mem, kd->dump_size);
|
|
free(kd);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
kvm_nlist(kvm_t *kd, struct nlist *nl)
|
|
{
|
|
int rv;
|
|
|
|
/*
|
|
* Call the nlist(3) routines to retrieve the given namelist.
|
|
*/
|
|
rv = __fdnlist(kd->nlfd, nl);
|
|
|
|
if (rv == -1)
|
|
_kvm_err(kd, 0, "bad namelist");
|
|
|
|
return (rv);
|
|
}
|
|
|
|
int
|
|
kvm_dump_inval(kvm_t *kd)
|
|
{
|
|
struct nlist nl[2];
|
|
paddr_t pa;
|
|
size_t dsize;
|
|
off_t doff;
|
|
void *newbuf;
|
|
|
|
if (ISALIVE(kd)) {
|
|
_kvm_err(kd, kd->program, "clearing dump on live kernel");
|
|
return (-1);
|
|
}
|
|
nl[0].n_name = "_dumpmag";
|
|
nl[1].n_name = NULL;
|
|
|
|
if (kvm_nlist(kd, nl) == -1) {
|
|
_kvm_err(kd, 0, "bad namelist");
|
|
return (-1);
|
|
}
|
|
if (_kvm_kvatop(kd, (vaddr_t)nl[0].n_value, &pa) == 0)
|
|
return (-1);
|
|
|
|
errno = 0;
|
|
dsize = MAX(kd->fdalign, sizeof(u_long));
|
|
if (kd->iobufsz < dsize) {
|
|
newbuf = realloc(kd->iobuf, dsize);
|
|
if (newbuf == NULL) {
|
|
_kvm_syserr(kd, 0, "cannot allocate I/O buffer");
|
|
return (-1);
|
|
}
|
|
kd->iobuf = newbuf;
|
|
kd->iobufsz = dsize;
|
|
}
|
|
memset(kd->iobuf, 0, dsize);
|
|
doff = _kvm_pa2off(kd, pa);
|
|
doff -= doff % kd->fdalign;
|
|
if (pwrite(kd->pmfd, kd->iobuf, dsize, doff) == -1) {
|
|
_kvm_syserr(kd, 0, "cannot invalidate dump - pwrite");
|
|
return (-1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
ssize_t
|
|
kvm_read(kvm_t *kd, u_long kva, void *buf, size_t len)
|
|
{
|
|
int cc;
|
|
void *cp;
|
|
|
|
if (ISKMEM(kd)) {
|
|
/*
|
|
* We're using /dev/kmem. Just read straight from the
|
|
* device and let the active kernel do the address translation.
|
|
*/
|
|
errno = 0;
|
|
cc = _kvm_pread(kd, kd->vmfd, buf, len, (off_t)kva);
|
|
if (cc < 0) {
|
|
_kvm_syserr(kd, 0, "kvm_read");
|
|
return (-1);
|
|
} else if (cc < len)
|
|
_kvm_err(kd, kd->program, "short read");
|
|
return (cc);
|
|
} else if (ISSYSCTL(kd)) {
|
|
_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
|
|
"can't use kvm_read");
|
|
return (-1);
|
|
} else {
|
|
if ((kd->kcore_hdr == NULL) || (kd->cpu_data == NULL)) {
|
|
_kvm_err(kd, kd->program, "no valid dump header");
|
|
return (-1);
|
|
}
|
|
cp = buf;
|
|
while (len > 0) {
|
|
paddr_t pa;
|
|
off_t foff;
|
|
|
|
cc = _kvm_kvatop(kd, (vaddr_t)kva, &pa);
|
|
if (cc == 0) {
|
|
_kvm_err(kd, kd->program, "_kvm_kvatop(%lx)", kva);
|
|
return (-1);
|
|
}
|
|
if (cc > len)
|
|
cc = len;
|
|
foff = _kvm_pa2off(kd, pa);
|
|
errno = 0;
|
|
cc = _kvm_pread(kd, kd->pmfd, cp, (size_t)cc, foff);
|
|
if (cc < 0) {
|
|
_kvm_syserr(kd, kd->program, "kvm_read");
|
|
break;
|
|
}
|
|
/*
|
|
* If kvm_kvatop returns a bogus value or our core
|
|
* file is truncated, we might wind up seeking beyond
|
|
* the end of the core file in which case the read will
|
|
* return 0 (EOF).
|
|
*/
|
|
if (cc == 0)
|
|
break;
|
|
cp = (char *)cp + cc;
|
|
kva += cc;
|
|
len -= cc;
|
|
}
|
|
return ((char *)cp - (char *)buf);
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
ssize_t
|
|
kvm_write(kvm_t *kd, u_long kva, const void *buf, size_t len)
|
|
{
|
|
int cc;
|
|
const void *cp;
|
|
|
|
if (ISKMEM(kd)) {
|
|
/*
|
|
* Just like kvm_read, only we write.
|
|
*/
|
|
errno = 0;
|
|
cc = pwrite(kd->vmfd, buf, len, (off_t)kva);
|
|
if (cc < 0) {
|
|
_kvm_syserr(kd, 0, "kvm_write");
|
|
return (-1);
|
|
} else if (cc < len)
|
|
_kvm_err(kd, kd->program, "short write");
|
|
return (cc);
|
|
} else if (ISSYSCTL(kd)) {
|
|
_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
|
|
"can't use kvm_write");
|
|
return (-1);
|
|
} else {
|
|
if (kd->dump_mem == MAP_FAILED) {
|
|
_kvm_err(kd, kd->program,
|
|
"kvm_write not implemented for dead kernels");
|
|
return (-1);
|
|
}
|
|
cp = buf;
|
|
while (len > 0) {
|
|
paddr_t pa;
|
|
off_t foff;
|
|
|
|
cc = _kvm_kvatop(kd, (vaddr_t)kva, &pa);
|
|
if (cc == 0) {
|
|
_kvm_err(kd, kd->program, "_kvm_kvatop(%lx)", kva);
|
|
return (-1);
|
|
}
|
|
if (cc > len)
|
|
cc = len;
|
|
foff = _kvm_pa2off(kd, pa);
|
|
errno = 0;
|
|
cc = _kvm_pwrite(kd, cp, (size_t)cc, foff);
|
|
if (cc < 0) {
|
|
_kvm_syserr(kd, kd->program, "kvm_pwrite");
|
|
break;
|
|
}
|
|
/*
|
|
* If kvm_kvatop returns a bogus value or our core
|
|
* file is truncated, we might wind up seeking beyond
|
|
* the end of the core file in which case the read will
|
|
* return 0 (EOF).
|
|
*/
|
|
if (cc == 0)
|
|
break;
|
|
cp = (const char *)cp + cc;
|
|
kva += cc;
|
|
len -= cc;
|
|
}
|
|
return ((const char *)cp - (const char *)buf);
|
|
}
|
|
/* NOTREACHED */
|
|
}
|