NetBSD/sys/dev/raidframe/rf_paritylogDiskMgr.c
2000-01-08 01:18:36 +00:00

651 lines
21 KiB
C

/* $NetBSD: rf_paritylogDiskMgr.c,v 1.7 2000/01/08 01:18:36 oster Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: William V. Courtright II
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/* Code for flushing and reintegration operations related to parity logging.
*
*/
#include "rf_archs.h"
#if RF_INCLUDE_PARITYLOGGING > 0
#include "rf_types.h"
#include "rf_threadstuff.h"
#include "rf_mcpair.h"
#include "rf_raid.h"
#include "rf_dag.h"
#include "rf_dagfuncs.h"
#include "rf_desc.h"
#include "rf_layout.h"
#include "rf_diskqueue.h"
#include "rf_paritylog.h"
#include "rf_general.h"
#include "rf_etimer.h"
#include "rf_paritylogging.h"
#include "rf_engine.h"
#include "rf_dagutils.h"
#include "rf_map.h"
#include "rf_parityscan.h"
#include "rf_paritylogDiskMgr.h"
static caddr_t AcquireReintBuffer(RF_RegionBufferQueue_t *);
static caddr_t
AcquireReintBuffer(pool)
RF_RegionBufferQueue_t *pool;
{
caddr_t bufPtr = NULL;
/* Return a region buffer from the free list (pool). If the free list
* is empty, WAIT. BLOCKING */
RF_LOCK_MUTEX(pool->mutex);
if (pool->availableBuffers > 0) {
bufPtr = pool->buffers[pool->availBuffersIndex];
pool->availableBuffers--;
pool->availBuffersIndex++;
if (pool->availBuffersIndex == pool->totalBuffers)
pool->availBuffersIndex = 0;
RF_UNLOCK_MUTEX(pool->mutex);
} else {
RF_PANIC(); /* should never happen in currect config,
* single reint */
RF_WAIT_COND(pool->cond, pool->mutex);
}
return (bufPtr);
}
static void
ReleaseReintBuffer(
RF_RegionBufferQueue_t * pool,
caddr_t bufPtr)
{
/* Insert a region buffer (bufPtr) into the free list (pool).
* NON-BLOCKING */
RF_LOCK_MUTEX(pool->mutex);
pool->availableBuffers++;
pool->buffers[pool->emptyBuffersIndex] = bufPtr;
pool->emptyBuffersIndex++;
if (pool->emptyBuffersIndex == pool->totalBuffers)
pool->emptyBuffersIndex = 0;
RF_ASSERT(pool->availableBuffers <= pool->totalBuffers);
RF_UNLOCK_MUTEX(pool->mutex);
RF_SIGNAL_COND(pool->cond);
}
static void
ReadRegionLog(
RF_RegionId_t regionID,
RF_MCPair_t * rrd_mcpair,
caddr_t regionBuffer,
RF_Raid_t * raidPtr,
RF_DagHeader_t ** rrd_dag_h,
RF_AllocListElem_t ** rrd_alloclist,
RF_PhysDiskAddr_t ** rrd_pda)
{
/* Initiate the read a region log from disk. Once initiated, return
* to the calling routine.
*
* NON-BLOCKING */
RF_AccTraceEntry_t tracerec;
RF_DagNode_t *rrd_rdNode;
/* create DAG to read region log from disk */
rf_MakeAllocList(*rrd_alloclist);
*rrd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, regionBuffer, rf_DiskReadFunc, rf_DiskReadUndoFunc,
"Rrl", *rrd_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
/* create and initialize PDA for the core log */
/* RF_Malloc(*rrd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
* *)); */
*rrd_pda = rf_AllocPDAList(1);
rf_MapLogParityLogging(raidPtr, regionID, 0, &((*rrd_pda)->row), &((*rrd_pda)->col), &((*rrd_pda)->startSector));
(*rrd_pda)->numSector = raidPtr->regionInfo[regionID].capacity;
if ((*rrd_pda)->next) {
(*rrd_pda)->next = NULL;
printf("set rrd_pda->next to NULL\n");
}
/* initialize DAG parameters */
bzero((char *) &tracerec, sizeof(tracerec));
(*rrd_dag_h)->tracerec = &tracerec;
rrd_rdNode = (*rrd_dag_h)->succedents[0]->succedents[0];
rrd_rdNode->params[0].p = *rrd_pda;
/* rrd_rdNode->params[1] = regionBuffer; */
rrd_rdNode->params[2].v = 0;
rrd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
/* launch region log read dag */
rf_DispatchDAG(*rrd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
(void *) rrd_mcpair);
}
static void
WriteCoreLog(
RF_ParityLog_t * log,
RF_MCPair_t * fwr_mcpair,
RF_Raid_t * raidPtr,
RF_DagHeader_t ** fwr_dag_h,
RF_AllocListElem_t ** fwr_alloclist,
RF_PhysDiskAddr_t ** fwr_pda)
{
RF_RegionId_t regionID = log->regionID;
RF_AccTraceEntry_t tracerec;
RF_SectorNum_t regionOffset;
RF_DagNode_t *fwr_wrNode;
/* Initiate the write of a core log to a region log disk. Once
* initiated, return to the calling routine.
*
* NON-BLOCKING */
/* create DAG to write a core log to a region log disk */
rf_MakeAllocList(*fwr_alloclist);
*fwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, log->bufPtr, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
"Wcl", *fwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
/* create and initialize PDA for the region log */
/* RF_Malloc(*fwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
* *)); */
*fwr_pda = rf_AllocPDAList(1);
regionOffset = log->diskOffset;
rf_MapLogParityLogging(raidPtr, regionID, regionOffset, &((*fwr_pda)->row), &((*fwr_pda)->col), &((*fwr_pda)->startSector));
(*fwr_pda)->numSector = raidPtr->numSectorsPerLog;
/* initialize DAG parameters */
bzero((char *) &tracerec, sizeof(tracerec));
(*fwr_dag_h)->tracerec = &tracerec;
fwr_wrNode = (*fwr_dag_h)->succedents[0]->succedents[0];
fwr_wrNode->params[0].p = *fwr_pda;
/* fwr_wrNode->params[1] = log->bufPtr; */
fwr_wrNode->params[2].v = 0;
fwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
/* launch the dag to write the core log to disk */
rf_DispatchDAG(*fwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
(void *) fwr_mcpair);
}
static void
ReadRegionParity(
RF_RegionId_t regionID,
RF_MCPair_t * prd_mcpair,
caddr_t parityBuffer,
RF_Raid_t * raidPtr,
RF_DagHeader_t ** prd_dag_h,
RF_AllocListElem_t ** prd_alloclist,
RF_PhysDiskAddr_t ** prd_pda)
{
/* Initiate the read region parity from disk. Once initiated, return
* to the calling routine.
*
* NON-BLOCKING */
RF_AccTraceEntry_t tracerec;
RF_DagNode_t *prd_rdNode;
/* create DAG to read region parity from disk */
rf_MakeAllocList(*prd_alloclist);
*prd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, NULL, rf_DiskReadFunc, rf_DiskReadUndoFunc,
"Rrp", *prd_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
/* create and initialize PDA for region parity */
/* RF_Malloc(*prd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
* *)); */
*prd_pda = rf_AllocPDAList(1);
rf_MapRegionParity(raidPtr, regionID, &((*prd_pda)->row), &((*prd_pda)->col), &((*prd_pda)->startSector), &((*prd_pda)->numSector));
if (rf_parityLogDebug)
printf("[reading %d sectors of parity from region %d]\n",
(int) (*prd_pda)->numSector, regionID);
if ((*prd_pda)->next) {
(*prd_pda)->next = NULL;
printf("set prd_pda->next to NULL\n");
}
/* initialize DAG parameters */
bzero((char *) &tracerec, sizeof(tracerec));
(*prd_dag_h)->tracerec = &tracerec;
prd_rdNode = (*prd_dag_h)->succedents[0]->succedents[0];
prd_rdNode->params[0].p = *prd_pda;
prd_rdNode->params[1].p = parityBuffer;
prd_rdNode->params[2].v = 0;
prd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
if (rf_validateDAGDebug)
rf_ValidateDAG(*prd_dag_h);
/* launch region parity read dag */
rf_DispatchDAG(*prd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
(void *) prd_mcpair);
}
static void
WriteRegionParity(
RF_RegionId_t regionID,
RF_MCPair_t * pwr_mcpair,
caddr_t parityBuffer,
RF_Raid_t * raidPtr,
RF_DagHeader_t ** pwr_dag_h,
RF_AllocListElem_t ** pwr_alloclist,
RF_PhysDiskAddr_t ** pwr_pda)
{
/* Initiate the write of region parity to disk. Once initiated, return
* to the calling routine.
*
* NON-BLOCKING */
RF_AccTraceEntry_t tracerec;
RF_DagNode_t *pwr_wrNode;
/* create DAG to write region log from disk */
rf_MakeAllocList(*pwr_alloclist);
*pwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, parityBuffer, rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
"Wrp", *pwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
/* create and initialize PDA for region parity */
/* RF_Malloc(*pwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
* *)); */
*pwr_pda = rf_AllocPDAList(1);
rf_MapRegionParity(raidPtr, regionID, &((*pwr_pda)->row), &((*pwr_pda)->col), &((*pwr_pda)->startSector), &((*pwr_pda)->numSector));
/* initialize DAG parameters */
bzero((char *) &tracerec, sizeof(tracerec));
(*pwr_dag_h)->tracerec = &tracerec;
pwr_wrNode = (*pwr_dag_h)->succedents[0]->succedents[0];
pwr_wrNode->params[0].p = *pwr_pda;
/* pwr_wrNode->params[1] = parityBuffer; */
pwr_wrNode->params[2].v = 0;
pwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0, 0, 0);
/* launch the dag to write region parity to disk */
rf_DispatchDAG(*pwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
(void *) pwr_mcpair);
}
static void
FlushLogsToDisk(
RF_Raid_t * raidPtr,
RF_ParityLog_t * logList)
{
/* Flush a linked list of core logs to the log disk. Logs contain the
* disk location where they should be written. Logs were written in
* FIFO order and that order must be preserved.
*
* Recommended optimizations: 1) allow multiple flushes to occur
* simultaneously 2) coalesce contiguous flush operations
*
* BLOCKING */
RF_ParityLog_t *log;
RF_RegionId_t regionID;
RF_MCPair_t *fwr_mcpair;
RF_DagHeader_t *fwr_dag_h;
RF_AllocListElem_t *fwr_alloclist;
RF_PhysDiskAddr_t *fwr_pda;
fwr_mcpair = rf_AllocMCPair();
RF_LOCK_MUTEX(fwr_mcpair->mutex);
RF_ASSERT(logList);
log = logList;
while (log) {
regionID = log->regionID;
/* create and launch a DAG to write the core log */
if (rf_parityLogDebug)
printf("[initiating write of core log for region %d]\n", regionID);
fwr_mcpair->flag = RF_FALSE;
WriteCoreLog(log, fwr_mcpair, raidPtr, &fwr_dag_h, &fwr_alloclist, &fwr_pda);
/* wait for the DAG to complete */
while (!fwr_mcpair->flag)
RF_WAIT_COND(fwr_mcpair->cond, fwr_mcpair->mutex);
if (fwr_dag_h->status != rf_enable) {
RF_ERRORMSG1("Unable to write core log to disk (region %d)\n", regionID);
RF_ASSERT(0);
}
/* RF_Free(fwr_pda, sizeof(RF_PhysDiskAddr_t)); */
rf_FreePhysDiskAddr(fwr_pda);
rf_FreeDAG(fwr_dag_h);
rf_FreeAllocList(fwr_alloclist);
log = log->next;
}
RF_UNLOCK_MUTEX(fwr_mcpair->mutex);
rf_FreeMCPair(fwr_mcpair);
rf_ReleaseParityLogs(raidPtr, logList);
}
static void
ReintegrateRegion(
RF_Raid_t * raidPtr,
RF_RegionId_t regionID,
RF_ParityLog_t * coreLog)
{
RF_MCPair_t *rrd_mcpair = NULL, *prd_mcpair, *pwr_mcpair;
RF_DagHeader_t *rrd_dag_h, *prd_dag_h, *pwr_dag_h;
RF_AllocListElem_t *rrd_alloclist, *prd_alloclist, *pwr_alloclist;
RF_PhysDiskAddr_t *rrd_pda, *prd_pda, *pwr_pda;
caddr_t parityBuffer, regionBuffer = NULL;
/* Reintegrate a region (regionID). 1. acquire region and parity
* buffers 2. read log from disk 3. read parity from disk 4. apply log
* to parity 5. apply core log to parity 6. write new parity to disk
*
* BLOCKING */
if (rf_parityLogDebug)
printf("[reintegrating region %d]\n", regionID);
/* initiate read of region parity */
if (rf_parityLogDebug)
printf("[initiating read of parity for region %d]\n", regionID);
parityBuffer = AcquireReintBuffer(&raidPtr->parityBufferPool);
prd_mcpair = rf_AllocMCPair();
RF_LOCK_MUTEX(prd_mcpair->mutex);
prd_mcpair->flag = RF_FALSE;
ReadRegionParity(regionID, prd_mcpair, parityBuffer, raidPtr, &prd_dag_h, &prd_alloclist, &prd_pda);
/* if region log nonempty, initiate read */
if (raidPtr->regionInfo[regionID].diskCount > 0) {
if (rf_parityLogDebug)
printf("[initiating read of disk log for region %d]\n", regionID);
regionBuffer = AcquireReintBuffer(&raidPtr->regionBufferPool);
rrd_mcpair = rf_AllocMCPair();
RF_LOCK_MUTEX(rrd_mcpair->mutex);
rrd_mcpair->flag = RF_FALSE;
ReadRegionLog(regionID, rrd_mcpair, regionBuffer, raidPtr, &rrd_dag_h, &rrd_alloclist, &rrd_pda);
}
/* wait on read of region parity to complete */
while (!prd_mcpair->flag) {
RF_WAIT_COND(prd_mcpair->cond, prd_mcpair->mutex);
}
RF_UNLOCK_MUTEX(prd_mcpair->mutex);
if (prd_dag_h->status != rf_enable) {
RF_ERRORMSG("Unable to read parity from disk\n");
/* add code to fail the parity disk */
RF_ASSERT(0);
}
/* apply core log to parity */
/* if (coreLog) ApplyLogsToParity(coreLog, parityBuffer); */
if (raidPtr->regionInfo[regionID].diskCount > 0) {
/* wait on read of region log to complete */
while (!rrd_mcpair->flag)
RF_WAIT_COND(rrd_mcpair->cond, rrd_mcpair->mutex);
RF_UNLOCK_MUTEX(rrd_mcpair->mutex);
if (rrd_dag_h->status != rf_enable) {
RF_ERRORMSG("Unable to read region log from disk\n");
/* add code to fail the log disk */
RF_ASSERT(0);
}
/* apply region log to parity */
/* ApplyRegionToParity(regionID, regionBuffer, parityBuffer); */
/* release resources associated with region log */
/* RF_Free(rrd_pda, sizeof(RF_PhysDiskAddr_t)); */
rf_FreePhysDiskAddr(rrd_pda);
rf_FreeDAG(rrd_dag_h);
rf_FreeAllocList(rrd_alloclist);
rf_FreeMCPair(rrd_mcpair);
ReleaseReintBuffer(&raidPtr->regionBufferPool, regionBuffer);
}
/* write reintegrated parity to disk */
if (rf_parityLogDebug)
printf("[initiating write of parity for region %d]\n", regionID);
pwr_mcpair = rf_AllocMCPair();
RF_LOCK_MUTEX(pwr_mcpair->mutex);
pwr_mcpair->flag = RF_FALSE;
WriteRegionParity(regionID, pwr_mcpair, parityBuffer, raidPtr, &pwr_dag_h, &pwr_alloclist, &pwr_pda);
while (!pwr_mcpair->flag)
RF_WAIT_COND(pwr_mcpair->cond, pwr_mcpair->mutex);
RF_UNLOCK_MUTEX(pwr_mcpair->mutex);
if (pwr_dag_h->status != rf_enable) {
RF_ERRORMSG("Unable to write parity to disk\n");
/* add code to fail the parity disk */
RF_ASSERT(0);
}
/* release resources associated with read of old parity */
/* RF_Free(prd_pda, sizeof(RF_PhysDiskAddr_t)); */
rf_FreePhysDiskAddr(prd_pda);
rf_FreeDAG(prd_dag_h);
rf_FreeAllocList(prd_alloclist);
rf_FreeMCPair(prd_mcpair);
/* release resources associated with write of new parity */
ReleaseReintBuffer(&raidPtr->parityBufferPool, parityBuffer);
/* RF_Free(pwr_pda, sizeof(RF_PhysDiskAddr_t)); */
rf_FreePhysDiskAddr(pwr_pda);
rf_FreeDAG(pwr_dag_h);
rf_FreeAllocList(pwr_alloclist);
rf_FreeMCPair(pwr_mcpair);
if (rf_parityLogDebug)
printf("[finished reintegrating region %d]\n", regionID);
}
static void
ReintegrateLogs(
RF_Raid_t * raidPtr,
RF_ParityLog_t * logList)
{
RF_ParityLog_t *log, *freeLogList = NULL;
RF_ParityLogData_t *logData, *logDataList;
RF_RegionId_t regionID;
RF_ASSERT(logList);
while (logList) {
log = logList;
logList = logList->next;
log->next = NULL;
regionID = log->regionID;
ReintegrateRegion(raidPtr, regionID, log);
log->numRecords = 0;
/* remove all items which are blocked on reintegration of this
* region */
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
logData = rf_SearchAndDequeueParityLogData(raidPtr, regionID, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail, RF_TRUE);
logDataList = logData;
while (logData) {
logData->next = rf_SearchAndDequeueParityLogData(raidPtr, regionID, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail, RF_TRUE);
logData = logData->next;
}
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
/* process blocked log data and clear reintInProgress flag for
* this region */
if (logDataList)
rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_TRUE);
else {
/* Enable flushing for this region. Holding both
* locks provides a synchronization barrier with
* DumpParityLogToDisk */
RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
raidPtr->regionInfo[regionID].diskCount = 0;
raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE;
RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); /* flushing is now
* enabled */
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
}
/* if log wasn't used, attach it to the list of logs to be
* returned */
if (log) {
log->next = freeLogList;
freeLogList = log;
}
}
if (freeLogList)
rf_ReleaseParityLogs(raidPtr, freeLogList);
}
int
rf_ShutdownLogging(RF_Raid_t * raidPtr)
{
/* shutdown parity logging 1) disable parity logging in all regions 2)
* reintegrate all regions */
RF_SectorCount_t diskCount;
RF_RegionId_t regionID;
RF_ParityLog_t *log;
if (rf_parityLogDebug)
printf("[shutting down parity logging]\n");
/* Since parity log maps are volatile, we must reintegrate all
* regions. */
if (rf_forceParityLogReint) {
for (regionID = 0; regionID < rf_numParityRegions; regionID++) {
RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
raidPtr->regionInfo[regionID].loggingEnabled = RF_FALSE;
log = raidPtr->regionInfo[regionID].coreLog;
raidPtr->regionInfo[regionID].coreLog = NULL;
diskCount = raidPtr->regionInfo[regionID].diskCount;
RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
if (diskCount > 0 || log != NULL)
ReintegrateRegion(raidPtr, regionID, log);
if (log != NULL)
rf_ReleaseParityLogs(raidPtr, log);
}
}
if (rf_parityLogDebug) {
printf("[parity logging disabled]\n");
printf("[should be done!]\n");
}
return (0);
}
int
rf_ParityLoggingDiskManager(RF_Raid_t * raidPtr)
{
RF_ParityLog_t *reintQueue, *flushQueue;
int workNeeded, done = RF_FALSE;
/* Main program for parity logging disk thread. This routine waits
* for work to appear in either the flush or reintegration queues and
* is responsible for flushing core logs to the log disk as well as
* reintegrating parity regions.
*
* BLOCKING */
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
/*
* Inform our creator that we're running. Don't bother doing the
* mutex lock/unlock dance- we locked above, and we'll unlock
* below with nothing to do, yet.
*/
raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_RUNNING;
RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
/* empty the work queues */
flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
raidPtr->parityLogDiskQueue.flushQueue = NULL;
reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
raidPtr->parityLogDiskQueue.reintQueue = NULL;
workNeeded = (flushQueue || reintQueue);
while (!done) {
while (workNeeded) {
/* First, flush all logs in the flush queue, freeing
* buffers Second, reintegrate all regions which are
* reported as full. Third, append queued log data
* until blocked.
*
* Note: Incoming appends (ParityLogAppend) can block on
* either 1. empty buffer pool 2. region under
* reintegration To preserve a global FIFO ordering of
* appends, buffers are not released to the world
* until those appends blocked on buffers are removed
* from the append queue. Similarly, regions which
* are reintegrated are not opened for general use
* until the append queue has been emptied. */
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
/* empty flushQueue, using free'd log buffers to
* process bufTail */
if (flushQueue)
FlushLogsToDisk(raidPtr, flushQueue);
/* empty reintQueue, flushing from reintTail as we go */
if (reintQueue)
ReintegrateLogs(raidPtr, reintQueue);
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
raidPtr->parityLogDiskQueue.flushQueue = NULL;
reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
raidPtr->parityLogDiskQueue.reintQueue = NULL;
workNeeded = (flushQueue || reintQueue);
}
/* no work is needed at this point */
if (raidPtr->parityLogDiskQueue.threadState & RF_PLOG_TERMINATE) {
/* shutdown parity logging 1. disable parity logging
* in all regions 2. reintegrate all regions */
done = RF_TRUE; /* thread disabled, no work needed */
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
rf_ShutdownLogging(raidPtr);
}
if (!done) {
/* thread enabled, no work needed, so sleep */
if (rf_parityLogDebug)
printf("[parity logging disk manager sleeping]\n");
RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond, raidPtr->parityLogDiskQueue.mutex);
if (rf_parityLogDebug)
printf("[parity logging disk manager just woke up]\n");
flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
raidPtr->parityLogDiskQueue.flushQueue = NULL;
reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
raidPtr->parityLogDiskQueue.reintQueue = NULL;
workNeeded = (flushQueue || reintQueue);
}
}
/*
* Announce that we're done.
*/
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_SHUTDOWN;
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
/*
* In the NetBSD kernel, the thread must exit; returning would
* cause the proc trampoline to attempt to return to userspace.
*/
kthread_exit(0); /* does not return */
}
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */