NetBSD/sys/dev/pci/if_sip.c

3928 lines
106 KiB
C

/* $NetBSD: if_sip.c,v 1.167 2017/09/26 07:42:06 knakahara Exp $ */
/*-
* Copyright (c) 2001, 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1999 Network Computer, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Network Computer, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY NETWORK COMPUTER, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the Silicon Integrated Systems SiS 900,
* SiS 7016 10/100, National Semiconductor DP83815 10/100, and
* National Semiconductor DP83820 10/100/1000 PCI Ethernet
* controllers.
*
* Originally written to support the SiS 900 by Jason R. Thorpe for
* Network Computer, Inc.
*
* TODO:
*
* - Reduce the Rx interrupt load.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_sip.c,v 1.167 2017/09/26 07:42:06 knakahara Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/rndsource.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/bpf.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <machine/endian.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_sipreg.h>
/*
* Transmit descriptor list size. This is arbitrary, but allocate
* enough descriptors for 128 pending transmissions, and 8 segments
* per packet (64 for DP83820 for jumbo frames).
*
* This MUST work out to a power of 2.
*/
#define GSIP_NTXSEGS_ALLOC 16
#define SIP_NTXSEGS_ALLOC 8
#define SIP_TXQUEUELEN 256
#define MAX_SIP_NTXDESC \
(SIP_TXQUEUELEN * MAX(SIP_NTXSEGS_ALLOC, GSIP_NTXSEGS_ALLOC))
/*
* Receive descriptor list size. We have one Rx buffer per incoming
* packet, so this logic is a little simpler.
*
* Actually, on the DP83820, we allow the packet to consume more than
* one buffer, in order to support jumbo Ethernet frames. In that
* case, a packet may consume up to 5 buffers (assuming a 2048 byte
* mbuf cluster). 256 receive buffers is only 51 maximum size packets,
* so we'd better be quick about handling receive interrupts.
*/
#define GSIP_NRXDESC 256
#define SIP_NRXDESC 128
#define MAX_SIP_NRXDESC MAX(GSIP_NRXDESC, SIP_NRXDESC)
/*
* Control structures are DMA'd to the SiS900 chip. We allocate them in
* a single clump that maps to a single DMA segment to make several things
* easier.
*/
struct sip_control_data {
/*
* The transmit descriptors.
*/
struct sip_desc scd_txdescs[MAX_SIP_NTXDESC];
/*
* The receive descriptors.
*/
struct sip_desc scd_rxdescs[MAX_SIP_NRXDESC];
};
#define SIP_CDOFF(x) offsetof(struct sip_control_data, x)
#define SIP_CDTXOFF(x) SIP_CDOFF(scd_txdescs[(x)])
#define SIP_CDRXOFF(x) SIP_CDOFF(scd_rxdescs[(x)])
/*
* Software state for transmit jobs.
*/
struct sip_txsoft {
struct mbuf *txs_mbuf; /* head of our mbuf chain */
bus_dmamap_t txs_dmamap; /* our DMA map */
int txs_firstdesc; /* first descriptor in packet */
int txs_lastdesc; /* last descriptor in packet */
SIMPLEQ_ENTRY(sip_txsoft) txs_q;
};
SIMPLEQ_HEAD(sip_txsq, sip_txsoft);
/*
* Software state for receive jobs.
*/
struct sip_rxsoft {
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
bus_dmamap_t rxs_dmamap; /* our DMA map */
};
enum sip_attach_stage {
SIP_ATTACH_FIN = 0
, SIP_ATTACH_CREATE_RXMAP
, SIP_ATTACH_CREATE_TXMAP
, SIP_ATTACH_LOAD_MAP
, SIP_ATTACH_CREATE_MAP
, SIP_ATTACH_MAP_MEM
, SIP_ATTACH_ALLOC_MEM
, SIP_ATTACH_INTR
, SIP_ATTACH_MAP
};
/*
* Software state per device.
*/
struct sip_softc {
device_t sc_dev; /* generic device information */
device_suspensor_t sc_suspensor;
pmf_qual_t sc_qual;
bus_space_tag_t sc_st; /* bus space tag */
bus_space_handle_t sc_sh; /* bus space handle */
bus_size_t sc_sz; /* bus space size */
bus_dma_tag_t sc_dmat; /* bus DMA tag */
pci_chipset_tag_t sc_pc;
bus_dma_segment_t sc_seg;
struct ethercom sc_ethercom; /* ethernet common data */
const struct sip_product *sc_model; /* which model are we? */
int sc_gigabit; /* 1: 83820, 0: other */
int sc_rev; /* chip revision */
void *sc_ih; /* interrupt cookie */
struct mii_data sc_mii; /* MII/media information */
callout_t sc_tick_ch; /* tick callout */
bus_dmamap_t sc_cddmamap; /* control data DMA map */
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
/*
* Software state for transmit and receive descriptors.
*/
struct sip_txsoft sc_txsoft[SIP_TXQUEUELEN];
struct sip_rxsoft sc_rxsoft[MAX_SIP_NRXDESC];
/*
* Control data structures.
*/
struct sip_control_data *sc_control_data;
#define sc_txdescs sc_control_data->scd_txdescs
#define sc_rxdescs sc_control_data->scd_rxdescs
#ifdef SIP_EVENT_COUNTERS
/*
* Event counters.
*/
struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
struct evcnt sc_ev_txdintr; /* Tx descriptor interrupts */
struct evcnt sc_ev_txiintr; /* Tx idle interrupts */
struct evcnt sc_ev_rxintr; /* Rx interrupts */
struct evcnt sc_ev_hiberr; /* HIBERR interrupts */
struct evcnt sc_ev_rxpause; /* PAUSE received */
/* DP83820 only */
struct evcnt sc_ev_txpause; /* PAUSE transmitted */
struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
struct evcnt sc_ev_rxtcpsum; /* TCP checksums checked in-bound */
struct evcnt sc_ev_rxudpsum; /* UDP checksums checked in-boudn */
struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
struct evcnt sc_ev_txtcpsum; /* TCP checksums comp. out-bound */
struct evcnt sc_ev_txudpsum; /* UDP checksums comp. out-bound */
#endif /* SIP_EVENT_COUNTERS */
u_int32_t sc_txcfg; /* prototype TXCFG register */
u_int32_t sc_rxcfg; /* prototype RXCFG register */
u_int32_t sc_imr; /* prototype IMR register */
u_int32_t sc_rfcr; /* prototype RFCR register */
u_int32_t sc_cfg; /* prototype CFG register */
u_int32_t sc_gpior; /* prototype GPIOR register */
u_int32_t sc_tx_fill_thresh; /* transmit fill threshold */
u_int32_t sc_tx_drain_thresh; /* transmit drain threshold */
u_int32_t sc_rx_drain_thresh; /* receive drain threshold */
int sc_flowflags; /* 802.3x flow control flags */
int sc_rx_flow_thresh; /* Rx FIFO threshold for flow control */
int sc_paused; /* paused indication */
int sc_txfree; /* number of free Tx descriptors */
int sc_txnext; /* next ready Tx descriptor */
int sc_txwin; /* Tx descriptors since last intr */
struct sip_txsq sc_txfreeq; /* free Tx descsofts */
struct sip_txsq sc_txdirtyq; /* dirty Tx descsofts */
/* values of interface state at last init */
struct {
/* if_capenable */
uint64_t if_capenable;
/* ec_capenable */
int ec_capenable;
/* VLAN_ATTACHED */
int is_vlan;
} sc_prev;
short sc_if_flags;
int sc_rxptr; /* next ready Rx descriptor/descsoft */
int sc_rxdiscard;
int sc_rxlen;
struct mbuf *sc_rxhead;
struct mbuf *sc_rxtail;
struct mbuf **sc_rxtailp;
int sc_ntxdesc;
int sc_ntxdesc_mask;
int sc_nrxdesc_mask;
const struct sip_parm {
const struct sip_regs {
int r_rxcfg;
int r_txcfg;
} p_regs;
const struct sip_bits {
uint32_t b_txcfg_mxdma_8;
uint32_t b_txcfg_mxdma_16;
uint32_t b_txcfg_mxdma_32;
uint32_t b_txcfg_mxdma_64;
uint32_t b_txcfg_mxdma_128;
uint32_t b_txcfg_mxdma_256;
uint32_t b_txcfg_mxdma_512;
uint32_t b_txcfg_flth_mask;
uint32_t b_txcfg_drth_mask;
uint32_t b_rxcfg_mxdma_8;
uint32_t b_rxcfg_mxdma_16;
uint32_t b_rxcfg_mxdma_32;
uint32_t b_rxcfg_mxdma_64;
uint32_t b_rxcfg_mxdma_128;
uint32_t b_rxcfg_mxdma_256;
uint32_t b_rxcfg_mxdma_512;
uint32_t b_isr_txrcmp;
uint32_t b_isr_rxrcmp;
uint32_t b_isr_dperr;
uint32_t b_isr_sserr;
uint32_t b_isr_rmabt;
uint32_t b_isr_rtabt;
uint32_t b_cmdsts_size_mask;
} p_bits;
int p_filtmem;
int p_rxbuf_len;
bus_size_t p_tx_dmamap_size;
int p_ntxsegs;
int p_ntxsegs_alloc;
int p_nrxdesc;
} *sc_parm;
void (*sc_rxintr)(struct sip_softc *);
krndsource_t rnd_source; /* random source */
};
#define sc_bits sc_parm->p_bits
#define sc_regs sc_parm->p_regs
static const struct sip_parm sip_parm = {
.p_filtmem = OTHER_RFCR_NS_RFADDR_FILTMEM
, .p_rxbuf_len = MCLBYTES - 1 /* field width */
, .p_tx_dmamap_size = MCLBYTES
, .p_ntxsegs = 16
, .p_ntxsegs_alloc = SIP_NTXSEGS_ALLOC
, .p_nrxdesc = SIP_NRXDESC
, .p_bits = {
.b_txcfg_mxdma_8 = 0x00200000 /* 8 bytes */
, .b_txcfg_mxdma_16 = 0x00300000 /* 16 bytes */
, .b_txcfg_mxdma_32 = 0x00400000 /* 32 bytes */
, .b_txcfg_mxdma_64 = 0x00500000 /* 64 bytes */
, .b_txcfg_mxdma_128 = 0x00600000 /* 128 bytes */
, .b_txcfg_mxdma_256 = 0x00700000 /* 256 bytes */
, .b_txcfg_mxdma_512 = 0x00000000 /* 512 bytes */
, .b_txcfg_flth_mask = 0x00003f00 /* Tx fill threshold */
, .b_txcfg_drth_mask = 0x0000003f /* Tx drain threshold */
, .b_rxcfg_mxdma_8 = 0x00200000 /* 8 bytes */
, .b_rxcfg_mxdma_16 = 0x00300000 /* 16 bytes */
, .b_rxcfg_mxdma_32 = 0x00400000 /* 32 bytes */
, .b_rxcfg_mxdma_64 = 0x00500000 /* 64 bytes */
, .b_rxcfg_mxdma_128 = 0x00600000 /* 128 bytes */
, .b_rxcfg_mxdma_256 = 0x00700000 /* 256 bytes */
, .b_rxcfg_mxdma_512 = 0x00000000 /* 512 bytes */
, .b_isr_txrcmp = 0x02000000 /* transmit reset complete */
, .b_isr_rxrcmp = 0x01000000 /* receive reset complete */
, .b_isr_dperr = 0x00800000 /* detected parity error */
, .b_isr_sserr = 0x00400000 /* signalled system error */
, .b_isr_rmabt = 0x00200000 /* received master abort */
, .b_isr_rtabt = 0x00100000 /* received target abort */
, .b_cmdsts_size_mask = OTHER_CMDSTS_SIZE_MASK
}
, .p_regs = {
.r_rxcfg = OTHER_SIP_RXCFG,
.r_txcfg = OTHER_SIP_TXCFG
}
}, gsip_parm = {
.p_filtmem = DP83820_RFCR_NS_RFADDR_FILTMEM
, .p_rxbuf_len = MCLBYTES - 8
, .p_tx_dmamap_size = ETHER_MAX_LEN_JUMBO
, .p_ntxsegs = 64
, .p_ntxsegs_alloc = GSIP_NTXSEGS_ALLOC
, .p_nrxdesc = GSIP_NRXDESC
, .p_bits = {
.b_txcfg_mxdma_8 = 0x00100000 /* 8 bytes */
, .b_txcfg_mxdma_16 = 0x00200000 /* 16 bytes */
, .b_txcfg_mxdma_32 = 0x00300000 /* 32 bytes */
, .b_txcfg_mxdma_64 = 0x00400000 /* 64 bytes */
, .b_txcfg_mxdma_128 = 0x00500000 /* 128 bytes */
, .b_txcfg_mxdma_256 = 0x00600000 /* 256 bytes */
, .b_txcfg_mxdma_512 = 0x00700000 /* 512 bytes */
, .b_txcfg_flth_mask = 0x0000ff00 /* Fx fill threshold */
, .b_txcfg_drth_mask = 0x000000ff /* Tx drain threshold */
, .b_rxcfg_mxdma_8 = 0x00100000 /* 8 bytes */
, .b_rxcfg_mxdma_16 = 0x00200000 /* 16 bytes */
, .b_rxcfg_mxdma_32 = 0x00300000 /* 32 bytes */
, .b_rxcfg_mxdma_64 = 0x00400000 /* 64 bytes */
, .b_rxcfg_mxdma_128 = 0x00500000 /* 128 bytes */
, .b_rxcfg_mxdma_256 = 0x00600000 /* 256 bytes */
, .b_rxcfg_mxdma_512 = 0x00700000 /* 512 bytes */
, .b_isr_txrcmp = 0x00400000 /* transmit reset complete */
, .b_isr_rxrcmp = 0x00200000 /* receive reset complete */
, .b_isr_dperr = 0x00100000 /* detected parity error */
, .b_isr_sserr = 0x00080000 /* signalled system error */
, .b_isr_rmabt = 0x00040000 /* received master abort */
, .b_isr_rtabt = 0x00020000 /* received target abort */
, .b_cmdsts_size_mask = DP83820_CMDSTS_SIZE_MASK
}
, .p_regs = {
.r_rxcfg = DP83820_SIP_RXCFG,
.r_txcfg = DP83820_SIP_TXCFG
}
};
static inline int
sip_nexttx(const struct sip_softc *sc, int x)
{
return (x + 1) & sc->sc_ntxdesc_mask;
}
static inline int
sip_nextrx(const struct sip_softc *sc, int x)
{
return (x + 1) & sc->sc_nrxdesc_mask;
}
/* 83820 only */
static inline void
sip_rxchain_reset(struct sip_softc *sc)
{
sc->sc_rxtailp = &sc->sc_rxhead;
*sc->sc_rxtailp = NULL;
sc->sc_rxlen = 0;
}
/* 83820 only */
static inline void
sip_rxchain_link(struct sip_softc *sc, struct mbuf *m)
{
*sc->sc_rxtailp = sc->sc_rxtail = m;
sc->sc_rxtailp = &m->m_next;
}
#ifdef SIP_EVENT_COUNTERS
#define SIP_EVCNT_INCR(ev) (ev)->ev_count++
#else
#define SIP_EVCNT_INCR(ev) /* nothing */
#endif
#define SIP_CDTXADDR(sc, x) ((sc)->sc_cddma + SIP_CDTXOFF((x)))
#define SIP_CDRXADDR(sc, x) ((sc)->sc_cddma + SIP_CDRXOFF((x)))
static inline void
sip_cdtxsync(struct sip_softc *sc, const int x0, const int n0, const int ops)
{
int x, n;
x = x0;
n = n0;
/* If it will wrap around, sync to the end of the ring. */
if (x + n > sc->sc_ntxdesc) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
SIP_CDTXOFF(x), sizeof(struct sip_desc) *
(sc->sc_ntxdesc - x), ops);
n -= (sc->sc_ntxdesc - x);
x = 0;
}
/* Now sync whatever is left. */
bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
SIP_CDTXOFF(x), sizeof(struct sip_desc) * n, ops);
}
static inline void
sip_cdrxsync(struct sip_softc *sc, int x, int ops)
{
bus_dmamap_sync(sc->sc_dmat, sc->sc_cddmamap,
SIP_CDRXOFF(x), sizeof(struct sip_desc), ops);
}
#if 0
#ifdef DP83820
u_int32_t sipd_bufptr; /* pointer to DMA segment */
u_int32_t sipd_cmdsts; /* command/status word */
#else
u_int32_t sipd_cmdsts; /* command/status word */
u_int32_t sipd_bufptr; /* pointer to DMA segment */
#endif /* DP83820 */
#endif /* 0 */
static inline volatile uint32_t *
sipd_cmdsts(struct sip_softc *sc, struct sip_desc *sipd)
{
return &sipd->sipd_cbs[(sc->sc_gigabit) ? 1 : 0];
}
static inline volatile uint32_t *
sipd_bufptr(struct sip_softc *sc, struct sip_desc *sipd)
{
return &sipd->sipd_cbs[(sc->sc_gigabit) ? 0 : 1];
}
static inline void
sip_init_rxdesc(struct sip_softc *sc, int x)
{
struct sip_rxsoft *rxs = &sc->sc_rxsoft[x];
struct sip_desc *sipd = &sc->sc_rxdescs[x];
sipd->sipd_link = htole32(SIP_CDRXADDR(sc, sip_nextrx(sc, x)));
*sipd_bufptr(sc, sipd) = htole32(rxs->rxs_dmamap->dm_segs[0].ds_addr);
*sipd_cmdsts(sc, sipd) = htole32(CMDSTS_INTR |
(sc->sc_parm->p_rxbuf_len & sc->sc_bits.b_cmdsts_size_mask));
sipd->sipd_extsts = 0;
sip_cdrxsync(sc, x, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
#define SIP_CHIP_VERS(sc, v, p, r) \
((sc)->sc_model->sip_vendor == (v) && \
(sc)->sc_model->sip_product == (p) && \
(sc)->sc_rev == (r))
#define SIP_CHIP_MODEL(sc, v, p) \
((sc)->sc_model->sip_vendor == (v) && \
(sc)->sc_model->sip_product == (p))
#define SIP_SIS900_REV(sc, rev) \
SIP_CHIP_VERS((sc), PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900, (rev))
#define SIP_TIMEOUT 1000
static int sip_ifflags_cb(struct ethercom *);
static void sipcom_start(struct ifnet *);
static void sipcom_watchdog(struct ifnet *);
static int sipcom_ioctl(struct ifnet *, u_long, void *);
static int sipcom_init(struct ifnet *);
static void sipcom_stop(struct ifnet *, int);
static bool sipcom_reset(struct sip_softc *);
static void sipcom_rxdrain(struct sip_softc *);
static int sipcom_add_rxbuf(struct sip_softc *, int);
static void sipcom_read_eeprom(struct sip_softc *, int, int,
u_int16_t *);
static void sipcom_tick(void *);
static void sipcom_sis900_set_filter(struct sip_softc *);
static void sipcom_dp83815_set_filter(struct sip_softc *);
static void sipcom_dp83820_read_macaddr(struct sip_softc *,
const struct pci_attach_args *, u_int8_t *);
static void sipcom_sis900_eeprom_delay(struct sip_softc *sc);
static void sipcom_sis900_read_macaddr(struct sip_softc *,
const struct pci_attach_args *, u_int8_t *);
static void sipcom_dp83815_read_macaddr(struct sip_softc *,
const struct pci_attach_args *, u_int8_t *);
static int sipcom_intr(void *);
static void sipcom_txintr(struct sip_softc *);
static void sip_rxintr(struct sip_softc *);
static void gsip_rxintr(struct sip_softc *);
static int sipcom_dp83820_mii_readreg(device_t, int, int);
static void sipcom_dp83820_mii_writereg(device_t, int, int, int);
static void sipcom_dp83820_mii_statchg(struct ifnet *);
static int sipcom_sis900_mii_readreg(device_t, int, int);
static void sipcom_sis900_mii_writereg(device_t, int, int, int);
static void sipcom_sis900_mii_statchg(struct ifnet *);
static int sipcom_dp83815_mii_readreg(device_t, int, int);
static void sipcom_dp83815_mii_writereg(device_t, int, int, int);
static void sipcom_dp83815_mii_statchg(struct ifnet *);
static void sipcom_mediastatus(struct ifnet *, struct ifmediareq *);
static int sipcom_match(device_t, cfdata_t, void *);
static void sipcom_attach(device_t, device_t, void *);
static void sipcom_do_detach(device_t, enum sip_attach_stage);
static int sipcom_detach(device_t, int);
static bool sipcom_resume(device_t, const pmf_qual_t *);
static bool sipcom_suspend(device_t, const pmf_qual_t *);
int gsip_copy_small = 0;
int sip_copy_small = 0;
CFATTACH_DECL3_NEW(gsip, sizeof(struct sip_softc),
sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
DVF_DETACH_SHUTDOWN);
CFATTACH_DECL3_NEW(sip, sizeof(struct sip_softc),
sipcom_match, sipcom_attach, sipcom_detach, NULL, NULL, NULL,
DVF_DETACH_SHUTDOWN);
/*
* Descriptions of the variants of the SiS900.
*/
struct sip_variant {
int (*sipv_mii_readreg)(device_t, int, int);
void (*sipv_mii_writereg)(device_t, int, int, int);
void (*sipv_mii_statchg)(struct ifnet *);
void (*sipv_set_filter)(struct sip_softc *);
void (*sipv_read_macaddr)(struct sip_softc *,
const struct pci_attach_args *, u_int8_t *);
};
static u_int32_t sipcom_mii_bitbang_read(device_t);
static void sipcom_mii_bitbang_write(device_t, u_int32_t);
static const struct mii_bitbang_ops sipcom_mii_bitbang_ops = {
sipcom_mii_bitbang_read,
sipcom_mii_bitbang_write,
{
EROMAR_MDIO, /* MII_BIT_MDO */
EROMAR_MDIO, /* MII_BIT_MDI */
EROMAR_MDC, /* MII_BIT_MDC */
EROMAR_MDDIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
static const struct sip_variant sipcom_variant_dp83820 = {
sipcom_dp83820_mii_readreg,
sipcom_dp83820_mii_writereg,
sipcom_dp83820_mii_statchg,
sipcom_dp83815_set_filter,
sipcom_dp83820_read_macaddr,
};
static const struct sip_variant sipcom_variant_sis900 = {
sipcom_sis900_mii_readreg,
sipcom_sis900_mii_writereg,
sipcom_sis900_mii_statchg,
sipcom_sis900_set_filter,
sipcom_sis900_read_macaddr,
};
static const struct sip_variant sipcom_variant_dp83815 = {
sipcom_dp83815_mii_readreg,
sipcom_dp83815_mii_writereg,
sipcom_dp83815_mii_statchg,
sipcom_dp83815_set_filter,
sipcom_dp83815_read_macaddr,
};
/*
* Devices supported by this driver.
*/
static const struct sip_product {
pci_vendor_id_t sip_vendor;
pci_product_id_t sip_product;
const char *sip_name;
const struct sip_variant *sip_variant;
int sip_gigabit;
} sipcom_products[] = {
{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83820,
"NatSemi DP83820 Gigabit Ethernet",
&sipcom_variant_dp83820, 1 },
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900,
"SiS 900 10/100 Ethernet",
&sipcom_variant_sis900, 0 },
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016,
"SiS 7016 10/100 Ethernet",
&sipcom_variant_sis900, 0 },
{ PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815,
"NatSemi DP83815 10/100 Ethernet",
&sipcom_variant_dp83815, 0 },
{ 0, 0,
NULL,
NULL, 0 },
};
static const struct sip_product *
sipcom_lookup(const struct pci_attach_args *pa, bool gigabit)
{
const struct sip_product *sip;
for (sip = sipcom_products; sip->sip_name != NULL; sip++) {
if (PCI_VENDOR(pa->pa_id) == sip->sip_vendor &&
PCI_PRODUCT(pa->pa_id) == sip->sip_product &&
sip->sip_gigabit == gigabit)
return sip;
}
return NULL;
}
/*
* I really hate stupid hardware vendors. There's a bit in the EEPROM
* which indicates if the card can do 64-bit data transfers. Unfortunately,
* several vendors of 32-bit cards fail to clear this bit in the EEPROM,
* which means we try to use 64-bit data transfers on those cards if we
* happen to be plugged into a 32-bit slot.
*
* What we do is use this table of cards known to be 64-bit cards. If
* you have a 64-bit card who's subsystem ID is not listed in this table,
* send the output of "pcictl dump ..." of the device to me so that your
* card will use the 64-bit data path when plugged into a 64-bit slot.
*
* -- Jason R. Thorpe <thorpej@NetBSD.org>
* June 30, 2002
*/
static int
sipcom_check_64bit(const struct pci_attach_args *pa)
{
static const struct {
pci_vendor_id_t c64_vendor;
pci_product_id_t c64_product;
} card64[] = {
/* Asante GigaNIX */
{ 0x128a, 0x0002 },
/* Accton EN1407-T, Planex GN-1000TE */
{ 0x1113, 0x1407 },
/* Netgear GA621 */
{ 0x1385, 0x621a },
/* Netgear GA622 */
{ 0x1385, 0x622a },
/* SMC EZ Card 1000 (9462TX) */
{ 0x10b8, 0x9462 },
{ 0, 0}
};
pcireg_t subsys;
int i;
subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
for (i = 0; card64[i].c64_vendor != 0; i++) {
if (PCI_VENDOR(subsys) == card64[i].c64_vendor &&
PCI_PRODUCT(subsys) == card64[i].c64_product)
return (1);
}
return (0);
}
static int
sipcom_match(device_t parent, cfdata_t cf, void *aux)
{
struct pci_attach_args *pa = aux;
if (sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0) != NULL)
return 1;
return 0;
}
static void
sipcom_dp83820_attach(struct sip_softc *sc, struct pci_attach_args *pa)
{
u_int32_t reg;
int i;
/*
* Cause the chip to load configuration data from the EEPROM.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_PTSCR, PTSCR_EELOAD_EN);
for (i = 0; i < 10000; i++) {
delay(10);
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
PTSCR_EELOAD_EN) == 0)
break;
}
if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_PTSCR) &
PTSCR_EELOAD_EN) {
printf("%s: timeout loading configuration from EEPROM\n",
device_xname(sc->sc_dev));
return;
}
sc->sc_gpior = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_GPIOR);
reg = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG);
if (reg & CFG_PCI64_DET) {
printf("%s: 64-bit PCI slot detected", device_xname(sc->sc_dev));
/*
* Check to see if this card is 64-bit. If so, enable 64-bit
* data transfers.
*
* We can't use the DATA64_EN bit in the EEPROM, because
* vendors of 32-bit cards fail to clear that bit in many
* cases (yet the card still detects that it's in a 64-bit
* slot; go figure).
*/
if (sipcom_check_64bit(pa)) {
sc->sc_cfg |= CFG_DATA64_EN;
printf(", using 64-bit data transfers");
}
printf("\n");
}
/*
* XXX Need some PCI flags indicating support for
* XXX 64-bit addressing.
*/
#if 0
if (reg & CFG_M64ADDR)
sc->sc_cfg |= CFG_M64ADDR;
if (reg & CFG_T64ADDR)
sc->sc_cfg |= CFG_T64ADDR;
#endif
if (reg & (CFG_TBI_EN|CFG_EXT_125)) {
const char *sep = "";
printf("%s: using ", device_xname(sc->sc_dev));
if (reg & CFG_EXT_125) {
sc->sc_cfg |= CFG_EXT_125;
printf("%s125MHz clock", sep);
sep = ", ";
}
if (reg & CFG_TBI_EN) {
sc->sc_cfg |= CFG_TBI_EN;
printf("%sten-bit interface", sep);
sep = ", ";
}
printf("\n");
}
if ((pa->pa_flags & PCI_FLAGS_MRM_OKAY) == 0 ||
(reg & CFG_MRM_DIS) != 0)
sc->sc_cfg |= CFG_MRM_DIS;
if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0 ||
(reg & CFG_MWI_DIS) != 0)
sc->sc_cfg |= CFG_MWI_DIS;
/*
* Use the extended descriptor format on the DP83820. This
* gives us an interface to VLAN tagging and IPv4/TCP/UDP
* checksumming.
*/
sc->sc_cfg |= CFG_EXTSTS_EN;
}
static int
sipcom_detach(device_t self, int flags)
{
int s;
s = splnet();
sipcom_do_detach(self, SIP_ATTACH_FIN);
splx(s);
return 0;
}
static void
sipcom_do_detach(device_t self, enum sip_attach_stage stage)
{
int i;
struct sip_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
/*
* Free any resources we've allocated during attach.
* Do this in reverse order and fall through.
*/
switch (stage) {
case SIP_ATTACH_FIN:
sipcom_stop(ifp, 1);
pmf_device_deregister(self);
#ifdef SIP_EVENT_COUNTERS
/*
* Attach event counters.
*/
evcnt_detach(&sc->sc_ev_txforceintr);
evcnt_detach(&sc->sc_ev_txdstall);
evcnt_detach(&sc->sc_ev_txsstall);
evcnt_detach(&sc->sc_ev_hiberr);
evcnt_detach(&sc->sc_ev_rxintr);
evcnt_detach(&sc->sc_ev_txiintr);
evcnt_detach(&sc->sc_ev_txdintr);
if (!sc->sc_gigabit) {
evcnt_detach(&sc->sc_ev_rxpause);
} else {
evcnt_detach(&sc->sc_ev_txudpsum);
evcnt_detach(&sc->sc_ev_txtcpsum);
evcnt_detach(&sc->sc_ev_txipsum);
evcnt_detach(&sc->sc_ev_rxudpsum);
evcnt_detach(&sc->sc_ev_rxtcpsum);
evcnt_detach(&sc->sc_ev_rxipsum);
evcnt_detach(&sc->sc_ev_txpause);
evcnt_detach(&sc->sc_ev_rxpause);
}
#endif /* SIP_EVENT_COUNTERS */
rnd_detach_source(&sc->rnd_source);
ether_ifdetach(ifp);
if_detach(ifp);
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
/*FALLTHROUGH*/
case SIP_ATTACH_CREATE_RXMAP:
for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].rxs_dmamap);
}
/*FALLTHROUGH*/
case SIP_ATTACH_CREATE_TXMAP:
for (i = 0; i < SIP_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].txs_dmamap);
}
/*FALLTHROUGH*/
case SIP_ATTACH_LOAD_MAP:
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
/*FALLTHROUGH*/
case SIP_ATTACH_CREATE_MAP:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
/*FALLTHROUGH*/
case SIP_ATTACH_MAP_MEM:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct sip_control_data));
/*FALLTHROUGH*/
case SIP_ATTACH_ALLOC_MEM:
bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
/* FALLTHROUGH*/
case SIP_ATTACH_INTR:
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
/* FALLTHROUGH*/
case SIP_ATTACH_MAP:
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
break;
default:
break;
}
return;
}
static bool
sipcom_resume(device_t self, const pmf_qual_t *qual)
{
struct sip_softc *sc = device_private(self);
return sipcom_reset(sc);
}
static bool
sipcom_suspend(device_t self, const pmf_qual_t *qual)
{
struct sip_softc *sc = device_private(self);
sipcom_rxdrain(sc);
return true;
}
static void
sipcom_attach(device_t parent, device_t self, void *aux)
{
struct sip_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_space_tag_t iot, memt;
bus_space_handle_t ioh, memh;
bus_size_t iosz, memsz;
int ioh_valid, memh_valid;
int i, rseg, error;
const struct sip_product *sip;
u_int8_t enaddr[ETHER_ADDR_LEN];
pcireg_t csr;
pcireg_t memtype;
bus_size_t tx_dmamap_size;
int ntxsegs_alloc;
cfdata_t cf = device_cfdata(self);
char intrbuf[PCI_INTRSTR_LEN];
callout_init(&sc->sc_tick_ch, 0);
sip = sipcom_lookup(pa, strcmp(cf->cf_name, "gsip") == 0);
if (sip == NULL) {
aprint_error("\n");
panic("%s: impossible", __func__);
}
sc->sc_dev = self;
sc->sc_gigabit = sip->sip_gigabit;
pmf_self_suspensor_init(self, &sc->sc_suspensor, &sc->sc_qual);
sc->sc_pc = pc;
if (sc->sc_gigabit) {
sc->sc_rxintr = gsip_rxintr;
sc->sc_parm = &gsip_parm;
} else {
sc->sc_rxintr = sip_rxintr;
sc->sc_parm = &sip_parm;
}
tx_dmamap_size = sc->sc_parm->p_tx_dmamap_size;
ntxsegs_alloc = sc->sc_parm->p_ntxsegs_alloc;
sc->sc_ntxdesc = SIP_TXQUEUELEN * ntxsegs_alloc;
sc->sc_ntxdesc_mask = sc->sc_ntxdesc - 1;
sc->sc_nrxdesc_mask = sc->sc_parm->p_nrxdesc - 1;
sc->sc_rev = PCI_REVISION(pa->pa_class);
aprint_naive("\n");
aprint_normal(": %s, rev %#02x\n", sip->sip_name, sc->sc_rev);
sc->sc_model = sip;
/*
* XXX Work-around broken PXE firmware on some boards.
*
* The DP83815 shares an address decoder with the MEM BAR
* and the ROM BAR. Make sure the ROM BAR is disabled,
* so that memory mapped access works.
*/
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM,
pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM) &
~PCI_MAPREG_ROM_ENABLE);
/*
* Map the device.
*/
ioh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGIOA,
PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, &iosz) == 0);
if (sc->sc_gigabit) {
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, SIP_PCI_CFGMA);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
memtype, 0, &memt, &memh, NULL, &memsz) == 0);
break;
default:
memh_valid = 0;
}
} else {
memh_valid = (pci_mapreg_map(pa, SIP_PCI_CFGMA,
PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
&memt, &memh, NULL, &memsz) == 0);
}
if (memh_valid) {
sc->sc_st = memt;
sc->sc_sh = memh;
sc->sc_sz = memsz;
} else if (ioh_valid) {
sc->sc_st = iot;
sc->sc_sh = ioh;
sc->sc_sz = iosz;
} else {
aprint_error_dev(self, "unable to map device registers\n");
return;
}
sc->sc_dmat = pa->pa_dmat;
/*
* Make sure bus mastering is enabled. Also make sure
* Write/Invalidate is enabled if we're allowed to use it.
*/
csr = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
if (pa->pa_flags & PCI_FLAGS_MWI_OKAY)
csr |= PCI_COMMAND_INVALIDATE_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
/* power up chip */
error = pci_activate(pa->pa_pc, pa->pa_tag, self, pci_activate_null);
if (error != 0 && error != EOPNOTSUPP) {
aprint_error_dev(sc->sc_dev, "cannot activate %d\n", error);
return;
}
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, sipcom_intr, sc,
device_xname(self));
if (sc->sc_ih == NULL) {
aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
sipcom_do_detach(self, SIP_ATTACH_MAP);
return;
}
aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct sip_control_data), PAGE_SIZE, 0, &sc->sc_seg, 1,
&rseg, 0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to allocate control data, error = %d\n", error);
sipcom_do_detach(self, SIP_ATTACH_INTR);
return;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, rseg,
sizeof(struct sip_control_data), (void **)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to map control data, error = %d\n", error);
sipcom_do_detach(self, SIP_ATTACH_ALLOC_MEM);
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct sip_control_data), 1,
sizeof(struct sip_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
aprint_error_dev(self, "unable to create control data DMA map"
", error = %d\n", error);
sipcom_do_detach(self, SIP_ATTACH_MAP_MEM);
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct sip_control_data), NULL,
0)) != 0) {
aprint_error_dev(self, "unable to load control data DMA map"
", error = %d\n", error);
sipcom_do_detach(self, SIP_ATTACH_CREATE_MAP);
}
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < SIP_TXQUEUELEN; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, tx_dmamap_size,
sc->sc_parm->p_ntxsegs, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
aprint_error_dev(self, "unable to create tx DMA map %d"
", error = %d\n", i, error);
sipcom_do_detach(self, SIP_ATTACH_CREATE_TXMAP);
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
aprint_error_dev(self, "unable to create rx DMA map %d"
", error = %d\n", i, error);
sipcom_do_detach(self, SIP_ATTACH_CREATE_RXMAP);
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/*
* Reset the chip to a known state.
*/
sipcom_reset(sc);
/*
* Read the Ethernet address from the EEPROM. This might
* also fetch other stuff from the EEPROM and stash it
* in the softc.
*/
sc->sc_cfg = 0;
if (!sc->sc_gigabit) {
if (SIP_SIS900_REV(sc,SIS_REV_635) ||
SIP_SIS900_REV(sc,SIS_REV_900B))
sc->sc_cfg |= (CFG_PESEL | CFG_RNDCNT);
if (SIP_SIS900_REV(sc,SIS_REV_635) ||
SIP_SIS900_REV(sc,SIS_REV_960) ||
SIP_SIS900_REV(sc,SIS_REV_900B))
sc->sc_cfg |=
(bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CFG) &
CFG_EDBMASTEN);
}
(*sip->sip_variant->sipv_read_macaddr)(sc, pa, enaddr);
aprint_normal_dev(self, "Ethernet address %s\n",ether_sprintf(enaddr));
/*
* Initialize the configuration register: aggressive PCI
* bus request algorithm, default backoff, default OW timer,
* default parity error detection.
*
* NOTE: "Big endian mode" is useless on the SiS900 and
* friends -- it affects packet data, not descriptors.
*/
if (sc->sc_gigabit)
sipcom_dp83820_attach(sc, pa);
/*
* Initialize our media structures and probe the MII.
*/
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = sip->sip_variant->sipv_mii_readreg;
sc->sc_mii.mii_writereg = sip->sip_variant->sipv_mii_writereg;
sc->sc_mii.mii_statchg = sip->sip_variant->sipv_mii_statchg;
sc->sc_ethercom.ec_mii = &sc->sc_mii;
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
sipcom_mediastatus);
/*
* XXX We cannot handle flow control on the DP83815.
*/
if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
else
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, MIIF_DOPAUSE);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
ifp = &sc->sc_ethercom.ec_if;
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
sc->sc_if_flags = ifp->if_flags;
ifp->if_ioctl = sipcom_ioctl;
ifp->if_start = sipcom_start;
ifp->if_watchdog = sipcom_watchdog;
ifp->if_init = sipcom_init;
ifp->if_stop = sipcom_stop;
IFQ_SET_READY(&ifp->if_snd);
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
if (sc->sc_gigabit) {
/*
* And the DP83820 can do VLAN tagging in hardware, and
* support the jumbo Ethernet MTU.
*/
sc->sc_ethercom.ec_capabilities |=
ETHERCAP_VLAN_HWTAGGING | ETHERCAP_JUMBO_MTU;
/*
* The DP83820 can do IPv4, TCPv4, and UDPv4 checksums
* in hardware.
*/
ifp->if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
}
/*
* Attach the interface.
*/
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, enaddr);
ether_set_ifflags_cb(&sc->sc_ethercom, sip_ifflags_cb);
sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
sc->sc_prev.if_capenable = ifp->if_capenable;
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
/*
* The number of bytes that must be available in
* the Tx FIFO before the bus master can DMA more
* data into the FIFO.
*/
sc->sc_tx_fill_thresh = 64 / 32;
/*
* Start at a drain threshold of 512 bytes. We will
* increase it if a DMA underrun occurs.
*
* XXX The minimum value of this variable should be
* tuned. We may be able to improve performance
* by starting with a lower value. That, however,
* may trash the first few outgoing packets if the
* PCI bus is saturated.
*/
if (sc->sc_gigabit)
sc->sc_tx_drain_thresh = 6400 / 32; /* from FreeBSD nge(4) */
else
sc->sc_tx_drain_thresh = 1504 / 32;
/*
* Initialize the Rx FIFO drain threshold.
*
* This is in units of 8 bytes.
*
* We should never set this value lower than 2; 14 bytes are
* required to filter the packet.
*/
sc->sc_rx_drain_thresh = 128 / 8;
#ifdef SIP_EVENT_COUNTERS
/*
* Attach event counters.
*/
evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txsstall");
evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txdstall");
evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "txforceintr");
evcnt_attach_dynamic(&sc->sc_ev_txdintr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "txdintr");
evcnt_attach_dynamic(&sc->sc_ev_txiintr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "txiintr");
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "rxintr");
evcnt_attach_dynamic(&sc->sc_ev_hiberr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "hiberr");
if (!sc->sc_gigabit) {
evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "rxpause");
} else {
evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "rxpause");
evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txpause");
evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "rxipsum");
evcnt_attach_dynamic(&sc->sc_ev_rxtcpsum, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "rxtcpsum");
evcnt_attach_dynamic(&sc->sc_ev_rxudpsum, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "rxudpsum");
evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txipsum");
evcnt_attach_dynamic(&sc->sc_ev_txtcpsum, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txtcpsum");
evcnt_attach_dynamic(&sc->sc_ev_txudpsum, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txudpsum");
}
#endif /* SIP_EVENT_COUNTERS */
if (pmf_device_register(self, sipcom_suspend, sipcom_resume))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
}
static inline void
sipcom_set_extsts(struct sip_softc *sc, int lasttx, struct mbuf *m0,
uint64_t capenable)
{
u_int32_t extsts;
#ifdef DEBUG
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
#endif
/*
* If VLANs are enabled and the packet has a VLAN tag, set
* up the descriptor to encapsulate the packet for us.
*
* This apparently has to be on the last descriptor of
* the packet.
*/
/*
* Byte swapping is tricky. We need to provide the tag
* in a network byte order. On a big-endian machine,
* the byteorder is correct, but we need to swap it
* anyway, because this will be undone by the outside
* htole32(). That's why there must be an
* unconditional swap instead of htons() inside.
*/
if (vlan_has_tag(m0)) {
sc->sc_txdescs[lasttx].sipd_extsts |=
htole32(EXTSTS_VPKT |
(bswap16(vlan_get_tag(m0)) &
EXTSTS_VTCI));
}
/*
* If the upper-layer has requested IPv4/TCPv4/UDPv4
* checksumming, set up the descriptor to do this work
* for us.
*
* This apparently has to be on the first descriptor of
* the packet.
*
* Byte-swap constants so the compiler can optimize.
*/
extsts = 0;
if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
KDASSERT(ifp->if_capenable & IFCAP_CSUM_IPv4_Tx);
SIP_EVCNT_INCR(&sc->sc_ev_txipsum);
extsts |= htole32(EXTSTS_IPPKT);
}
if (m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
KDASSERT(ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx);
SIP_EVCNT_INCR(&sc->sc_ev_txtcpsum);
extsts |= htole32(EXTSTS_TCPPKT);
} else if (m0->m_pkthdr.csum_flags & M_CSUM_UDPv4) {
KDASSERT(ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx);
SIP_EVCNT_INCR(&sc->sc_ev_txudpsum);
extsts |= htole32(EXTSTS_UDPPKT);
}
sc->sc_txdescs[sc->sc_txnext].sipd_extsts |= extsts;
}
/*
* sip_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
static void
sipcom_start(struct ifnet *ifp)
{
struct sip_softc *sc = ifp->if_softc;
struct mbuf *m0;
struct mbuf *m;
struct sip_txsoft *txs;
bus_dmamap_t dmamap;
int error, nexttx, lasttx, seg;
int ofree = sc->sc_txfree;
#if 0
int firsttx = sc->sc_txnext;
#endif
/*
* If we've been told to pause, don't transmit any more packets.
*/
if (!sc->sc_gigabit && sc->sc_paused)
ifp->if_flags |= IFF_OACTIVE;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
/* Get a work queue entry. */
if ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) == NULL) {
SIP_EVCNT_INCR(&sc->sc_ev_txsstall);
break;
}
/*
* Grab a packet off the queue.
*/
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
m = NULL;
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we
* were short on resources.
*/
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT);
/* In the non-gigabit case, we'll copy and try again. */
if (error != 0 && !sc->sc_gigabit) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
device_xname(sc->sc_dev));
break;
}
MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n",
device_xname(sc->sc_dev));
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, error = "
"%d\n", device_xname(sc->sc_dev), error);
break;
}
} else if (error == EFBIG) {
/*
* For the too-many-segments case, we simply
* report an error and drop the packet,
* since we can't sanely copy a jumbo packet
* to a single buffer.
*/
printf("%s: Tx packet consumes too many DMA segments, "
"dropping...\n", device_xname(sc->sc_dev));
IFQ_DEQUEUE(&ifp->if_snd, m0);
m_freem(m0);
continue;
} else if (error != 0) {
/*
* Short on resources, just stop for now.
*/
break;
}
/*
* Ensure we have enough descriptors free to describe
* the packet. Note, we always reserve one descriptor
* at the end of the ring as a termination point, to
* prevent wrap-around.
*/
if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
/*
* Not enough free descriptors to transmit this
* packet. We haven't committed anything yet,
* so just unload the DMA map, put the packet
* back on the queue, and punt. Notify the upper
* layer that there are not more slots left.
*
* XXX We could allocate an mbuf and copy, but
* XXX is it worth it?
*/
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, dmamap);
if (m != NULL)
m_freem(m);
SIP_EVCNT_INCR(&sc->sc_ev_txdstall);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Initialize the transmit descriptors.
*/
for (nexttx = lasttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = sip_nexttx(sc, nexttx)) {
/*
* If this is the first descriptor we're
* enqueueing, don't set the OWN bit just
* yet. That could cause a race condition.
* We'll do it below.
*/
*sipd_bufptr(sc, &sc->sc_txdescs[nexttx]) =
htole32(dmamap->dm_segs[seg].ds_addr);
*sipd_cmdsts(sc, &sc->sc_txdescs[nexttx]) =
htole32((nexttx == sc->sc_txnext ? 0 : CMDSTS_OWN) |
CMDSTS_MORE | dmamap->dm_segs[seg].ds_len);
sc->sc_txdescs[nexttx].sipd_extsts = 0;
lasttx = nexttx;
}
/* Clear the MORE bit on the last segment. */
*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) &=
htole32(~CMDSTS_MORE);
/*
* If we're in the interrupt delay window, delay the
* interrupt.
*/
if (++sc->sc_txwin >= (SIP_TXQUEUELEN * 2 / 3)) {
SIP_EVCNT_INCR(&sc->sc_ev_txforceintr);
*sipd_cmdsts(sc, &sc->sc_txdescs[lasttx]) |=
htole32(CMDSTS_INTR);
sc->sc_txwin = 0;
}
if (sc->sc_gigabit)
sipcom_set_extsts(sc, lasttx, m0, ifp->if_capenable);
/* Sync the descriptors we're using. */
sip_cdtxsync(sc, sc->sc_txnext, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* The entire packet is set up. Give the first descrptor
* to the chip now.
*/
*sipd_cmdsts(sc, &sc->sc_txdescs[sc->sc_txnext]) |=
htole32(CMDSTS_OWN);
sip_cdtxsync(sc, sc->sc_txnext, 1,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_lastdesc = lasttx;
/* Advance the tx pointer. */
sc->sc_txfree -= dmamap->dm_nsegs;
sc->sc_txnext = nexttx;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
/*
* Pass the packet to any BPF listeners.
*/
bpf_mtap(ifp, m0);
}
if (txs == NULL || sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txfree != ofree) {
/*
* Start the transmit process. Note, the manual says
* that if there are no pending transmissions in the
* chip's internal queue (indicated by TXE being clear),
* then the driver software must set the TXDP to the
* first descriptor to be transmitted. However, if we
* do this, it causes serious performance degredation on
* the DP83820 under load, not setting TXDP doesn't seem
* to adversely affect the SiS 900 or DP83815.
*
* Well, I guess it wouldn't be the first time a manual
* has lied -- and they could be speaking of the NULL-
* terminated descriptor list case, rather than OWN-
* terminated rings.
*/
#if 0
if ((bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR) &
CR_TXE) == 0) {
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_TXDP,
SIP_CDTXADDR(sc, firsttx));
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
}
#else
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_TXE);
#endif
/* Set a watchdog timer in case the chip flakes out. */
/* Gigabit autonegotiation takes 5 seconds. */
ifp->if_timer = (sc->sc_gigabit) ? 10 : 5;
}
}
/*
* sip_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
static void
sipcom_watchdog(struct ifnet *ifp)
{
struct sip_softc *sc = ifp->if_softc;
/*
* The chip seems to ignore the CMDSTS_INTR bit sometimes!
* If we get a timeout, try and sweep up transmit descriptors.
* If we manage to sweep them all up, ignore the lack of
* interrupt.
*/
sipcom_txintr(sc);
if (sc->sc_txfree != sc->sc_ntxdesc) {
printf("%s: device timeout\n", device_xname(sc->sc_dev));
ifp->if_oerrors++;
/* Reset the interface. */
(void) sipcom_init(ifp);
} else if (ifp->if_flags & IFF_DEBUG)
printf("%s: recovered from device timeout\n",
device_xname(sc->sc_dev));
/* Try to get more packets going. */
sipcom_start(ifp);
}
/* If the interface is up and running, only modify the receive
* filter when setting promiscuous or debug mode. Otherwise fall
* through to ether_ioctl, which will reset the chip.
*/
static int
sip_ifflags_cb(struct ethercom *ec)
{
#define COMPARE_EC(sc) (((sc)->sc_prev.ec_capenable \
== (sc)->sc_ethercom.ec_capenable) \
&& ((sc)->sc_prev.is_vlan == \
VLAN_ATTACHED(&(sc)->sc_ethercom) ))
#define COMPARE_IC(sc, ifp) ((sc)->sc_prev.if_capenable == (ifp)->if_capenable)
struct ifnet *ifp = &ec->ec_if;
struct sip_softc *sc = ifp->if_softc;
int change = ifp->if_flags ^ sc->sc_if_flags;
if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0 || !COMPARE_EC(sc) ||
!COMPARE_IC(sc, ifp))
return ENETRESET;
/* Set up the receive filter. */
(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
return 0;
}
/*
* sip_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
static int
sipcom_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct sip_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
/* Flow control requires full-duplex mode. */
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
(ifr->ifr_media & IFM_FDX) == 0)
ifr->ifr_media &= ~IFM_ETH_FMASK;
/* XXX */
if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815))
ifr->ifr_media &= ~IFM_ETH_FMASK;
if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
if (sc->sc_gigabit &&
(ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
/* We can do both TXPAUSE and RXPAUSE. */
ifr->ifr_media |=
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
} else if (ifr->ifr_media & IFM_FLOW) {
/*
* Both TXPAUSE and RXPAUSE must be set.
* (SiS900 and DP83815 don't have PAUSE_ASYM
* feature.)
*
* XXX Can SiS900 and DP83815 send PAUSE?
*/
ifr->ifr_media |=
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
}
sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
}
/*FALLTHROUGH*/
default:
if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
break;
error = 0;
if (cmd == SIOCSIFCAP)
error = (*ifp->if_init)(ifp);
else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
}
break;
}
/* Try to get more packets going. */
sipcom_start(ifp);
sc->sc_if_flags = ifp->if_flags;
splx(s);
return (error);
}
/*
* sip_intr:
*
* Interrupt service routine.
*/
static int
sipcom_intr(void *arg)
{
struct sip_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
u_int32_t isr;
int handled = 0;
if (!device_activation(sc->sc_dev, DEVACT_LEVEL_DRIVER))
return 0;
/* Disable interrupts. */
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, 0);
for (;;) {
/* Reading clears interrupt. */
isr = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ISR);
if ((isr & sc->sc_imr) == 0)
break;
rnd_add_uint32(&sc->rnd_source, isr);
handled = 1;
if ((ifp->if_flags & IFF_RUNNING) == 0)
break;
if (isr & (ISR_RXORN|ISR_RXIDLE|ISR_RXDESC)) {
SIP_EVCNT_INCR(&sc->sc_ev_rxintr);
/* Grab any new packets. */
(*sc->sc_rxintr)(sc);
if (isr & ISR_RXORN) {
printf("%s: receive FIFO overrun\n",
device_xname(sc->sc_dev));
/* XXX adjust rx_drain_thresh? */
}
if (isr & ISR_RXIDLE) {
printf("%s: receive ring overrun\n",
device_xname(sc->sc_dev));
/* Get the receive process going again. */
bus_space_write_4(sc->sc_st, sc->sc_sh,
SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
bus_space_write_4(sc->sc_st, sc->sc_sh,
SIP_CR, CR_RXE);
}
}
if (isr & (ISR_TXURN|ISR_TXDESC|ISR_TXIDLE)) {
#ifdef SIP_EVENT_COUNTERS
if (isr & ISR_TXDESC)
SIP_EVCNT_INCR(&sc->sc_ev_txdintr);
else if (isr & ISR_TXIDLE)
SIP_EVCNT_INCR(&sc->sc_ev_txiintr);
#endif
/* Sweep up transmit descriptors. */
sipcom_txintr(sc);
if (isr & ISR_TXURN) {
u_int32_t thresh;
int txfifo_size = (sc->sc_gigabit)
? DP83820_SIP_TXFIFO_SIZE
: OTHER_SIP_TXFIFO_SIZE;
printf("%s: transmit FIFO underrun",
device_xname(sc->sc_dev));
thresh = sc->sc_tx_drain_thresh + 1;
if (thresh <= __SHIFTOUT_MASK(sc->sc_bits.b_txcfg_drth_mask)
&& (thresh * 32) <= (txfifo_size -
(sc->sc_tx_fill_thresh * 32))) {
printf("; increasing Tx drain "
"threshold to %u bytes\n",
thresh * 32);
sc->sc_tx_drain_thresh = thresh;
(void) sipcom_init(ifp);
} else {
(void) sipcom_init(ifp);
printf("\n");
}
}
}
if (sc->sc_imr & (ISR_PAUSE_END|ISR_PAUSE_ST)) {
if (isr & ISR_PAUSE_ST) {
sc->sc_paused = 1;
SIP_EVCNT_INCR(&sc->sc_ev_rxpause);
ifp->if_flags |= IFF_OACTIVE;
}
if (isr & ISR_PAUSE_END) {
sc->sc_paused = 0;
ifp->if_flags &= ~IFF_OACTIVE;
}
}
if (isr & ISR_HIBERR) {
int want_init = 0;
SIP_EVCNT_INCR(&sc->sc_ev_hiberr);
#define PRINTERR(bit, str) \
do { \
if ((isr & (bit)) != 0) { \
if ((ifp->if_flags & IFF_DEBUG) != 0) \
printf("%s: %s\n", \
device_xname(sc->sc_dev), str); \
want_init = 1; \
} \
} while (/*CONSTCOND*/0)
PRINTERR(sc->sc_bits.b_isr_dperr, "parity error");
PRINTERR(sc->sc_bits.b_isr_sserr, "system error");
PRINTERR(sc->sc_bits.b_isr_rmabt, "master abort");
PRINTERR(sc->sc_bits.b_isr_rtabt, "target abort");
PRINTERR(ISR_RXSOVR, "receive status FIFO overrun");
/*
* Ignore:
* Tx reset complete
* Rx reset complete
*/
if (want_init)
(void) sipcom_init(ifp);
#undef PRINTERR
}
}
/* Re-enable interrupts. */
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IER, IER_IE);
/* Try to get more packets going. */
if_schedule_deferred_start(ifp);
return (handled);
}
/*
* sip_txintr:
*
* Helper; handle transmit interrupts.
*/
static void
sipcom_txintr(struct sip_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct sip_txsoft *txs;
u_int32_t cmdsts;
if (sc->sc_paused == 0)
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through our Tx list and free mbufs for those
* frames which have been transmitted.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
sip_cdtxsync(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmdsts = le32toh(*sipd_cmdsts(sc,
&sc->sc_txdescs[txs->txs_lastdesc]));
if (cmdsts & CMDSTS_OWN)
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
/*
* Check for errors and collisions.
*/
if (cmdsts &
(CMDSTS_Tx_TXA|CMDSTS_Tx_TFU|CMDSTS_Tx_ED|CMDSTS_Tx_EC)) {
ifp->if_oerrors++;
if (cmdsts & CMDSTS_Tx_EC)
ifp->if_collisions += 16;
if (ifp->if_flags & IFF_DEBUG) {
if (cmdsts & CMDSTS_Tx_ED)
printf("%s: excessive deferral\n",
device_xname(sc->sc_dev));
if (cmdsts & CMDSTS_Tx_EC)
printf("%s: excessive collisions\n",
device_xname(sc->sc_dev));
}
} else {
/* Packet was transmitted successfully. */
ifp->if_opackets++;
ifp->if_collisions += CMDSTS_COLLISIONS(cmdsts);
}
}
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (txs == NULL) {
ifp->if_timer = 0;
sc->sc_txwin = 0;
}
}
/*
* gsip_rxintr:
*
* Helper; handle receive interrupts on gigabit parts.
*/
static void
gsip_rxintr(struct sip_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct sip_rxsoft *rxs;
struct mbuf *m;
u_int32_t cmdsts, extsts;
int i, len;
for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
rxs = &sc->sc_rxsoft[i];
sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
extsts = le32toh(sc->sc_rxdescs[i].sipd_extsts);
len = CMDSTS_SIZE(sc, cmdsts);
/*
* NOTE: OWN is set if owned by _consumer_. We're the
* consumer of the receive ring, so if the bit is clear,
* we have processed all of the packets.
*/
if ((cmdsts & CMDSTS_OWN) == 0) {
/*
* We have processed all of the receive buffers.
*/
break;
}
if (__predict_false(sc->sc_rxdiscard)) {
sip_init_rxdesc(sc, i);
if ((cmdsts & CMDSTS_MORE) == 0) {
/* Reset our state. */
sc->sc_rxdiscard = 0;
}
continue;
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
m = rxs->rxs_mbuf;
/*
* Add a new receive buffer to the ring.
*/
if (sipcom_add_rxbuf(sc, i) != 0) {
/*
* Failed, throw away what we've done so
* far, and discard the rest of the packet.
*/
ifp->if_ierrors++;
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
sip_init_rxdesc(sc, i);
if (cmdsts & CMDSTS_MORE)
sc->sc_rxdiscard = 1;
if (sc->sc_rxhead != NULL)
m_freem(sc->sc_rxhead);
sip_rxchain_reset(sc);
continue;
}
sip_rxchain_link(sc, m);
m->m_len = len;
/*
* If this is not the end of the packet, keep
* looking.
*/
if (cmdsts & CMDSTS_MORE) {
sc->sc_rxlen += len;
continue;
}
/*
* Okay, we have the entire packet now. The chip includes
* the FCS, so we need to trim it.
*/
m->m_len -= ETHER_CRC_LEN;
*sc->sc_rxtailp = NULL;
len = m->m_len + sc->sc_rxlen;
m = sc->sc_rxhead;
sip_rxchain_reset(sc);
/*
* If an error occurred, update stats and drop the packet.
*/
if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
ifp->if_ierrors++;
if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
(cmdsts & CMDSTS_Rx_RXO) == 0) {
/* Receive overrun handled elsewhere. */
printf("%s: receive descriptor error\n",
device_xname(sc->sc_dev));
}
#define PRINTERR(bit, str) \
if ((ifp->if_flags & IFF_DEBUG) != 0 && \
(cmdsts & (bit)) != 0) \
printf("%s: %s\n", device_xname(sc->sc_dev), str)
PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
#undef PRINTERR
m_freem(m);
continue;
}
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*/
if (gsip_copy_small != 0 && len <= (MHLEN - 2)) {
struct mbuf *nm;
MGETHDR(nm, M_DONTWAIT, MT_DATA);
if (nm == NULL) {
ifp->if_ierrors++;
m_freem(m);
continue;
}
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
nm->m_data += 2;
nm->m_pkthdr.len = nm->m_len = len;
m_copydata(m, 0, len, mtod(nm, void *));
m_freem(m);
m = nm;
}
#ifndef __NO_STRICT_ALIGNMENT
else {
/*
* The DP83820's receive buffers must be 4-byte
* aligned. But this means that the data after
* the Ethernet header is misaligned. To compensate,
* we have artificially shortened the buffer size
* in the descriptor, and we do an overlapping copy
* of the data two bytes further in (in the first
* buffer of the chain only).
*/
memmove(mtod(m, char *) + 2, mtod(m, void *),
m->m_len);
m->m_data += 2;
}
#endif /* ! __NO_STRICT_ALIGNMENT */
/*
* If VLANs are enabled, VLAN packets have been unwrapped
* for us. Associate the tag with the packet.
*/
/*
* Again, byte swapping is tricky. Hardware provided
* the tag in the network byte order, but extsts was
* passed through le32toh() in the meantime. On a
* big-endian machine, we need to swap it again. On a
* little-endian machine, we need to convert from the
* network to host byte order. This means that we must
* swap it in any case, so unconditional swap instead
* of htons() is used.
*/
if ((extsts & EXTSTS_VPKT) != 0) {
vlan_set_tag(m, bswap16(extsts & EXTSTS_VTCI));
}
/*
* Set the incoming checksum information for the
* packet.
*/
if ((extsts & EXTSTS_IPPKT) != 0) {
SIP_EVCNT_INCR(&sc->sc_ev_rxipsum);
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if (extsts & EXTSTS_Rx_IPERR)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
if (extsts & EXTSTS_TCPPKT) {
SIP_EVCNT_INCR(&sc->sc_ev_rxtcpsum);
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
if (extsts & EXTSTS_Rx_TCPERR)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
} else if (extsts & EXTSTS_UDPPKT) {
SIP_EVCNT_INCR(&sc->sc_ev_rxudpsum);
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
if (extsts & EXTSTS_Rx_UDPERR)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
}
}
m_set_rcvif(m, ifp);
m->m_pkthdr.len = len;
/* Pass it on. */
if_percpuq_enqueue(ifp->if_percpuq, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
/*
* sip_rxintr:
*
* Helper; handle receive interrupts on 10/100 parts.
*/
static void
sip_rxintr(struct sip_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct sip_rxsoft *rxs;
struct mbuf *m;
u_int32_t cmdsts;
int i, len;
for (i = sc->sc_rxptr;; i = sip_nextrx(sc, i)) {
rxs = &sc->sc_rxsoft[i];
sip_cdrxsync(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
cmdsts = le32toh(*sipd_cmdsts(sc, &sc->sc_rxdescs[i]));
/*
* NOTE: OWN is set if owned by _consumer_. We're the
* consumer of the receive ring, so if the bit is clear,
* we have processed all of the packets.
*/
if ((cmdsts & CMDSTS_OWN) == 0) {
/*
* We have processed all of the receive buffers.
*/
break;
}
/*
* If any collisions were seen on the wire, count one.
*/
if (cmdsts & CMDSTS_Rx_COL)
ifp->if_collisions++;
/*
* If an error occurred, update stats, clear the status
* word, and leave the packet buffer in place. It will
* simply be reused the next time the ring comes around.
*/
if (cmdsts & (CMDSTS_Rx_RXA|CMDSTS_Rx_RUNT|
CMDSTS_Rx_ISE|CMDSTS_Rx_CRCE|CMDSTS_Rx_FAE)) {
ifp->if_ierrors++;
if ((cmdsts & CMDSTS_Rx_RXA) != 0 &&
(cmdsts & CMDSTS_Rx_RXO) == 0) {
/* Receive overrun handled elsewhere. */
printf("%s: receive descriptor error\n",
device_xname(sc->sc_dev));
}
#define PRINTERR(bit, str) \
if ((ifp->if_flags & IFF_DEBUG) != 0 && \
(cmdsts & (bit)) != 0) \
printf("%s: %s\n", device_xname(sc->sc_dev), str)
PRINTERR(CMDSTS_Rx_RUNT, "runt packet");
PRINTERR(CMDSTS_Rx_ISE, "invalid symbol error");
PRINTERR(CMDSTS_Rx_CRCE, "CRC error");
PRINTERR(CMDSTS_Rx_FAE, "frame alignment error");
#undef PRINTERR
sip_init_rxdesc(sc, i);
continue;
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/*
* No errors; receive the packet. Note, the SiS 900
* includes the CRC with every packet.
*/
len = CMDSTS_SIZE(sc, cmdsts) - ETHER_CRC_LEN;
#ifdef __NO_STRICT_ALIGNMENT
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*
* Otherwise, we add a new buffer to the receive
* chain. If this fails, we drop the packet and
* recycle the old buffer.
*/
if (sip_copy_small != 0 && len <= MHLEN) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto dropit;
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
memcpy(mtod(m, void *),
mtod(rxs->rxs_mbuf, void *), len);
sip_init_rxdesc(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
} else {
m = rxs->rxs_mbuf;
if (sipcom_add_rxbuf(sc, i) != 0) {
dropit:
ifp->if_ierrors++;
sip_init_rxdesc(sc, i);
bus_dmamap_sync(sc->sc_dmat,
rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
continue;
}
}
#else
/*
* The SiS 900's receive buffers must be 4-byte aligned.
* But this means that the data after the Ethernet header
* is misaligned. We must allocate a new buffer and
* copy the data, shifted forward 2 bytes.
*/
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
dropit:
ifp->if_ierrors++;
sip_init_rxdesc(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
continue;
}
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
if (len > (MHLEN - 2)) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
goto dropit;
}
}
m->m_data += 2;
/*
* Note that we use clusters for incoming frames, so the
* buffer is virtually contiguous.
*/
memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
/* Allow the receive descriptor to continue using its mbuf. */
sip_init_rxdesc(sc, i);
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
#endif /* __NO_STRICT_ALIGNMENT */
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = len;
/* Pass it on. */
if_percpuq_enqueue(ifp->if_percpuq, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
}
/*
* sip_tick:
*
* One second timer, used to tick the MII.
*/
static void
sipcom_tick(void *arg)
{
struct sip_softc *sc = arg;
int s;
s = splnet();
#ifdef SIP_EVENT_COUNTERS
if (sc->sc_gigabit) {
/* Read PAUSE related counts from MIB registers. */
sc->sc_ev_rxpause.ev_count +=
bus_space_read_4(sc->sc_st, sc->sc_sh,
SIP_NS_MIB(MIB_RXPauseFrames)) & 0xffff;
sc->sc_ev_txpause.ev_count +=
bus_space_read_4(sc->sc_st, sc->sc_sh,
SIP_NS_MIB(MIB_TXPauseFrames)) & 0xffff;
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_MIBC, MIBC_ACLR);
}
#endif /* SIP_EVENT_COUNTERS */
mii_tick(&sc->sc_mii);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
}
/*
* sip_reset:
*
* Perform a soft reset on the SiS 900.
*/
static bool
sipcom_reset(struct sip_softc *sc)
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
int i;
bus_space_write_4(st, sh, SIP_IER, 0);
bus_space_write_4(st, sh, SIP_IMR, 0);
bus_space_write_4(st, sh, SIP_RFCR, 0);
bus_space_write_4(st, sh, SIP_CR, CR_RST);
for (i = 0; i < SIP_TIMEOUT; i++) {
if ((bus_space_read_4(st, sh, SIP_CR) & CR_RST) == 0)
break;
delay(2);
}
if (i == SIP_TIMEOUT) {
printf("%s: reset failed to complete\n",
device_xname(sc->sc_dev));
return false;
}
delay(1000);
if (sc->sc_gigabit) {
/*
* Set the general purpose I/O bits. Do it here in case we
* need to have GPIO set up to talk to the media interface.
*/
bus_space_write_4(st, sh, SIP_GPIOR, sc->sc_gpior);
delay(1000);
}
return true;
}
static void
sipcom_dp83820_init(struct sip_softc *sc, uint64_t capenable)
{
u_int32_t reg;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
/*
* Initialize the VLAN/IP receive control register.
* We enable checksum computation on all incoming
* packets, and do not reject packets w/ bad checksums.
*/
reg = 0;
if (capenable &
(IFCAP_CSUM_IPv4_Rx|IFCAP_CSUM_TCPv4_Rx|IFCAP_CSUM_UDPv4_Rx))
reg |= VRCR_IPEN;
if (VLAN_ATTACHED(&sc->sc_ethercom))
reg |= VRCR_VTDEN|VRCR_VTREN;
bus_space_write_4(st, sh, SIP_VRCR, reg);
/*
* Initialize the VLAN/IP transmit control register.
* We enable outgoing checksum computation on a
* per-packet basis.
*/
reg = 0;
if (capenable &
(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_UDPv4_Tx))
reg |= VTCR_PPCHK;
if (VLAN_ATTACHED(&sc->sc_ethercom))
reg |= VTCR_VPPTI;
bus_space_write_4(st, sh, SIP_VTCR, reg);
/*
* If we're using VLANs, initialize the VLAN data register.
* To understand why we bswap the VLAN Ethertype, see section
* 4.2.36 of the DP83820 manual.
*/
if (VLAN_ATTACHED(&sc->sc_ethercom))
bus_space_write_4(st, sh, SIP_VDR, bswap16(ETHERTYPE_VLAN));
}
/*
* sip_init: [ ifnet interface function ]
*
* Initialize the interface. Must be called at splnet().
*/
static int
sipcom_init(struct ifnet *ifp)
{
struct sip_softc *sc = ifp->if_softc;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct sip_txsoft *txs;
struct sip_rxsoft *rxs;
struct sip_desc *sipd;
int i, error = 0;
if (device_is_active(sc->sc_dev)) {
/*
* Cancel any pending I/O.
*/
sipcom_stop(ifp, 0);
} else if (!pmf_device_subtree_resume(sc->sc_dev, &sc->sc_qual) ||
!device_is_active(sc->sc_dev))
return 0;
/*
* Reset the chip to a known state.
*/
if (!sipcom_reset(sc))
return EBUSY;
if (SIP_CHIP_MODEL(sc, PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815)) {
/*
* DP83815 manual, page 78:
* 4.4 Recommended Registers Configuration
* For optimum performance of the DP83815, version noted
* as DP83815CVNG (SRR = 203h), the listed register
* modifications must be followed in sequence...
*
* It's not clear if this should be 302h or 203h because that
* chip name is listed as SRR 302h in the description of the
* SRR register. However, my revision 302h DP83815 on the
* Netgear FA311 purchased in 02/2001 needs these settings
* to avoid tons of errors in AcceptPerfectMatch (non-
* IFF_PROMISC) mode. I do not know if other revisions need
* this set or not. [briggs -- 09 March 2001]
*
* Note that only the low-order 12 bits of 0xe4 are documented
* and that this sets reserved bits in that register.
*/
bus_space_write_4(st, sh, 0x00cc, 0x0001);
bus_space_write_4(st, sh, 0x00e4, 0x189C);
bus_space_write_4(st, sh, 0x00fc, 0x0000);
bus_space_write_4(st, sh, 0x00f4, 0x5040);
bus_space_write_4(st, sh, 0x00f8, 0x008c);
bus_space_write_4(st, sh, 0x00cc, 0x0000);
}
/*
* Initialize the transmit descriptor ring.
*/
for (i = 0; i < sc->sc_ntxdesc; i++) {
sipd = &sc->sc_txdescs[i];
memset(sipd, 0, sizeof(struct sip_desc));
sipd->sipd_link = htole32(SIP_CDTXADDR(sc, sip_nexttx(sc, i)));
}
sip_cdtxsync(sc, 0, sc->sc_ntxdesc,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_txfree = sc->sc_ntxdesc;
sc->sc_txnext = 0;
sc->sc_txwin = 0;
/*
* Initialize the transmit job descriptors.
*/
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
for (i = 0; i < SIP_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = sipcom_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
device_xname(sc->sc_dev), i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
sipcom_rxdrain(sc);
goto out;
}
} else
sip_init_rxdesc(sc, i);
}
sc->sc_rxptr = 0;
sc->sc_rxdiscard = 0;
sip_rxchain_reset(sc);
/*
* Set the configuration register; it's already initialized
* in sip_attach().
*/
bus_space_write_4(st, sh, SIP_CFG, sc->sc_cfg);
/*
* Initialize the prototype TXCFG register.
*/
if (sc->sc_gigabit) {
sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
} else if ((SIP_SIS900_REV(sc, SIS_REV_635) ||
SIP_SIS900_REV(sc, SIS_REV_960) ||
SIP_SIS900_REV(sc, SIS_REV_900B)) &&
(sc->sc_cfg & CFG_EDBMASTEN)) {
sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_64;
sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_64;
} else {
sc->sc_txcfg = sc->sc_bits.b_txcfg_mxdma_512;
sc->sc_rxcfg = sc->sc_bits.b_rxcfg_mxdma_512;
}
sc->sc_txcfg |= TXCFG_ATP |
__SHIFTIN(sc->sc_tx_fill_thresh, sc->sc_bits.b_txcfg_flth_mask) |
sc->sc_tx_drain_thresh;
bus_space_write_4(st, sh, sc->sc_regs.r_txcfg, sc->sc_txcfg);
/*
* Initialize the receive drain threshold if we have never
* done so.
*/
if (sc->sc_rx_drain_thresh == 0) {
/*
* XXX This value should be tuned. This is set to the
* maximum of 248 bytes, and we may be able to improve
* performance by decreasing it (although we should never
* set this value lower than 2; 14 bytes are required to
* filter the packet).
*/
sc->sc_rx_drain_thresh = __SHIFTOUT_MASK(RXCFG_DRTH_MASK);
}
/*
* Initialize the prototype RXCFG register.
*/
sc->sc_rxcfg |= __SHIFTIN(sc->sc_rx_drain_thresh, RXCFG_DRTH_MASK);
/*
* Accept long packets (including FCS) so we can handle
* 802.1q-tagged frames and jumbo frames properly.
*/
if ((sc->sc_gigabit && ifp->if_mtu > ETHERMTU) ||
(sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU))
sc->sc_rxcfg |= RXCFG_ALP;
/*
* Checksum offloading is disabled if the user selects an MTU
* larger than 8109. (FreeBSD says 8152, but there is emperical
* evidence that >8109 does not work on some boards, such as the
* Planex GN-1000TE).
*/
if (sc->sc_gigabit && ifp->if_mtu > 8109 &&
(ifp->if_capenable &
(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx))) {
printf("%s: Checksum offloading does not work if MTU > 8109 - "
"disabled.\n", device_xname(sc->sc_dev));
ifp->if_capenable &=
~(IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx);
ifp->if_csum_flags_tx = 0;
ifp->if_csum_flags_rx = 0;
}
bus_space_write_4(st, sh, sc->sc_regs.r_rxcfg, sc->sc_rxcfg);
if (sc->sc_gigabit)
sipcom_dp83820_init(sc, ifp->if_capenable);
/*
* Give the transmit and receive rings to the chip.
*/
bus_space_write_4(st, sh, SIP_TXDP, SIP_CDTXADDR(sc, sc->sc_txnext));
bus_space_write_4(st, sh, SIP_RXDP, SIP_CDRXADDR(sc, sc->sc_rxptr));
/*
* Initialize the interrupt mask.
*/
sc->sc_imr = sc->sc_bits.b_isr_dperr |
sc->sc_bits.b_isr_sserr |
sc->sc_bits.b_isr_rmabt |
sc->sc_bits.b_isr_rtabt | ISR_RXSOVR |
ISR_TXURN|ISR_TXDESC|ISR_TXIDLE|ISR_RXORN|ISR_RXIDLE|ISR_RXDESC;
bus_space_write_4(st, sh, SIP_IMR, sc->sc_imr);
/* Set up the receive filter. */
(*sc->sc_model->sip_variant->sipv_set_filter)(sc);
/*
* Tune sc_rx_flow_thresh.
* XXX "More than 8KB" is too short for jumbo frames.
* XXX TODO: Threshold value should be user-settable.
*/
sc->sc_rx_flow_thresh = (PCR_PS_STHI_8 | PCR_PS_STLO_4 |
PCR_PS_FFHI_8 | PCR_PS_FFLO_4 |
(PCR_PAUSE_CNT & PCR_PAUSE_CNT_MASK));
/*
* Set the current media. Do this after initializing the prototype
* IMR, since sip_mii_statchg() modifies the IMR for 802.3x flow
* control.
*/
if ((error = ether_mediachange(ifp)) != 0)
goto out;
/*
* Set the interrupt hold-off timer to 100us.
*/
if (sc->sc_gigabit)
bus_space_write_4(st, sh, SIP_IHR, 0x01);
/*
* Enable interrupts.
*/
bus_space_write_4(st, sh, SIP_IER, IER_IE);
/*
* Start the transmit and receive processes.
*/
bus_space_write_4(st, sh, SIP_CR, CR_RXE | CR_TXE);
/*
* Start the one second MII clock.
*/
callout_reset(&sc->sc_tick_ch, hz, sipcom_tick, sc);
/*
* ...all done!
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
sc->sc_if_flags = ifp->if_flags;
sc->sc_prev.ec_capenable = sc->sc_ethercom.ec_capenable;
sc->sc_prev.is_vlan = VLAN_ATTACHED(&(sc)->sc_ethercom);
sc->sc_prev.if_capenable = ifp->if_capenable;
out:
if (error)
printf("%s: interface not running\n", device_xname(sc->sc_dev));
return (error);
}
/*
* sip_drain:
*
* Drain the receive queue.
*/
static void
sipcom_rxdrain(struct sip_softc *sc)
{
struct sip_rxsoft *rxs;
int i;
for (i = 0; i < sc->sc_parm->p_nrxdesc; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* sip_stop: [ ifnet interface function ]
*
* Stop transmission on the interface.
*/
static void
sipcom_stop(struct ifnet *ifp, int disable)
{
struct sip_softc *sc = ifp->if_softc;
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct sip_txsoft *txs;
u_int32_t cmdsts = 0; /* DEBUG */
/*
* Stop the one second clock.
*/
callout_stop(&sc->sc_tick_ch);
/* Down the MII. */
mii_down(&sc->sc_mii);
if (device_is_active(sc->sc_dev)) {
/*
* Disable interrupts.
*/
bus_space_write_4(st, sh, SIP_IER, 0);
/*
* Stop receiver and transmitter.
*/
bus_space_write_4(st, sh, SIP_CR, CR_RXD | CR_TXD);
}
/*
* Release any queued transmit buffers.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
SIMPLEQ_NEXT(txs, txs_q) == NULL &&
(le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc])) &
CMDSTS_INTR) == 0)
printf("%s: sip_stop: last descriptor does not "
"have INTR bit set\n", device_xname(sc->sc_dev));
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
#ifdef DIAGNOSTIC
if (txs->txs_mbuf == NULL) {
printf("%s: dirty txsoft with no mbuf chain\n",
device_xname(sc->sc_dev));
panic("sip_stop");
}
#endif
cmdsts |= /* DEBUG */
le32toh(*sipd_cmdsts(sc, &sc->sc_txdescs[txs->txs_lastdesc]));
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
if (disable)
pmf_device_recursive_suspend(sc->sc_dev, &sc->sc_qual);
if ((ifp->if_flags & IFF_DEBUG) != 0 &&
(cmdsts & CMDSTS_INTR) == 0 && sc->sc_txfree != sc->sc_ntxdesc)
printf("%s: sip_stop: no INTR bits set in dirty tx "
"descriptors\n", device_xname(sc->sc_dev));
}
/*
* sip_read_eeprom:
*
* Read data from the serial EEPROM.
*/
static void
sipcom_read_eeprom(struct sip_softc *sc, int word, int wordcnt,
u_int16_t *data)
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
u_int16_t reg;
int i, x;
for (i = 0; i < wordcnt; i++) {
/* Send CHIP SELECT. */
reg = EROMAR_EECS;
bus_space_write_4(st, sh, SIP_EROMAR, reg);
/* Shift in the READ opcode. */
for (x = 3; x > 0; x--) {
if (SIP_EEPROM_OPC_READ & (1 << (x - 1)))
reg |= EROMAR_EEDI;
else
reg &= ~EROMAR_EEDI;
bus_space_write_4(st, sh, SIP_EROMAR, reg);
bus_space_write_4(st, sh, SIP_EROMAR,
reg | EROMAR_EESK);
delay(4);
bus_space_write_4(st, sh, SIP_EROMAR, reg);
delay(4);
}
/* Shift in address. */
for (x = 6; x > 0; x--) {
if ((word + i) & (1 << (x - 1)))
reg |= EROMAR_EEDI;
else
reg &= ~EROMAR_EEDI;
bus_space_write_4(st, sh, SIP_EROMAR, reg);
bus_space_write_4(st, sh, SIP_EROMAR,
reg | EROMAR_EESK);
delay(4);
bus_space_write_4(st, sh, SIP_EROMAR, reg);
delay(4);
}
/* Shift out data. */
reg = EROMAR_EECS;
data[i] = 0;
for (x = 16; x > 0; x--) {
bus_space_write_4(st, sh, SIP_EROMAR,
reg | EROMAR_EESK);
delay(4);
if (bus_space_read_4(st, sh, SIP_EROMAR) & EROMAR_EEDO)
data[i] |= (1 << (x - 1));
bus_space_write_4(st, sh, SIP_EROMAR, reg);
delay(4);
}
/* Clear CHIP SELECT. */
bus_space_write_4(st, sh, SIP_EROMAR, 0);
delay(4);
}
}
/*
* sipcom_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
static int
sipcom_add_rxbuf(struct sip_softc *sc, int idx)
{
struct sip_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
/* XXX I don't believe this is necessary. --dyoung */
if (sc->sc_gigabit)
m->m_len = sc->sc_parm->p_rxbuf_len;
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx DMA map %d, error = %d\n",
device_xname(sc->sc_dev), idx, error);
panic("%s", __func__); /* XXX */
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
sip_init_rxdesc(sc, idx);
return (0);
}
/*
* sip_sis900_set_filter:
*
* Set up the receive filter.
*/
static void
sipcom_sis900_set_filter(struct sip_softc *sc)
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
const u_int8_t *cp;
struct ether_multistep step;
u_int32_t crc, mchash[16];
/*
* Initialize the prototype RFCR.
*/
sc->sc_rfcr = RFCR_RFEN;
if (ifp->if_flags & IFF_BROADCAST)
sc->sc_rfcr |= RFCR_AAB;
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_rfcr |= RFCR_AAP;
goto allmulti;
}
/*
* Set up the multicast address filter by passing all multicast
* addresses through a CRC generator, and then using the high-order
* 6 bits as an index into the 128 bit multicast hash table (only
* the lower 16 bits of each 32 bit multicast hash register are
* valid). The high order bits select the register, while the
* rest of the bits select the bit within the register.
*/
memset(mchash, 0, sizeof(mchash));
/*
* SiS900 (at least SiS963) requires us to register the address of
* the PAUSE packet (01:80:c2:00:00:01) into the address filter.
*/
crc = 0x0ed423f9;
if (SIP_SIS900_REV(sc, SIS_REV_635) ||
SIP_SIS900_REV(sc, SIS_REV_960) ||
SIP_SIS900_REV(sc, SIS_REV_900B)) {
/* Just want the 8 most significant bits. */
crc >>= 24;
} else {
/* Just want the 7 most significant bits. */
crc >>= 25;
}
/* Set the corresponding bit in the hash table. */
mchash[crc >> 4] |= 1 << (crc & 0xf);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
if (SIP_SIS900_REV(sc, SIS_REV_635) ||
SIP_SIS900_REV(sc, SIS_REV_960) ||
SIP_SIS900_REV(sc, SIS_REV_900B)) {
/* Just want the 8 most significant bits. */
crc >>= 24;
} else {
/* Just want the 7 most significant bits. */
crc >>= 25;
}
/* Set the corresponding bit in the hash table. */
mchash[crc >> 4] |= 1 << (crc & 0xf);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
goto setit;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_rfcr |= RFCR_AAM;
setit:
#define FILTER_EMIT(addr, data) \
bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
delay(1); \
bus_space_write_4(st, sh, SIP_RFDR, (data)); \
delay(1)
/*
* Disable receive filter, and program the node address.
*/
cp = CLLADDR(ifp->if_sadl);
FILTER_EMIT(RFCR_RFADDR_NODE0, (cp[1] << 8) | cp[0]);
FILTER_EMIT(RFCR_RFADDR_NODE2, (cp[3] << 8) | cp[2]);
FILTER_EMIT(RFCR_RFADDR_NODE4, (cp[5] << 8) | cp[4]);
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
/*
* Program the multicast hash table.
*/
FILTER_EMIT(RFCR_RFADDR_MC0, mchash[0]);
FILTER_EMIT(RFCR_RFADDR_MC1, mchash[1]);
FILTER_EMIT(RFCR_RFADDR_MC2, mchash[2]);
FILTER_EMIT(RFCR_RFADDR_MC3, mchash[3]);
FILTER_EMIT(RFCR_RFADDR_MC4, mchash[4]);
FILTER_EMIT(RFCR_RFADDR_MC5, mchash[5]);
FILTER_EMIT(RFCR_RFADDR_MC6, mchash[6]);
FILTER_EMIT(RFCR_RFADDR_MC7, mchash[7]);
if (SIP_SIS900_REV(sc, SIS_REV_635) ||
SIP_SIS900_REV(sc, SIS_REV_960) ||
SIP_SIS900_REV(sc, SIS_REV_900B)) {
FILTER_EMIT(RFCR_RFADDR_MC8, mchash[8]);
FILTER_EMIT(RFCR_RFADDR_MC9, mchash[9]);
FILTER_EMIT(RFCR_RFADDR_MC10, mchash[10]);
FILTER_EMIT(RFCR_RFADDR_MC11, mchash[11]);
FILTER_EMIT(RFCR_RFADDR_MC12, mchash[12]);
FILTER_EMIT(RFCR_RFADDR_MC13, mchash[13]);
FILTER_EMIT(RFCR_RFADDR_MC14, mchash[14]);
FILTER_EMIT(RFCR_RFADDR_MC15, mchash[15]);
}
}
#undef FILTER_EMIT
/*
* Re-enable the receiver filter.
*/
bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
}
/*
* sip_dp83815_set_filter:
*
* Set up the receive filter.
*/
static void
sipcom_dp83815_set_filter(struct sip_softc *sc)
{
bus_space_tag_t st = sc->sc_st;
bus_space_handle_t sh = sc->sc_sh;
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
const u_int8_t *cp;
struct ether_multistep step;
u_int32_t crc, hash, slot, bit;
#define MCHASH_NWORDS_83820 128
#define MCHASH_NWORDS_83815 32
#define MCHASH_NWORDS MAX(MCHASH_NWORDS_83820, MCHASH_NWORDS_83815)
u_int16_t mchash[MCHASH_NWORDS];
int i;
/*
* Initialize the prototype RFCR.
* Enable the receive filter, and accept on
* Perfect (destination address) Match
* If IFF_BROADCAST, also accept all broadcast packets.
* If IFF_PROMISC, accept all unicast packets (and later, set
* IFF_ALLMULTI and accept all multicast, too).
*/
sc->sc_rfcr = RFCR_RFEN | RFCR_APM;
if (ifp->if_flags & IFF_BROADCAST)
sc->sc_rfcr |= RFCR_AAB;
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_rfcr |= RFCR_AAP;
goto allmulti;
}
/*
* Set up the DP83820/DP83815 multicast address filter by
* passing all multicast addresses through a CRC generator,
* and then using the high-order 11/9 bits as an index into
* the 2048/512 bit multicast hash table. The high-order
* 7/5 bits select the slot, while the low-order 4 bits
* select the bit within the slot. Note that only the low
* 16-bits of each filter word are used, and there are
* 128/32 filter words.
*/
memset(mchash, 0, sizeof(mchash));
ifp->if_flags &= ~IFF_ALLMULTI;
ETHER_FIRST_MULTI(step, ec, enm);
if (enm == NULL)
goto setit;
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
if (sc->sc_gigabit) {
/* Just want the 11 most significant bits. */
hash = crc >> 21;
} else {
/* Just want the 9 most significant bits. */
hash = crc >> 23;
}
slot = hash >> 4;
bit = hash & 0xf;
/* Set the corresponding bit in the hash table. */
mchash[slot] |= 1 << bit;
ETHER_NEXT_MULTI(step, enm);
}
sc->sc_rfcr |= RFCR_MHEN;
goto setit;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_rfcr |= RFCR_AAM;
setit:
#define FILTER_EMIT(addr, data) \
bus_space_write_4(st, sh, SIP_RFCR, (addr)); \
delay(1); \
bus_space_write_4(st, sh, SIP_RFDR, (data)); \
delay(1)
/*
* Disable receive filter, and program the node address.
*/
cp = CLLADDR(ifp->if_sadl);
FILTER_EMIT(RFCR_NS_RFADDR_PMATCH0, (cp[1] << 8) | cp[0]);
FILTER_EMIT(RFCR_NS_RFADDR_PMATCH2, (cp[3] << 8) | cp[2]);
FILTER_EMIT(RFCR_NS_RFADDR_PMATCH4, (cp[5] << 8) | cp[4]);
if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
int nwords =
sc->sc_gigabit ? MCHASH_NWORDS_83820 : MCHASH_NWORDS_83815;
/*
* Program the multicast hash table.
*/
for (i = 0; i < nwords; i++) {
FILTER_EMIT(sc->sc_parm->p_filtmem + (i * 2), mchash[i]);
}
}
#undef FILTER_EMIT
#undef MCHASH_NWORDS
#undef MCHASH_NWORDS_83815
#undef MCHASH_NWORDS_83820
/*
* Re-enable the receiver filter.
*/
bus_space_write_4(st, sh, SIP_RFCR, sc->sc_rfcr);
}
/*
* sip_dp83820_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII of the DP83820.
*/
static int
sipcom_dp83820_mii_readreg(device_t self, int phy, int reg)
{
struct sip_softc *sc = device_private(self);
if (sc->sc_cfg & CFG_TBI_EN) {
bus_addr_t tbireg;
int rv;
if (phy != 0)
return (0);
switch (reg) {
case MII_BMCR: tbireg = SIP_TBICR; break;
case MII_BMSR: tbireg = SIP_TBISR; break;
case MII_ANAR: tbireg = SIP_TANAR; break;
case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
case MII_ANER: tbireg = SIP_TANER; break;
case MII_EXTSR:
/*
* Don't even bother reading the TESR register.
* The manual documents that the device has
* 1000baseX full/half capability, but the
* register itself seems read back 0 on some
* boards. Just hard-code the result.
*/
return (EXTSR_1000XFDX|EXTSR_1000XHDX);
default:
return (0);
}
rv = bus_space_read_4(sc->sc_st, sc->sc_sh, tbireg) & 0xffff;
if (tbireg == SIP_TBISR) {
/* LINK and ACOMP are switched! */
int val = rv;
rv = 0;
if (val & TBISR_MR_LINK_STATUS)
rv |= BMSR_LINK;
if (val & TBISR_MR_AN_COMPLETE)
rv |= BMSR_ACOMP;
/*
* The manual claims this register reads back 0
* on hard and soft reset. But we want to let
* the gentbi driver know that we support auto-
* negotiation, so hard-code this bit in the
* result.
*/
rv |= BMSR_ANEG | BMSR_EXTSTAT;
}
return (rv);
}
return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops, phy, reg);
}
/*
* sip_dp83820_mii_writereg: [mii interface function]
*
* Write a PHY register on the MII of the DP83820.
*/
static void
sipcom_dp83820_mii_writereg(device_t self, int phy, int reg, int val)
{
struct sip_softc *sc = device_private(self);
if (sc->sc_cfg & CFG_TBI_EN) {
bus_addr_t tbireg;
if (phy != 0)
return;
switch (reg) {
case MII_BMCR: tbireg = SIP_TBICR; break;
case MII_ANAR: tbireg = SIP_TANAR; break;
case MII_ANLPAR: tbireg = SIP_TANLPAR; break;
default:
return;
}
bus_space_write_4(sc->sc_st, sc->sc_sh, tbireg, val);
return;
}
mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops, phy, reg, val);
}
/*
* sip_dp83820_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
static void
sipcom_dp83820_mii_statchg(struct ifnet *ifp)
{
struct sip_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
u_int32_t cfg, pcr;
/*
* Get flow control negotiation result.
*/
if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
(mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
mii->mii_media_active &= ~IFM_ETH_FMASK;
}
/*
* Update TXCFG for full-duplex operation.
*/
if ((mii->mii_media_active & IFM_FDX) != 0)
sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
else
sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
/*
* Update RXCFG for full-duplex or loopback.
*/
if ((mii->mii_media_active & IFM_FDX) != 0 ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
sc->sc_rxcfg |= RXCFG_ATX;
else
sc->sc_rxcfg &= ~RXCFG_ATX;
/*
* Update CFG for MII/GMII.
*/
if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
cfg = sc->sc_cfg | CFG_MODE_1000;
else
cfg = sc->sc_cfg;
/*
* 802.3x flow control.
*/
pcr = 0;
if (sc->sc_flowflags & IFM_FLOW) {
if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
pcr |= sc->sc_rx_flow_thresh;
if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
pcr |= PCR_PSEN | PCR_PS_MCAST;
}
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CFG, cfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
sc->sc_txcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
sc->sc_rxcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PCR, pcr);
}
/*
* sip_mii_bitbang_read: [mii bit-bang interface function]
*
* Read the MII serial port for the MII bit-bang module.
*/
static u_int32_t
sipcom_mii_bitbang_read(device_t self)
{
struct sip_softc *sc = device_private(self);
return (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR));
}
/*
* sip_mii_bitbang_write: [mii big-bang interface function]
*
* Write the MII serial port for the MII bit-bang module.
*/
static void
sipcom_mii_bitbang_write(device_t self, u_int32_t val)
{
struct sip_softc *sc = device_private(self);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, val);
}
/*
* sip_sis900_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII.
*/
static int
sipcom_sis900_mii_readreg(device_t self, int phy, int reg)
{
struct sip_softc *sc = device_private(self);
u_int32_t enphy;
/*
* The PHY of recent SiS chipsets is accessed through bitbang
* operations.
*/
if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900)
return mii_bitbang_readreg(self, &sipcom_mii_bitbang_ops,
phy, reg);
#ifndef SIS900_MII_RESTRICT
/*
* The SiS 900 has only an internal PHY on the MII. Only allow
* MII address 0.
*/
if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
return (0);
#endif
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
(phy << ENPHY_PHYADDR_SHIFT) | (reg << ENPHY_REGADDR_SHIFT) |
ENPHY_RWCMD | ENPHY_ACCESS);
do {
enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
} while (enphy & ENPHY_ACCESS);
return ((enphy & ENPHY_PHYDATA) >> ENPHY_DATA_SHIFT);
}
/*
* sip_sis900_mii_writereg: [mii interface function]
*
* Write a PHY register on the MII.
*/
static void
sipcom_sis900_mii_writereg(device_t self, int phy, int reg, int val)
{
struct sip_softc *sc = device_private(self);
u_int32_t enphy;
if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900) {
mii_bitbang_writereg(self, &sipcom_mii_bitbang_ops,
phy, reg, val);
return;
}
#ifndef SIS900_MII_RESTRICT
/*
* The SiS 900 has only an internal PHY on the MII. Only allow
* MII address 0.
*/
if (sc->sc_model->sip_product == PCI_PRODUCT_SIS_900 && phy != 0)
return;
#endif
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_ENPHY,
(val << ENPHY_DATA_SHIFT) | (phy << ENPHY_PHYADDR_SHIFT) |
(reg << ENPHY_REGADDR_SHIFT) | ENPHY_ACCESS);
do {
enphy = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_ENPHY);
} while (enphy & ENPHY_ACCESS);
}
/*
* sip_sis900_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
static void
sipcom_sis900_mii_statchg(struct ifnet *ifp)
{
struct sip_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
u_int32_t flowctl;
/*
* Get flow control negotiation result.
*/
if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
(mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
mii->mii_media_active &= ~IFM_ETH_FMASK;
}
/*
* Update TXCFG for full-duplex operation.
*/
if ((mii->mii_media_active & IFM_FDX) != 0)
sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
else
sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
/*
* Update RXCFG for full-duplex or loopback.
*/
if ((mii->mii_media_active & IFM_FDX) != 0 ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_LOOP)
sc->sc_rxcfg |= RXCFG_ATX;
else
sc->sc_rxcfg &= ~RXCFG_ATX;
/*
* Update IMR for use of 802.3x flow control.
*/
if (sc->sc_flowflags & IFM_FLOW) {
sc->sc_imr |= (ISR_PAUSE_END|ISR_PAUSE_ST);
flowctl = FLOWCTL_FLOWEN;
} else {
sc->sc_imr &= ~(ISR_PAUSE_END|ISR_PAUSE_ST);
flowctl = 0;
}
bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
sc->sc_txcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
sc->sc_rxcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_IMR, sc->sc_imr);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_FLOWCTL, flowctl);
}
/*
* sip_dp83815_mii_readreg: [mii interface function]
*
* Read a PHY register on the MII.
*/
static int
sipcom_dp83815_mii_readreg(device_t self, int phy, int reg)
{
struct sip_softc *sc = device_private(self);
u_int32_t val;
/*
* The DP83815 only has an internal PHY. Only allow
* MII address 0.
*/
if (phy != 0)
return (0);
/*
* Apparently, after a reset, the DP83815 can take a while
* to respond. During this recovery period, the BMSR returns
* a value of 0. Catch this -- it's not supposed to happen
* (the BMSR has some hardcoded-to-1 bits), and wait for the
* PHY to come back to life.
*
* This works out because the BMSR is the first register
* read during the PHY probe process.
*/
do {
val = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg));
} while (reg == MII_BMSR && val == 0);
return (val & 0xffff);
}
/*
* sip_dp83815_mii_writereg: [mii interface function]
*
* Write a PHY register to the MII.
*/
static void
sipcom_dp83815_mii_writereg(device_t self, int phy, int reg, int val)
{
struct sip_softc *sc = device_private(self);
/*
* The DP83815 only has an internal PHY. Only allow
* MII address 0.
*/
if (phy != 0)
return;
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_NS_PHY(reg), val);
}
/*
* sip_dp83815_mii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
static void
sipcom_dp83815_mii_statchg(struct ifnet *ifp)
{
struct sip_softc *sc = ifp->if_softc;
/*
* Update TXCFG for full-duplex operation.
*/
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
sc->sc_txcfg |= (TXCFG_CSI | TXCFG_HBI);
else
sc->sc_txcfg &= ~(TXCFG_CSI | TXCFG_HBI);
/*
* Update RXCFG for full-duplex or loopback.
*/
if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0 ||
IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_LOOP)
sc->sc_rxcfg |= RXCFG_ATX;
else
sc->sc_rxcfg &= ~RXCFG_ATX;
/*
* XXX 802.3x flow control.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_txcfg,
sc->sc_txcfg);
bus_space_write_4(sc->sc_st, sc->sc_sh, sc->sc_regs.r_rxcfg,
sc->sc_rxcfg);
/*
* Some DP83815s experience problems when used with short
* (< 30m/100ft) Ethernet cables in 100BaseTX mode. This
* sequence adjusts the DSP's signal attenuation to fix the
* problem.
*/
if (IFM_SUBTYPE(sc->sc_mii.mii_media_active) == IFM_100_TX) {
uint32_t reg;
bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0x0001);
reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
reg &= 0x0fff;
bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4, reg | 0x1000);
delay(100);
reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00fc);
reg &= 0x00ff;
if ((reg & 0x0080) == 0 || (reg >= 0x00d8)) {
bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00fc,
0x00e8);
reg = bus_space_read_4(sc->sc_st, sc->sc_sh, 0x00f4);
bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00f4,
reg | 0x20);
}
bus_space_write_4(sc->sc_st, sc->sc_sh, 0x00cc, 0);
}
}
static void
sipcom_dp83820_read_macaddr(struct sip_softc *sc,
const struct pci_attach_args *pa, u_int8_t *enaddr)
{
u_int16_t eeprom_data[SIP_DP83820_EEPROM_LENGTH / 2];
u_int8_t cksum, *e, match;
int i;
/*
* EEPROM data format for the DP83820 can be found in
* the DP83820 manual, section 4.2.4.
*/
sipcom_read_eeprom(sc, 0, __arraycount(eeprom_data), eeprom_data);
match = eeprom_data[SIP_DP83820_EEPROM_CHECKSUM / 2] >> 8;
match = ~(match - 1);
cksum = 0x55;
e = (u_int8_t *) eeprom_data;
for (i = 0; i < SIP_DP83820_EEPROM_CHECKSUM; i++)
cksum += *e++;
if (cksum != match)
printf("%s: Checksum (%x) mismatch (%x)",
device_xname(sc->sc_dev), cksum, match);
enaddr[0] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] & 0xff;
enaddr[1] = eeprom_data[SIP_DP83820_EEPROM_PMATCH2 / 2] >> 8;
enaddr[2] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] & 0xff;
enaddr[3] = eeprom_data[SIP_DP83820_EEPROM_PMATCH1 / 2] >> 8;
enaddr[4] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] & 0xff;
enaddr[5] = eeprom_data[SIP_DP83820_EEPROM_PMATCH0 / 2] >> 8;
}
static void
sipcom_sis900_eeprom_delay(struct sip_softc *sc)
{
int i;
/*
* FreeBSD goes from (300/33)+1 [10] to 0. There must be
* a reason, but I don't know it.
*/
for (i = 0; i < 10; i++)
bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_CR);
}
static void
sipcom_sis900_read_macaddr(struct sip_softc *sc,
const struct pci_attach_args *pa, u_int8_t *enaddr)
{
u_int16_t myea[ETHER_ADDR_LEN / 2];
switch (sc->sc_rev) {
case SIS_REV_630S:
case SIS_REV_630E:
case SIS_REV_630EA1:
case SIS_REV_630ET:
case SIS_REV_635:
/*
* The MAC address for the on-board Ethernet of
* the SiS 630 chipset is in the NVRAM. Kick
* the chip into re-loading it from NVRAM, and
* read the MAC address out of the filter registers.
*/
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_CR, CR_RLD);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
RFCR_RFADDR_NODE0);
myea[0] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
0xffff;
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
RFCR_RFADDR_NODE2);
myea[1] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
0xffff;
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_RFCR,
RFCR_RFADDR_NODE4);
myea[2] = bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_RFDR) &
0xffff;
break;
case SIS_REV_960:
{
#define SIS_SET_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) | (y))
#define SIS_CLR_EROMAR(x,y) bus_space_write_4(x->sc_st, x->sc_sh, SIP_EROMAR, \
bus_space_read_4(x->sc_st, x->sc_sh, SIP_EROMAR) & ~(y))
int waittime, i;
/* Allow to read EEPROM from LAN. It is shared
* between a 1394 controller and the NIC and each
* time we access it, we need to set SIS_EECMD_REQ.
*/
SIS_SET_EROMAR(sc, EROMAR_REQ);
for (waittime = 0; waittime < 1000; waittime++) { /* 1 ms max */
/* Force EEPROM to idle state. */
/*
* XXX-cube This is ugly. I'll look for docs about it.
*/
SIS_SET_EROMAR(sc, EROMAR_EECS);
sipcom_sis900_eeprom_delay(sc);
for (i = 0; i <= 25; i++) { /* Yes, 26 times. */
SIS_SET_EROMAR(sc, EROMAR_EESK);
sipcom_sis900_eeprom_delay(sc);
SIS_CLR_EROMAR(sc, EROMAR_EESK);
sipcom_sis900_eeprom_delay(sc);
}
SIS_CLR_EROMAR(sc, EROMAR_EECS);
sipcom_sis900_eeprom_delay(sc);
bus_space_write_4(sc->sc_st, sc->sc_sh, SIP_EROMAR, 0);
if (bus_space_read_4(sc->sc_st, sc->sc_sh, SIP_EROMAR) & EROMAR_GNT) {
sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
sizeof(myea) / sizeof(myea[0]), myea);
break;
}
DELAY(1);
}
/*
* Set SIS_EECTL_CLK to high, so a other master
* can operate on the i2c bus.
*/
SIS_SET_EROMAR(sc, EROMAR_EESK);
/* Refuse EEPROM access by LAN */
SIS_SET_EROMAR(sc, EROMAR_DONE);
} break;
default:
sipcom_read_eeprom(sc, SIP_EEPROM_ETHERNET_ID0 >> 1,
sizeof(myea) / sizeof(myea[0]), myea);
}
enaddr[0] = myea[0] & 0xff;
enaddr[1] = myea[0] >> 8;
enaddr[2] = myea[1] & 0xff;
enaddr[3] = myea[1] >> 8;
enaddr[4] = myea[2] & 0xff;
enaddr[5] = myea[2] >> 8;
}
/* Table and macro to bit-reverse an octet. */
static const u_int8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
#define bbr(v) ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])
static void
sipcom_dp83815_read_macaddr(struct sip_softc *sc,
const struct pci_attach_args *pa, u_int8_t *enaddr)
{
u_int16_t eeprom_data[SIP_DP83815_EEPROM_LENGTH / 2], *ea;
u_int8_t cksum, *e, match;
int i;
sipcom_read_eeprom(sc, 0, sizeof(eeprom_data) /
sizeof(eeprom_data[0]), eeprom_data);
match = eeprom_data[SIP_DP83815_EEPROM_CHECKSUM/2] >> 8;
match = ~(match - 1);
cksum = 0x55;
e = (u_int8_t *) eeprom_data;
for (i=0 ; i<SIP_DP83815_EEPROM_CHECKSUM ; i++) {
cksum += *e++;
}
if (cksum != match) {
printf("%s: Checksum (%x) mismatch (%x)",
device_xname(sc->sc_dev), cksum, match);
}
/*
* Unrolled because it makes slightly more sense this way.
* The DP83815 stores the MAC address in bit 0 of word 6
* through bit 15 of word 8.
*/
ea = &eeprom_data[6];
enaddr[0] = ((*ea & 0x1) << 7);
ea++;
enaddr[0] |= ((*ea & 0xFE00) >> 9);
enaddr[1] = ((*ea & 0x1FE) >> 1);
enaddr[2] = ((*ea & 0x1) << 7);
ea++;
enaddr[2] |= ((*ea & 0xFE00) >> 9);
enaddr[3] = ((*ea & 0x1FE) >> 1);
enaddr[4] = ((*ea & 0x1) << 7);
ea++;
enaddr[4] |= ((*ea & 0xFE00) >> 9);
enaddr[5] = ((*ea & 0x1FE) >> 1);
/*
* In case that's not weird enough, we also need to reverse
* the bits in each byte. This all actually makes more sense
* if you think about the EEPROM storage as an array of bits
* being shifted into bytes, but that's not how we're looking
* at it here...
*/
for (i = 0; i < 6 ;i++)
enaddr[i] = bbr(enaddr[i]);
}
/*
* sip_mediastatus: [ifmedia interface function]
*
* Get the current interface media status.
*/
static void
sipcom_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct sip_softc *sc = ifp->if_softc;
if (!device_is_active(sc->sc_dev)) {
ifmr->ifm_active = IFM_ETHER | IFM_NONE;
ifmr->ifm_status = 0;
return;
}
ether_mediastatus(ifp, ifmr);
ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK) |
sc->sc_flowflags;
}