NetBSD/external/bsd/pdisk/dist/ATA_media.c
2013-03-23 15:39:43 +00:00

1241 lines
29 KiB
C

/*
* ATA_media.c -
*
* Written by Eryk Vershen
*/
/*
* Copyright 1997,1998 by Apple Computer, Inc.
* All Rights Reserved
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appears in all copies and
* that both the copyright notice and this permission notice appear in
* supporting documentation.
*
* APPLE COMPUTER DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL APPLE COMPUTER BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
* NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
// for printf()
#include <stdio.h>
// for malloc() & free()
#include <stdlib.h>
#include <ATA.h>
// for SCSI command structures
#include "MacSCSICommand.h"
#include "ATA_media.h"
#include "util.h"
/*
* Defines
*/
#define RESULT_OFFSET(type) \
((sizeof(type) == 1) ? 3 : ((sizeof(type) == 2) ? 1 : 0))
#define TBTrapTableAddress(trapNum) (((trapNum & 0x03FF) << 2) + 0xE00)
#define SWAP_SHORTS(x) ((((x) & 0xFFFF) << 16) | (((x) >> 16) & 0xFFFF))
#define LBA_CAPABLE 0x0200
/*
* Types
*/
typedef struct ATA_info *ATA_INFO;
struct ATA_info {
long lba;
long heads;
long sectors;
};
typedef struct ATA_media *ATA_MEDIA;
struct ATA_media {
struct media m;
long id;
struct ATA_info info;
};
struct ATA_manager {
long exists;
long kind;
struct {
char major;
char minor;
} version;
short busCount;
long *bus_list;
};
typedef struct ATA_media_iterator *ATA_MEDIA_ITERATOR;
struct ATA_media_iterator {
struct media_iterator m;
long bus_index;
long bus;
long id;
};
struct ATA_identify_drive_info { /* word */
uint16_t config_bits; /* 0 */
uint16_t num_cylinders; /* 1 */
uint16_t reserved2; /* 2 */
uint16_t num_heads; /* 3 */
uint16_t bytes_per_track; /* 4 */
uint16_t bytes_per_sector; /* 5 */
uint16_t sectors_per_track; /* 6 */
uint16_t vendor7[3]; /* 7-9 */
char serial_number[20]; /* 10-19 */
uint16_t buffer_type; /* 20 */
uint16_t buffer_size; /* 21 */
uint16_t num_of_ecc_bytes; /* 22 */
char firmware_rev[8]; /* 23-26 */
char model_number[40]; /* 27-46 */
uint16_t word47; /* 47 */
uint16_t double_word_io; /* 48 */
uint16_t capabilities; /* 49 */
uint16_t reserved50; /* 50 */
uint16_t pio_timing; /* 51 */
uint16_t dma_timing; /* 52 */
uint16_t current_is_valid; /* 53 */
uint16_t cur_cylinders; /* 54 */
uint16_t cur_heads; /* 55 */
uint16_t cur_sec_per_track; /* 56 */
uint32_t total_sectors; /* 57-58 */
uint16_t multiple_sectors; /* 59 */
uint32_t lba_sectors; /* 60-61 */
uint16_t singleword_dma; /* 62 */
uint16_t multiword_dma; /* 63 */
uint16_t reserved64[64]; /* 64-127 */
uint16_t vendor128[32]; /* 128-159 */
uint16_t reserved160[96]; /* 160-255 */
};
struct ATAPI_identify_drive_info { /* word */
uint16_t config_bits; /* 0 */
uint16_t retired1[9]; /* 1-9 */
char serial_number[20]; /* 10-19 */
uint16_t retired20[3]; /* 20-22 */
char firmware_rev[8]; /* 23-26 */
char model_number[40]; /* 27-46 */
uint16_t retired47[2]; /* 47-48 */
uint16_t capabilities; /* 49 */
uint16_t reserved50; /* 50 */
uint16_t pio_timing; /* 51 */
uint16_t dma_timing; /* 52 */
uint16_t current_is_valid; /* 53 */
uint16_t retired54[8]; /* 54-61 */
uint16_t singleword_dma; /* 62 */
uint16_t multiword_dma; /* 63 */
uint16_t pio_transfer; /* 64 */
uint16_t min_cycle_time; /* 65 */
uint16_t rec_cycle_time; /* 66 */
uint16_t min_wo_flow; /* 67 */
uint16_t min_with_flow; /* 68 */
uint16_t reserved69[2]; /* 69-70 */
uint16_t release_over; /* 71 */
uint16_t release_service; /* 72 */
uint16_t major_rev; /* 73 */
uint16_t minor_rev; /* 74 */
uint16_t reserved75[53]; /* 75-127 */
uint16_t vendor128[32]; /* 128-159 */
uint16_t reserved160[96]; /* 160-255 */
};
/* Identifies the bus protocol type. */
enum {
kDevUnknown = 0,
kDevATA = 1,
kDevATAPI = 2,
kDevPCMCIA = 3
};
/*
* Global Constants
*/
enum {
kNoDevice = 0x00FF,
kATAtimeout = 3000,
kATAcmdATAPIPacket = 0x00A0 /* ATAPI packet command */
};
/*
* Global Variables
*/
static long ata_inited = 0;
static struct ATA_manager ata_mgr;
/*
* Forward declarations
*/
int ATAManagerPresent(void);
int ATAHardwarePresent(void);
pascal SInt16 ataManager(ataPB *pb);
void ata_init(void);
ATA_MEDIA new_ata_media(void);
long read_ata_media(MEDIA m, long long offset, uint32_t count, void *address);
long write_ata_media(MEDIA m, long long offset, uint32_t count, void *address);
long close_ata_media(MEDIA m);
long os_reload_ata_media(MEDIA m);
long compute_id(long bus, long device);
pascal SInt16 ataManager(ataPB *pb);
int ATA_ReadBlock(UInt32 deviceID, ATA_INFO info, UInt32 block_size, UInt32 block, UInt8 *address);
int ATA_WriteBlock(UInt32 deviceID, ATA_INFO info, UInt32 block_size, UInt32 block, UInt8 *address);
long get_info(long id, struct ATA_identify_drive_info *ip);
long get_pi_info(long id, struct ATAPI_identify_drive_info *ip);
long is_atapi(long id);
long read_atapi_media(MEDIA m, long long offset, uint32_t count, void *address);
long write_atapi_media(MEDIA m, long long offset, uint32_t count, void *address);
int ATAPI_ReadBlock(UInt32 deviceID, UInt32 block_size, UInt32 block, UInt8 *address);
int ATAPI_TestUnitReady(UInt32 deviceID);
int ATAPI_ReadCapacity(UInt32 deviceID, uint32_t *block_size, uint32_t *blocks);
ATA_MEDIA_ITERATOR new_ata_iterator(void);
void reset_ata_iterator(MEDIA_ITERATOR m);
char *step_ata_iterator(MEDIA_ITERATOR m);
void delete_ata_iterator(MEDIA_ITERATOR m);
int ata_bus_present(int num);
/*
* Routines
*/
#if GENERATINGPOWERPC
pascal SInt16
ataManager(ataPB *pb)
{
#ifdef applec
#if sizeof(SInt16) > 4
#error "Result types larger than 4 bytes are not supported."
#endif
#endif
long private_result;
private_result = CallUniversalProc(
*(UniversalProcPtr*)TBTrapTableAddress(0xAAF1),
kPascalStackBased
| RESULT_SIZE(SIZE_CODE(sizeof(SInt16)))
| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(pb))),
pb);
return *(((SInt16*)&private_result) + RESULT_OFFSET(SInt16));
}
#endif
int
ATAHardwarePresent(void)
{
UInt16 configFlags;
// Hardware configuration flags
configFlags = LMGetHWCfgFlags();
return ((configFlags & 0x0080) != 0);
}
int
ATAManagerPresent(void)
{
if (ATAHardwarePresent()) {
return (TrapAvailable(kATATrap));
} else {
return 0;
}
}
void
ata_init(void)
{
ataMgrInquiry pb;
OSErr status;
int i;
int j;
if (ata_inited != 0) {
return;
}
ata_inited = 1;
if (ATAManagerPresent() == 0) {
ata_mgr.exists = 0;
return;
}
ata_mgr.exists = 1;
ata_mgr.kind = allocate_media_kind();
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrManagerInquiry;
pb.ataPBVers = kATAPBVers1;
status = ataManager((ataPB*) &pb );
if (status != noErr) {
ata_mgr.exists = 0;
return;
}
ata_mgr.version.major = pb.ataMgrVersion.majorRev;
ata_mgr.version.minor = pb.ataMgrVersion.minorAndBugRev >> 4;
ata_mgr.busCount = pb.ataBusCnt;
ata_mgr.bus_list = (long *) calloc(ata_mgr.busCount, sizeof(long));
if (ata_mgr.bus_list == 0) {
ata_mgr.busCount = 0;
} else {
for (i = 0, j = 0; j < ata_mgr.busCount; i++) {
if (ata_bus_present(i)) {
ata_mgr.bus_list[j] = i;
j++;
}
}
}
}
int
ata_bus_present(int num)
{
ataBusInquiry pb;
OSErr status;
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrBusInquiry;
pb.ataPBVers = kATAPBVers1;
pb.ataPBDeviceID = num;
status = ataManager((ataPB*) &pb );
if (status == noErr) {
return 1;
} else {
//printf("status = %d\n", status);
return 0;
}
}
ATA_MEDIA
new_ata_media(void)
{
return (ATA_MEDIA) new_media(sizeof(struct ATA_media));
}
#pragma mark -
long
compute_id(long bus, long device)
{
long id;
int i;
id = -1;
for (i = 0; i < ata_mgr.busCount; i++) {
if (bus == ata_mgr.bus_list[i]) {
break;
}
}
if (i >= ata_mgr.busCount) {
/* bad bus id */
} else if (ata_mgr.version.major < 3) {
if (device != 0) {
/* bad device id */
} else {
id = bus & 0xFF;
}
} else {
if (device < 0 || device > 1) {
/* bad device id */
} else {
id = ((device & 0xFF) << 8) | (bus & 0xFF);
}
}
return id;
}
static long
get_info(long id, struct ATA_identify_drive_info *ip)
{
ataIdentify pb;
ataDevConfiguration pb2;
OSErr status;
long rtn_value;
long atapi;
if (sizeof(struct ATA_identify_drive_info) < 512) {
return 0;
}
clear_memory((void *)ip, sizeof(struct ATA_identify_drive_info));
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrDriveIdentify;
pb.ataPBVers = kATAPBVers1;
pb.ataPBDeviceID = id;
pb.ataPBFlags = mATAFlagIORead | mATAFlagByteSwap;
pb.ataPBTimeOut = kATAtimeout;
pb.ataPBBuffer = (void*) ip;
status = ataManager((ataPB*) &pb );
if (status != noErr) {
//printf("get info status = %d\n", status);
rtn_value = 0;
} else {
ip->total_sectors = SWAP_SHORTS(ip->total_sectors);
ip->lba_sectors = SWAP_SHORTS(ip->lba_sectors);
rtn_value = 1;
}
return rtn_value;
}
static long
is_atapi(long id)
{
ataDevConfiguration pb;
OSErr status;
long atapi;
atapi = 0;
if (ata_mgr.version.major >= 2) {
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrGetDrvConfiguration;
pb.ataPBVers = kATAPBVers2;
pb.ataPBDeviceID = id;
pb.ataPBTimeOut = kATAtimeout;
status = ataManager((ataPB*) &pb );
if (status != noErr) {
//printf("is atatpi status = %d\n", status);
} else if (pb.ataDeviceType == kDevATAPI) {
atapi = 1;
/* the drive can be asleep or something in which case this doesn't work */
/* how do we do reads */
}
}
return atapi;
}
MEDIA
open_ata_as_media(long bus, long device)
{
ATA_MEDIA a;
long id;
struct ATA_identify_drive_info info;
uint8_t *buf;
uint32_t total;
if (ata_inited == 0) {
ata_init();
}
if (ata_mgr.exists == 0) {
//printf("ATA manager does not exist\n");
return 0;
}
id = compute_id(bus, device);
if (id < 0) {
return 0;
} else if (is_atapi(id)) {
a = (ATA_MEDIA) open_atapi_as_media(bus, device);
} else {
a = 0;
if (get_info(id, &info) != 0) {
a = new_ata_media();
if (a != 0) {
a->m.kind = ata_mgr.kind;
if ((info.capabilities & LBA_CAPABLE) != 0) {
total = info.lba_sectors;
a->info.lba = 1;
a->info.heads = 0;
a->info.sectors = 0;
} else {
/* Only CHS - Cylinder Head Sector addressing */
total = info.total_sectors;
a->info.lba = 0;
a->info.heads = info.cur_heads;
a->info.sectors = info.cur_sec_per_track;
}
{ /* XXX this should be a loop in a subroutine */
buf = malloc(2048);
if (ATA_ReadBlock(id, &a->info, 512, 0, buf)) {
a->m.grain = 512;
} else if (ATA_ReadBlock(id, &a->info, 1024, 0, buf)) {
a->m.grain = 1024;
} else if (ATA_ReadBlock(id, &a->info, 2048, 0, buf)) {
a->m.grain = 2048;
} else {
a->m.grain = 512; /* XXX should really return failure here */
}
free(buf);
}
if (total == 0) {
a->m.size_in_bytes = ((long long)1000) * a->m.grain; /* XXX not right */
} else {
a->m.size_in_bytes = ((long long)total) * a->m.grain;
}
a->m.do_read = read_ata_media;
a->m.do_write = write_ata_media;
a->m.do_close = close_ata_media;
a->m.do_os_reload = os_reload_ata_media;
a->id = id;
}
} else {
printf("ATA - couldn't get info\n");
}
}
return (MEDIA) a;
}
long
read_ata_media(MEDIA m, long long offset, uint32_t count, void *address)
{
ATA_MEDIA a;
ataIOPB pb;
OSErr status;
long rtn_value;
long block;
long block_count;
long block_size;
uint8_t *buffer;
int i;
a = (ATA_MEDIA) m;
rtn_value = 0;
if (a == 0) {
/* no media */
} else if (a->m.kind != ata_mgr.kind) {
/* wrong kind - XXX need to error here - this is an internal problem */
} else if (count <= 0 || count % a->m.grain != 0) {
/* can't handle size */
} else if (offset < 0 || offset % a->m.grain != 0) {
/* can't handle offset */
} else if (offset + count > a->m.size_in_bytes) {
/* check for offset (and offset+count) too large */
} else {
/* do a read on the physical device */
block_size = a->m.grain;
block = offset / block_size;
block_count = count / block_size;
buffer = address;
rtn_value = 1;
for (i = 0; i < block_count; i++) {
if (ATA_ReadBlock(a->id, &a->info, block_size, block, buffer) == 0) {
rtn_value = 0;
break;
}
buffer += block_size;
block += 1;
}
}
return rtn_value;
}
long
write_ata_media(MEDIA m, long long offset, uint32_t count, void *address)
{
ATA_MEDIA a;
long rtn_value;
long block;
long block_count;
long block_size;
uint8_t *buffer;
int i;
a = (ATA_MEDIA) m;
rtn_value = 0;
if (a == 0) {
/* no media */
} else if (a->m.kind != ata_mgr.kind) {
/* XXX need to error here - this is an internal problem */
} else if (count <= 0 || count % a->m.grain != 0) {
/* can't handle size */
} else if (offset < 0 || offset % a->m.grain != 0) {
/* can't handle offset */
} else if (offset + count > a->m.size_in_bytes) {
/* check for offset (and offset+count) too large */
} else {
/* do a write on the physical device */
block_size = a->m.grain;
block = offset / block_size;
block_count = count / block_size;
buffer = address;
rtn_value = 1;
for (i = 0; i < block_count; i++) {
if (ATA_WriteBlock(a->id, &a->info, block_size, block, buffer) == 0) {
rtn_value = 0;
break;
}
buffer += block_size;
block += 1;
}
}
return rtn_value;
}
long
close_ata_media(MEDIA m)
{
ATA_MEDIA a;
a = (ATA_MEDIA) m;
if (a == 0) {
return 0;
} else if (a->m.kind != ata_mgr.kind) {
/* XXX need to error here - this is an internal problem */
return 0;
}
/* XXX nothing to do - I think? */
return 1;
}
long
os_reload_ata_media(MEDIA m)
{
printf("Reboot your system so the partition table will be reread.\n");
return 1;
}
int
ATA_ReadBlock(UInt32 deviceID, ATA_INFO info, UInt32 block_size, UInt32 block, UInt8 *address)
{
ataIOPB pb;
OSErr status;
long slave;
long lba, cyl, head, sector;
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrExecIO;
pb.ataPBVers = kATAPBVers1;
pb.ataPBDeviceID = deviceID;
pb.ataPBFlags = mATAFlagTFRead | mATAFlagIORead ;
pb.ataPBTimeOut = kATAtimeout;
pb.ataPBLogicalBlockSize = block_size;
pb.ataPBBuffer = address;
pb.ataPBByteCount = block_size;
if (info->lba) {
lba = 0x40;
sector = block & 0xFF;
head = (block >> 24) & 0xF;
cyl = (block >> 8) & 0xFFFF;
} else {
lba = 0x00;
sector = (block % info->sectors) + 1;
cyl = block / info->sectors;
head = cyl % info->heads;
cyl = cyl / info->heads;
}
pb.ataPBTaskFile.ataTFCount = 1;
pb.ataPBTaskFile.ataTFSector = sector;
pb.ataPBTaskFile.ataTFCylinder = cyl;
if (deviceID & 0x0FF00) {
slave = 0x10;
} else {
slave = 0x0;
}
/* std | L/C | Drive | head */
pb.ataPBTaskFile.ataTFSDH = 0xA0 | lba | slave | head;
pb.ataPBTaskFile.ataTFCommand = kATAcmdRead;
status = ataManager((ataPB*) &pb );
if (status != noErr) {
/* failure */
//printf(" ATA read status = %d\n", status);
return 0;
} else {
return 1;
}
}
int
ATA_WriteBlock(UInt32 deviceID, ATA_INFO info, UInt32 block_size, UInt32 block, UInt8 *address)
{
ataIOPB pb;
OSErr status;
long slave;
long lba, cyl, head, sector;
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrExecIO;
pb.ataPBVers = kATAPBVers1;
pb.ataPBDeviceID = deviceID;
pb.ataPBFlags = mATAFlagTFRead | mATAFlagIOWrite ;
pb.ataPBTimeOut = kATAtimeout;
pb.ataPBLogicalBlockSize = block_size;
pb.ataPBBuffer = address;
pb.ataPBByteCount = block_size;
if (info->lba) {
lba = 0x40;
sector = block & 0xFF;
head = (block >> 24) & 0xF;
cyl = (block >> 8) & 0xFFFF;
} else {
lba = 0x00;
sector = (block % info->sectors) + 1;
cyl = block / info->sectors;
head = cyl % info->heads;
cyl = cyl / info->heads;
}
pb.ataPBTaskFile.ataTFCount = 1;
pb.ataPBTaskFile.ataTFSector = sector;
pb.ataPBTaskFile.ataTFCylinder = cyl;
if (deviceID & 0x0FF00) {
slave = 0x10;
} else {
slave = 0x0;
}
/* std | L/C | Drive | head */
pb.ataPBTaskFile.ataTFSDH = 0xA0 | lba | slave | head;
pb.ataPBTaskFile.ataTFCommand = kATAcmdWrite;
status = ataManager((ataPB*) &pb );
if (status != noErr) {
/* failure */
return 0;
} else {
return 1;
}
}
#pragma mark -
/*
* ATAPI stuff
*/
static long
get_pi_info(long id, struct ATAPI_identify_drive_info *ip)
{
ataIdentify pb;
OSErr status;
long rtn_value;
if (sizeof(struct ATAPI_identify_drive_info) < 512) {
return 0;
}
clear_memory((void *)ip, sizeof(struct ATAPI_identify_drive_info));
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrDriveIdentify;
pb.ataPBVers = kATAPBVers1;
pb.ataPBDeviceID = id;
pb.ataPBFlags = mATAFlagIORead | mATAFlagByteSwap | mATAFlagProtocol1;
pb.ataPBTimeOut = kATAtimeout;
pb.ataPBBuffer = (void*) ip;
status = ataManager((ataPB*) &pb );
if (status != noErr) {
//printf("get pi info status = %d\n", status);
rtn_value = 0;
} else {
rtn_value = 1;
}
return rtn_value;
}
MEDIA
open_atapi_as_media(long bus, long device)
{
ATA_MEDIA a;
long id;
struct ATAPI_identify_drive_info info;
uint8_t *buf;
uint32_t block_size;
uint32_t blocks;
if (ata_inited == 0) {
ata_init();
}
if (ata_mgr.exists == 0) {
return 0;
}
id = compute_id(bus, device);
if (!is_atapi(id)) {
a = 0;
} else {
a = 0;
if (get_pi_info(id, &info) != 0
&& (info.capabilities & LBA_CAPABLE) != 0) {
if (ATAPI_TestUnitReady(id) != 0) {
a = new_ata_media();
if (a != 0) {
a->m.kind = ata_mgr.kind;
if (ATAPI_ReadCapacity(id, &block_size, &blocks) == 0) {
block_size = 2048;
blocks = 1000;
}
a->m.grain = block_size;
a->m.size_in_bytes = ((long long)blocks) * a->m.grain;
a->m.do_read = read_atapi_media;
a->m.do_write = write_atapi_media;
a->m.do_close = close_ata_media;
a->m.do_os_reload = os_reload_ata_media;
a->id = id;
}
} else {
printf("ATAPI - unit not ready\n");
}
} else {
printf("ATAPI - couldn't get info or not LBA capable\n");
}
}
return (MEDIA) a;
}
long
read_atapi_media(MEDIA m, long long offset, uint32_t count, void *address)
{
ATA_MEDIA a;
ataIOPB pb;
OSErr status;
long rtn_value;
long block;
long block_count;
long block_size;
uint8_t *buffer;
int i;
a = (ATA_MEDIA) m;
rtn_value = 0;
if (a == 0) {
/* no media */
} else if (a->m.kind != ata_mgr.kind) {
/* wrong kind - XXX need to error here - this is an internal problem */
} else if (count <= 0 || count % a->m.grain != 0) {
/* can't handle size */
} else if (offset < 0 || offset % a->m.grain != 0) {
/* can't handle offset */
} else if (offset + count > a->m.size_in_bytes) {
/* check for offset (and offset+count) too large */
} else {
/* XXX do a read on the physical device */
block_size = a->m.grain;
block = offset / block_size;
block_count = count / block_size;
buffer = address;
rtn_value = 1;
for (i = 0; i < block_count; i++) {
if (ATAPI_ReadBlock(a->id, block_size, block, buffer) == 0) {
rtn_value = 0;
break;
}
buffer += block_size;
block += 1;
}
}
return rtn_value;
}
long
write_atapi_media(MEDIA m, long long offset, uint32_t count, void *address)
{
return 0;
}
int
ATAPI_ReadBlock(UInt32 deviceID, UInt32 block_size, UInt32 block, UInt8 *address)
{
ataIOPB pb;
OSErr status;
long slave;
ATAPICmdPacket cmdPacket;
SCSI_10_Byte_Command *gRead;
long count;
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrExecIO;
pb.ataPBVers = kATAPBVers1;
pb.ataPBDeviceID = deviceID;
pb.ataPBFlags = mATAFlagTFRead | mATAFlagIORead | mATAFlagProtocol1;
pb.ataPBTimeOut = kATAtimeout;
pb.ataPBBuffer = address;
pb.ataPBByteCount = block_size;
pb.ataPBTaskFile.ataTFCylinder = block_size;
if (deviceID & 0x0FF00) {
slave = 0x10;
} else {
slave = 0x0;
}
/* std | L/C | Drive | head */
pb.ataPBTaskFile.ataTFSDH = 0xA0 | 0x40 | slave;
pb.ataPBTaskFile.ataTFCommand = kATAcmdATAPIPacket;
pb.ataPBPacketPtr = &cmdPacket;
cmdPacket.atapiPacketSize = 16;
clear_memory((void *)&cmdPacket.atapiCommandByte, 16);
gRead = (SCSI_10_Byte_Command *) &cmdPacket.atapiCommandByte[0];
gRead->opcode = kScsiCmdRead10;
gRead->lbn4 = (block >> 24) & 0xFF;
gRead->lbn3 = (block >> 16) & 0xFF;
gRead->lbn2 = (block >> 8) & 0xFF;
gRead->lbn1 = block & 0xFF;
count = 1;
gRead->len2 = (count >> 8) & 0xFF;
gRead->len1 = count & 0xFF;
status = ataManager((ataPB*) &pb );
if (status != noErr) {
/* failure */
//printf("ATAPI read status = %d\n", status);
return 0;
} else {
return 1;
}
}
int
ATAPI_TestUnitReady(UInt32 deviceID)
{
ataIOPB pb;
OSErr status;
long slave;
ATAPICmdPacket cmdPacket;
SCSI_10_Byte_Command *gTestUnit;
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrExecIO;
pb.ataPBVers = kATAPBVers1;
pb.ataPBDeviceID = deviceID;
pb.ataPBFlags = mATAFlagTFRead | mATAFlagIORead | mATAFlagProtocol1;
pb.ataPBTimeOut = kATAtimeout;
if (deviceID & 0x0FF00) {
slave = 0x10;
} else {
slave = 0x0;
}
/* std | L/C | Drive | head */
pb.ataPBTaskFile.ataTFSDH = 0xA0 | 0x40 | slave;
pb.ataPBTaskFile.ataTFCommand = kATAcmdATAPIPacket;
pb.ataPBPacketPtr = &cmdPacket;
cmdPacket.atapiPacketSize = 16;
clear_memory((void *)&cmdPacket.atapiCommandByte, 16);
gTestUnit = (SCSI_10_Byte_Command *) &cmdPacket.atapiCommandByte[0];
gTestUnit->opcode = kScsiCmdTestUnitReady;
status = ataManager((ataPB*) &pb );
if (status != noErr) {
/* failure */
//printf("ATAPI test unit ready status = %d\n", status);
return 0;
} else {
return 1;
}
}
int
ATAPI_ReadCapacity(UInt32 deviceID, uint32_t *block_size, uint32_t *blocks)
{
ataIOPB pb;
OSErr status;
long slave;
ATAPICmdPacket cmdPacket;
SCSI_10_Byte_Command *gReadCap;
struct read_cap_data {
long addr;
long size;
} rcd;
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrExecIO;
pb.ataPBVers = kATAPBVers1;
pb.ataPBDeviceID = deviceID;
pb.ataPBFlags = mATAFlagTFRead | mATAFlagIORead | mATAFlagProtocol1;
pb.ataPBTimeOut = kATAtimeout;
pb.ataPBBuffer = (uint8_t *)&rcd;
pb.ataPBByteCount = 8;
pb.ataPBTaskFile.ataTFCylinder = 8;
if (deviceID & 0x0FF00) {
slave = 0x10;
} else {
slave = 0x0;
}
/* std | L/C | Drive | head */
pb.ataPBTaskFile.ataTFSDH = 0xA0 | 0x40 | slave;
pb.ataPBTaskFile.ataTFCommand = kATAcmdATAPIPacket;
pb.ataPBPacketPtr = &cmdPacket;
cmdPacket.atapiPacketSize = 16;
clear_memory((void *)&cmdPacket.atapiCommandByte, 16);
gReadCap = (SCSI_10_Byte_Command *) &cmdPacket.atapiCommandByte[0];
gReadCap->opcode = kScsiCmdReadCapacity;
status = ataManager((ataPB*) &pb );
if (status != noErr) {
/* failure */
//printf("ATAPI read capacity status = %d\n", status);
return 0;
} else {
*blocks = rcd.addr;
*block_size = rcd.size;
return 1;
}
}
MEDIA
ATA_FindDevice(long dRefNum)
{
ataDrvrRegister pb;
OSErr status;
if (ATAManagerPresent()) {
clear_memory((void *)&pb, sizeof(pb));
pb.ataPBFunctionCode = kATAMgrFindDriverRefnum;
pb.ataPBVers = kATAPBVers1;
pb.ataPBDeviceID = 0xFFFF;
pb.ataPBTimeOut = kATAtimeout;
pb.ataDeviceNextID = 1;
do {
status = ataManager((ataPB*) &pb);
if (status != noErr) {
break;
} else if (pb.ataDrvrRefNum == dRefNum
&& pb.ataPBDeviceID != kNoDevice) {
return open_ata_as_media(pb.ataPBDeviceID & 0xFF,
(pb.ataPBDeviceID >> 8) & 0xFF);
} else {
pb.ataPBDeviceID = pb.ataDeviceNextID;
}
} while (pb.ataPBDeviceID != kNoDevice);
}
return 0;
}
#pragma mark -
ATA_MEDIA_ITERATOR
new_ata_iterator(void)
{
return (ATA_MEDIA_ITERATOR) new_media_iterator(sizeof(struct ATA_media_iterator));
}
MEDIA_ITERATOR
create_ata_iterator(void)
{
ATA_MEDIA_ITERATOR a;
if (ata_inited == 0) {
ata_init();
}
if (ata_mgr.exists == 0) {
return 0;
}
a = new_ata_iterator();
if (a != 0) {
a->m.kind = ata_mgr.kind;
a->m.state = kInit;
a->m.do_reset = reset_ata_iterator;
a->m.do_step = step_ata_iterator;
a->m.do_delete = delete_ata_iterator;
a->bus_index = 0;
a->bus = 0;
a->id = 0;
}
return (MEDIA_ITERATOR) a;
}
void
reset_ata_iterator(MEDIA_ITERATOR m)
{
ATA_MEDIA_ITERATOR a;
a = (ATA_MEDIA_ITERATOR) m;
if (a == 0) {
/* no media */
} else if (a->m.kind != ata_mgr.kind) {
/* wrong kind - XXX need to error here - this is an internal problem */
} else if (a->m.state != kInit) {
a->m.state = kReset;
}
}
char *
step_ata_iterator(MEDIA_ITERATOR m)
{
ATA_MEDIA_ITERATOR a;
char *result;
a = (ATA_MEDIA_ITERATOR) m;
if (a == 0) {
/* no media */
} else if (a->m.kind != ata_mgr.kind) {
/* wrong kind - XXX need to error here - this is an internal problem */
} else {
switch (a->m.state) {
case kInit:
/* find # of buses (done in ata_init) */
a->m.state = kReset;
/* fall through to reset */
case kReset:
a->bus_index = 0 /* low bus id */;
a->bus = ata_mgr.bus_list[a->bus_index];
a->id = 0 /* low device id */;
a->m.state = kIterating;
/* fall through to iterate */
case kIterating:
while (1) {
if (a->bus_index >= ata_mgr.busCount/* max bus id */) {
break;
}
if (a->id > 1 /*max id for bus */) {
a->bus_index += 1;
a->bus = ata_mgr.bus_list[a->bus_index];
a->id = 0 /* low device id */;
continue; /* try again */
}
if (a->bus > 9) {
// insure that name creation works
break;
}
/* generate result */
result = (char *) malloc(20);
if (result != NULL) {
snprintf(result, 20, "/dev/ata%c.%c",
'0'+a->bus, '0'+a->id);
}
a->id += 1; /* next id */
return result;
}
a->m.state = kEnd;
/* fall through to end */
case kEnd:
default:
break;
}
}
return 0 /* no entry */;
}
void
delete_ata_iterator(MEDIA_ITERATOR m)
{
return;
}
#pragma mark -
#ifdef notdef
MEDIA
open_linux_ata_as_media(long index)
{
long bus;
long id;
long i;
i = index / 2;
if (i >= ata_mgr.busCount) {
// set bogus id
bus = 0;
id = 2;
} else {
bus = ata_mgr.bus_list[index / 2];
id = index % 2;
}
return open_ata_as_media(bus, id);
}
#else
MEDIA
open_linux_ata_as_media(long index)
{
long bus;
long id;
bus = index / 2;
id = index % 2;
return open_ata_as_media(bus, id);
}
#endif
char *
linux_ata_name(long bus, long id)
{
char *result;
if (bus >= 13) {
// a bus >= 13 would be a bogus character
return NULL;
}
result = (char *) malloc(20);
if (result != NULL) {
/* name is hda, hdb, hdc, hdd, ...
* in order (0,0) (0,1) (1,0) (1,1) ...
*/
snprintf(result, 20, "/dev/hd%c", 'a' + (bus*2 + id));
}
return result;
}