NetBSD/sys/opencrypto/cryptosoft.c

1445 lines
34 KiB
C

/* $NetBSD: cryptosoft.c,v 1.56 2020/06/29 23:34:48 riastradh Exp $ */
/* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $ */
/* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
/*
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.56 2020/06/29 23:34:48 riastradh Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/cprng.h>
#include <sys/module.h>
#include <sys/device.h>
#ifdef _KERNEL_OPT
#include "opt_ocf.h"
#endif
#include <opencrypto/cryptodev.h>
#include <opencrypto/cryptosoft.h>
#include <opencrypto/xform.h>
#include <opencrypto/cryptosoft_xform.c>
#include "ioconf.h"
union authctx {
MD5_CTX md5ctx;
SHA1_CTX sha1ctx;
RMD160_CTX rmd160ctx;
SHA256_CTX sha256ctx;
SHA384_CTX sha384ctx;
SHA512_CTX sha512ctx;
aesxcbc_ctx aesxcbcctx;
AES_GMAC_CTX aesgmacctx;
};
struct swcr_data **swcr_sessions = NULL;
u_int32_t swcr_sesnum = 0;
int32_t swcr_id = -1;
#define COPYBACK(x, a, b, c, d) \
(x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
: cuio_copyback((struct uio *)a,b,c,d)
#define COPYDATA(x, a, b, c, d) \
(x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
: cuio_copydata((struct uio *)a,b,c,d)
static int swcr_encdec(struct cryptodesc *, const struct swcr_data *, void *, int);
static int swcr_compdec(struct cryptodesc *, const struct swcr_data *, void *, int, int *);
static int swcr_combined(struct cryptop *, int);
static int swcr_process(void *, struct cryptop *, int);
static int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
static int swcr_freesession(void *, u_int64_t);
static int swcryptoattach_internal(void);
/*
* Apply a symmetric encryption/decryption algorithm.
*/
static int
swcr_encdec(struct cryptodesc *crd, const struct swcr_data *sw, void *bufv,
int outtype)
{
char *buf = bufv;
unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
const struct swcr_enc_xform *exf;
int i, k, j, blks, ivlen;
int count, ind;
exf = sw->sw_exf;
blks = exf->enc_xform->blocksize;
ivlen = exf->enc_xform->ivsize;
KASSERT(exf->reinit ? ivlen <= blks : ivlen == blks);
/* Check for non-padded data */
if (crd->crd_len % blks)
return EINVAL;
/* Initialize the IV */
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* IV explicitly provided ? */
if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
memcpy(iv, crd->crd_iv, ivlen);
if (exf->reinit)
exf->reinit(sw->sw_kschedule, iv, 0);
} else if (exf->reinit) {
exf->reinit(sw->sw_kschedule, 0, iv);
} else {
cprng_fast(iv, EALG_MAX_BLOCK_LEN);
}
/* Do we need to write the IV */
if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv);
}
} else { /* Decryption */
/* IV explicitly provided ? */
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crd->crd_iv, ivlen);
else {
/* Get IV off buf */
COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv);
}
if (exf->reinit)
exf->reinit(sw->sw_kschedule, iv, 0);
}
ivp = iv;
if (outtype == CRYPTO_BUF_CONTIG) {
if (exf->reinit) {
for (i = crd->crd_skip;
i < crd->crd_skip + crd->crd_len; i += blks) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule, buf + i);
} else {
exf->decrypt(sw->sw_kschedule, buf + i);
}
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
for (i = crd->crd_skip;
i < crd->crd_skip + crd->crd_len; i += blks) {
/* XOR with the IV/previous block, as appropriate. */
if (i == crd->crd_skip)
for (k = 0; k < blks; k++)
buf[i + k] ^= ivp[k];
else
for (k = 0; k < blks; k++)
buf[i + k] ^= buf[i + k - blks];
exf->encrypt(sw->sw_kschedule, buf + i);
}
} else { /* Decrypt */
/*
* Start at the end, so we don't need to keep the encrypted
* block as the IV for the next block.
*/
for (i = crd->crd_skip + crd->crd_len - blks;
i >= crd->crd_skip; i -= blks) {
exf->decrypt(sw->sw_kschedule, buf + i);
/* XOR with the IV/previous block, as appropriate */
if (i == crd->crd_skip)
for (k = 0; k < blks; k++)
buf[i + k] ^= ivp[k];
else
for (k = 0; k < blks; k++)
buf[i + k] ^= buf[i + k - blks];
}
}
return 0;
} else if (outtype == CRYPTO_BUF_MBUF) {
struct mbuf *m = (struct mbuf *) buf;
/* Find beginning of data */
m = m_getptr(m, crd->crd_skip, &k);
if (m == NULL)
return EINVAL;
i = crd->crd_len;
while (i > 0) {
/*
* If there's insufficient data at the end of
* an mbuf, we have to do some copying.
*/
if (m->m_len < k + blks && m->m_len != k) {
m_copydata(m, k, blks, blk);
/* Actual encryption/decryption */
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
blk);
} else {
exf->decrypt(sw->sw_kschedule,
blk);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, blk);
/*
* Keep encrypted block for XOR'ing
* with next block
*/
memcpy(iv, blk, blks);
ivp = iv;
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
* with next block
*/
if (ivp == iv)
memcpy(piv, blk, blks);
else
memcpy(iv, blk, blks);
exf->decrypt(sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
if (ivp == iv)
memcpy(iv, piv, blks);
else
ivp = iv;
}
/* Copy back decrypted block */
m_copyback(m, k, blks, blk);
/* Advance pointer */
m = m_getptr(m, k + blks, &k);
if (m == NULL)
return EINVAL;
i -= blks;
/* Could be done... */
if (i == 0)
break;
}
/* Skip possibly empty mbufs */
if (k == m->m_len) {
for (m = m->m_next; m && m->m_len == 0;
m = m->m_next)
;
k = 0;
}
/* Sanity check */
if (m == NULL)
return EINVAL;
/*
* Warning: idat may point to garbage here, but
* we only use it in the while() loop, only if
* there are indeed enough data.
*/
idat = mtod(m, unsigned char *) + k;
while (m->m_len >= k + blks && i > 0) {
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
idat);
} else {
exf->decrypt(sw->sw_kschedule,
idat);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, idat);
ivp = idat;
} else { /* decrypt */
/*
* Keep encrypted block to be used
* in next block's processing.
*/
if (ivp == iv)
memcpy(piv, idat, blks);
else
memcpy(iv, idat, blks);
exf->decrypt(sw->sw_kschedule, idat);
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
if (ivp == iv)
memcpy(iv, piv, blks);
else
ivp = iv;
}
idat += blks;
k += blks;
i -= blks;
}
}
return 0; /* Done with mbuf encryption/decryption */
} else if (outtype == CRYPTO_BUF_IOV) {
struct uio *uio = (struct uio *) buf;
/* Find beginning of data */
count = crd->crd_skip;
ind = cuio_getptr(uio, count, &k);
if (ind == -1)
return EINVAL;
i = crd->crd_len;
while (i > 0) {
/*
* If there's insufficient data at the end,
* we have to do some copying.
*/
if (uio->uio_iov[ind].iov_len < k + blks &&
uio->uio_iov[ind].iov_len != k) {
cuio_copydata(uio, k, blks, blk);
/* Actual encryption/decryption */
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
blk);
} else {
exf->decrypt(sw->sw_kschedule,
blk);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, blk);
/*
* Keep encrypted block for XOR'ing
* with next block
*/
memcpy(iv, blk, blks);
ivp = iv;
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
* with next block
*/
if (ivp == iv)
memcpy(piv, blk, blks);
else
memcpy(iv, blk, blks);
exf->decrypt(sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
if (ivp == iv)
memcpy(iv, piv, blks);
else
ivp = iv;
}
/* Copy back decrypted block */
cuio_copyback(uio, k, blks, blk);
count += blks;
/* Advance pointer */
ind = cuio_getptr(uio, count, &k);
if (ind == -1)
return (EINVAL);
i -= blks;
/* Could be done... */
if (i == 0)
break;
}
/*
* Warning: idat may point to garbage here, but
* we only use it in the while() loop, only if
* there are indeed enough data.
*/
idat = ((char *)uio->uio_iov[ind].iov_base) + k;
while (uio->uio_iov[ind].iov_len >= k + blks &&
i > 0) {
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
idat);
} else {
exf->decrypt(sw->sw_kschedule,
idat);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, idat);
ivp = idat;
} else { /* decrypt */
/*
* Keep encrypted block to be used
* in next block's processing.
*/
if (ivp == iv)
memcpy(piv, idat, blks);
else
memcpy(iv, idat, blks);
exf->decrypt(sw->sw_kschedule, idat);
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
if (ivp == iv)
memcpy(iv, piv, blks);
else
ivp = iv;
}
idat += blks;
count += blks;
k += blks;
i -= blks;
}
}
return 0; /* Done with mbuf encryption/decryption */
}
/* Unreachable */
return EINVAL;
}
/*
* Compute keyed-hash authenticator.
*/
int
swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
const struct swcr_data *sw, void *buf, int outtype)
{
unsigned char aalg[AALG_MAX_RESULT_LEN];
const struct swcr_auth_hash *axf;
union authctx ctx;
int err;
if (sw->sw_ictx == 0)
return EINVAL;
axf = sw->sw_axf;
memcpy(&ctx, sw->sw_ictx, axf->ctxsize);
switch (outtype) {
case CRYPTO_BUF_CONTIG:
axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
break;
case CRYPTO_BUF_MBUF:
err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
(int (*)(void*, void *, unsigned int))(void *)axf->Update,
(void *) &ctx);
if (err)
return err;
break;
case CRYPTO_BUF_IOV:
err = cuio_apply((struct uio *) buf, crd->crd_skip,
crd->crd_len,
(int (*)(void *, void *, unsigned int))(void *)axf->Update,
(void *) &ctx);
if (err) {
return err;
}
break;
default:
return EINVAL;
}
switch (sw->sw_alg) {
case CRYPTO_MD5_HMAC:
case CRYPTO_MD5_HMAC_96:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA1_HMAC_96:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_RIPEMD160_HMAC_96:
if (sw->sw_octx == NULL)
return EINVAL;
axf->Final(aalg, &ctx);
memcpy(&ctx, sw->sw_octx, axf->ctxsize);
axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
axf->Final(aalg, &ctx);
break;
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
if (sw->sw_octx == NULL)
return EINVAL;
axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
axf->Final(aalg, &ctx);
break;
case CRYPTO_NULL_HMAC:
case CRYPTO_MD5:
case CRYPTO_SHA1:
case CRYPTO_AES_XCBC_MAC_96:
axf->Final(aalg, &ctx);
break;
}
/* Inject the authentication data */
switch (outtype) {
case CRYPTO_BUF_CONTIG:
(void)memcpy((char *)buf + crd->crd_inject, aalg,
axf->auth_hash->authsize);
break;
case CRYPTO_BUF_MBUF:
m_copyback((struct mbuf *) buf, crd->crd_inject,
axf->auth_hash->authsize, aalg);
break;
case CRYPTO_BUF_IOV:
memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
break;
default:
return EINVAL;
}
return 0;
}
/*
* Apply a combined encryption-authentication transformation
*/
static int
swcr_combined(struct cryptop *crp, int outtype)
{
uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
u_char *blk = (u_char *)blkbuf;
u_char aalg[AALG_MAX_RESULT_LEN];
u_char iv[EALG_MAX_BLOCK_LEN];
union authctx ctx;
struct cryptodesc *crd, *crda = NULL, *crde = NULL;
struct swcr_data *sw, *swa, *swe = NULL;
const struct swcr_auth_hash *axf = NULL;
const struct swcr_enc_xform *exf = NULL;
void *buf = (void *)crp->crp_buf;
uint32_t *blkp;
int i, blksz = 0, ivlen = 0, len;
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
for (sw = swcr_sessions[crp->crp_sid & 0xffffffff];
sw && sw->sw_alg != crd->crd_alg;
sw = sw->sw_next)
;
if (sw == NULL)
return (EINVAL);
switch (sw->sw_alg) {
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
swe = sw;
crde = crd;
exf = swe->sw_exf;
ivlen = exf->enc_xform->ivsize;
break;
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
swa = sw;
crda = crd;
axf = swa->sw_axf;
if (swa->sw_ictx == 0)
return (EINVAL);
memcpy(&ctx, swa->sw_ictx, axf->ctxsize);
blksz = axf->auth_hash->blocksize;
break;
default:
return (EINVAL);
}
}
if (crde == NULL || crda == NULL)
return (EINVAL);
if (outtype == CRYPTO_BUF_CONTIG)
return (EINVAL);
/* Initialize the IV */
if (crde->crd_flags & CRD_F_ENCRYPT) {
/* IV explicitly provided ? */
if (crde->crd_flags & CRD_F_IV_EXPLICIT) {
memcpy(iv, crde->crd_iv, ivlen);
if (exf->reinit)
exf->reinit(swe->sw_kschedule, iv, 0);
} else if (exf->reinit)
exf->reinit(swe->sw_kschedule, 0, iv);
else
cprng_fast(iv, ivlen);
/* Do we need to write the IV */
if (!(crde->crd_flags & CRD_F_IV_PRESENT))
COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv);
} else { /* Decryption */
/* IV explicitly provided ? */
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, ivlen);
else {
/* Get IV off buf */
COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv);
}
if (exf->reinit)
exf->reinit(swe->sw_kschedule, iv, 0);
}
/* Supply MAC with IV */
if (axf->Reinit)
axf->Reinit(&ctx, iv, ivlen);
/* Supply MAC with AAD */
for (i = 0; i < crda->crd_len; i += blksz) {
len = MIN(crda->crd_len - i, blksz);
COPYDATA(outtype, buf, crda->crd_skip + i, len, blk);
axf->Update(&ctx, blk, len);
}
/* Do encryption/decryption with MAC */
for (i = 0; i < crde->crd_len; i += blksz) {
len = MIN(crde->crd_len - i, blksz);
if (len < blksz)
memset(blk, 0, blksz);
COPYDATA(outtype, buf, crde->crd_skip + i, len, blk);
if (crde->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(swe->sw_kschedule, blk);
axf->Update(&ctx, blk, len);
} else {
axf->Update(&ctx, blk, len);
exf->decrypt(swe->sw_kschedule, blk);
}
COPYBACK(outtype, buf, crde->crd_skip + i, len, blk);
}
/* Do any required special finalization */
switch (crda->crd_alg) {
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
/* length block */
memset(blk, 0, blksz);
blkp = (uint32_t *)blk + 1;
*blkp = htobe32(crda->crd_len * 8);
blkp = (uint32_t *)blk + 3;
*blkp = htobe32(crde->crd_len * 8);
axf->Update(&ctx, blk, blksz);
break;
}
/* Finalize MAC */
axf->Final(aalg, &ctx);
/* Inject the authentication data */
if (outtype == CRYPTO_BUF_MBUF)
COPYBACK(outtype, buf, crda->crd_inject, axf->auth_hash->authsize, aalg);
else
memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
return (0);
}
/*
* Apply a compression/decompression algorithm
*/
static int
swcr_compdec(struct cryptodesc *crd, const struct swcr_data *sw,
void *buf, int outtype, int *res_size)
{
u_int8_t *data, *out;
const struct swcr_comp_algo *cxf;
int adj;
u_int32_t result;
cxf = sw->sw_cxf;
/* We must handle the whole buffer of data in one time
* then if there is not all the data in the mbuf, we must
* copy in a buffer.
*/
data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
if (data == NULL)
return (EINVAL);
COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
if (crd->crd_flags & CRD_F_COMP)
result = cxf->compress(data, crd->crd_len, &out);
else
result = cxf->decompress(data, crd->crd_len, &out,
*res_size);
free(data, M_CRYPTO_DATA);
if (result == 0)
return EINVAL;
/* Copy back the (de)compressed data. m_copyback is
* extending the mbuf as necessary.
*/
*res_size = (int)result;
/* Check the compressed size when doing compression */
if (crd->crd_flags & CRD_F_COMP &&
sw->sw_alg == CRYPTO_DEFLATE_COMP_NOGROW &&
result >= crd->crd_len) {
/* Compression was useless, we lost time */
free(out, M_CRYPTO_DATA);
return 0;
}
COPYBACK(outtype, buf, crd->crd_skip, result, out);
if (result < crd->crd_len) {
adj = result - crd->crd_len;
if (outtype == CRYPTO_BUF_MBUF) {
m_adj((struct mbuf *)buf, adj);
}
/* Don't adjust the iov_len, it breaks the kmem_free */
}
free(out, M_CRYPTO_DATA);
return 0;
}
/*
* Generate a new software session.
*/
static int
swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
{
struct swcr_data **swd;
const struct swcr_auth_hash *axf;
const struct swcr_enc_xform *txf;
const struct swcr_comp_algo *cxf;
u_int32_t i;
int k, error;
if (sid == NULL || cri == NULL)
return EINVAL;
if (swcr_sessions) {
for (i = 1; i < swcr_sesnum; i++)
if (swcr_sessions[i] == NULL)
break;
} else
i = 1; /* NB: to silence compiler warning */
if (swcr_sessions == NULL || i == swcr_sesnum) {
if (swcr_sessions == NULL) {
i = 1; /* We leave swcr_sessions[0] empty */
swcr_sesnum = CRYPTO_SW_SESSIONS;
} else
swcr_sesnum *= 2;
swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
M_CRYPTO_DATA, M_NOWAIT);
if (swd == NULL) {
/* Reset session number */
if (swcr_sesnum == CRYPTO_SW_SESSIONS)
swcr_sesnum = 0;
else
swcr_sesnum /= 2;
return ENOBUFS;
}
memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *));
/* Copy existing sessions */
if (swcr_sessions) {
memcpy(swd, swcr_sessions,
(swcr_sesnum / 2) * sizeof(struct swcr_data *));
free(swcr_sessions, M_CRYPTO_DATA);
}
swcr_sessions = swd;
}
swd = &swcr_sessions[i];
*sid = i;
while (cri) {
*swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
if (*swd == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
memset(*swd, 0, sizeof(struct swcr_data));
switch (cri->cri_alg) {
case CRYPTO_DES_CBC:
txf = &swcr_enc_xform_des;
goto enccommon;
case CRYPTO_3DES_CBC:
txf = &swcr_enc_xform_3des;
goto enccommon;
case CRYPTO_BLF_CBC:
txf = &swcr_enc_xform_blf;
goto enccommon;
case CRYPTO_CAST_CBC:
txf = &swcr_enc_xform_cast5;
goto enccommon;
case CRYPTO_SKIPJACK_CBC:
txf = &swcr_enc_xform_skipjack;
goto enccommon;
case CRYPTO_AES_CBC:
txf = &swcr_enc_xform_aes;
goto enccommon;
case CRYPTO_CAMELLIA_CBC:
txf = &swcr_enc_xform_camellia;
goto enccommon;
case CRYPTO_AES_CTR:
txf = &swcr_enc_xform_aes_ctr;
goto enccommon;
case CRYPTO_AES_GCM_16:
txf = &swcr_enc_xform_aes_gcm;
goto enccommon;
case CRYPTO_AES_GMAC:
txf = &swcr_enc_xform_aes_gmac;
goto enccommon;
case CRYPTO_NULL_CBC:
txf = &swcr_enc_xform_null;
goto enccommon;
enccommon:
error = txf->setkey(&((*swd)->sw_kschedule),
cri->cri_key, cri->cri_klen / 8);
if (error) {
swcr_freesession(NULL, i);
return error;
}
(*swd)->sw_exf = txf;
break;
case CRYPTO_MD5_HMAC:
axf = &swcr_auth_hash_hmac_md5;
goto authcommon;
case CRYPTO_MD5_HMAC_96:
axf = &swcr_auth_hash_hmac_md5_96;
goto authcommon;
case CRYPTO_SHA1_HMAC:
axf = &swcr_auth_hash_hmac_sha1;
goto authcommon;
case CRYPTO_SHA1_HMAC_96:
axf = &swcr_auth_hash_hmac_sha1_96;
goto authcommon;
case CRYPTO_SHA2_256_HMAC:
axf = &swcr_auth_hash_hmac_sha2_256;
goto authcommon;
case CRYPTO_SHA2_384_HMAC:
axf = &swcr_auth_hash_hmac_sha2_384;
goto authcommon;
case CRYPTO_SHA2_512_HMAC:
axf = &swcr_auth_hash_hmac_sha2_512;
goto authcommon;
case CRYPTO_NULL_HMAC:
axf = &swcr_auth_hash_null;
goto authcommon;
case CRYPTO_RIPEMD160_HMAC:
axf = &swcr_auth_hash_hmac_ripemd_160;
goto authcommon;
case CRYPTO_RIPEMD160_HMAC_96:
axf = &swcr_auth_hash_hmac_ripemd_160_96;
goto authcommon; /* leave this for safety */
authcommon:
(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
(*swd)->sw_octx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
if ((*swd)->sw_octx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= HMAC_IPAD_VAL;
axf->Init((*swd)->sw_ictx);
axf->Update((*swd)->sw_ictx, cri->cri_key,
cri->cri_klen / 8);
axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
axf->auth_hash->blocksize - (cri->cri_klen / 8));
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
axf->Init((*swd)->sw_octx);
axf->Update((*swd)->sw_octx, cri->cri_key,
cri->cri_klen / 8);
axf->Update((*swd)->sw_octx, hmac_opad_buffer,
axf->auth_hash->blocksize - (cri->cri_klen / 8));
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= HMAC_OPAD_VAL;
(*swd)->sw_axf = axf;
break;
case CRYPTO_MD5_KPDK:
axf = &swcr_auth_hash_key_md5;
goto auth2common;
case CRYPTO_SHA1_KPDK: {
unsigned char digest[SHA1_DIGEST_LENGTH];
CTASSERT(SHA1_DIGEST_LENGTH >= MD5_DIGEST_LENGTH);
axf = &swcr_auth_hash_key_sha1;
auth2common:
(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
/* Store the key so we can "append" it to the payload */
(*swd)->sw_octx = kmem_alloc(cri->cri_klen / 8,
KM_NOSLEEP);
if ((*swd)->sw_octx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
(*swd)->sw_klen = cri->cri_klen / 8;
memcpy((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8);
axf->Init((*swd)->sw_ictx);
axf->Update((*swd)->sw_ictx, cri->cri_key,
cri->cri_klen / 8);
axf->Final(digest, (*swd)->sw_ictx);
(*swd)->sw_axf = axf;
break;
}
case CRYPTO_MD5:
axf = &swcr_auth_hash_md5;
goto auth3common;
case CRYPTO_SHA1:
axf = &swcr_auth_hash_sha1;
auth3common:
(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
axf->Init((*swd)->sw_ictx);
(*swd)->sw_axf = axf;
break;
case CRYPTO_AES_XCBC_MAC_96:
axf = &swcr_auth_hash_aes_xcbc_mac;
goto auth4common;
case CRYPTO_AES_128_GMAC:
axf = &swcr_auth_hash_gmac_aes_128;
goto auth4common;
case CRYPTO_AES_192_GMAC:
axf = &swcr_auth_hash_gmac_aes_192;
goto auth4common;
case CRYPTO_AES_256_GMAC:
axf = &swcr_auth_hash_gmac_aes_256;
auth4common:
(*swd)->sw_ictx = kmem_alloc(axf->ctxsize, KM_NOSLEEP);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
axf->Init((*swd)->sw_ictx);
axf->Setkey((*swd)->sw_ictx,
cri->cri_key, cri->cri_klen / 8);
(*swd)->sw_axf = axf;
break;
case CRYPTO_DEFLATE_COMP:
cxf = &swcr_comp_algo_deflate;
(*swd)->sw_cxf = cxf;
break;
case CRYPTO_DEFLATE_COMP_NOGROW:
cxf = &swcr_comp_algo_deflate_nogrow;
(*swd)->sw_cxf = cxf;
break;
case CRYPTO_GZIP_COMP:
cxf = &swcr_comp_algo_gzip;
(*swd)->sw_cxf = cxf;
break;
default:
swcr_freesession(NULL, i);
return EINVAL;
}
(*swd)->sw_alg = cri->cri_alg;
cri = cri->cri_next;
swd = &((*swd)->sw_next);
}
return 0;
}
/*
* Free a session.
*/
static int
swcr_freesession(void *arg, u_int64_t tid)
{
struct swcr_data *swd;
const struct swcr_enc_xform *txf;
const struct swcr_auth_hash *axf;
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
if (sid > swcr_sesnum || swcr_sessions == NULL ||
swcr_sessions[sid] == NULL)
return EINVAL;
/* Silently accept and return */
if (sid == 0)
return 0;
while ((swd = swcr_sessions[sid]) != NULL) {
swcr_sessions[sid] = swd->sw_next;
switch (swd->sw_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_SKIPJACK_CBC:
case CRYPTO_AES_CBC:
case CRYPTO_CAMELLIA_CBC:
case CRYPTO_AES_CTR:
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
case CRYPTO_NULL_CBC:
txf = swd->sw_exf;
if (swd->sw_kschedule)
txf->zerokey(&(swd->sw_kschedule));
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_MD5_HMAC_96:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA1_HMAC_96:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_RIPEMD160_HMAC_96:
case CRYPTO_NULL_HMAC:
axf = swd->sw_axf;
if (swd->sw_ictx) {
explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
kmem_free(swd->sw_ictx, axf->ctxsize);
}
if (swd->sw_octx) {
explicit_memset(swd->sw_octx, 0, axf->ctxsize);
kmem_free(swd->sw_octx, axf->ctxsize);
}
break;
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
axf = swd->sw_axf;
if (swd->sw_ictx) {
explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
kmem_free(swd->sw_ictx, axf->ctxsize);
}
if (swd->sw_octx) {
explicit_memset(swd->sw_octx, 0, swd->sw_klen);
kmem_free(swd->sw_octx, axf->ctxsize);
}
break;
case CRYPTO_MD5:
case CRYPTO_SHA1:
case CRYPTO_AES_XCBC_MAC_96:
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
axf = swd->sw_axf;
if (swd->sw_ictx) {
explicit_memset(swd->sw_ictx, 0, axf->ctxsize);
kmem_free(swd->sw_ictx, axf->ctxsize);
}
break;
case CRYPTO_DEFLATE_COMP:
case CRYPTO_DEFLATE_COMP_NOGROW:
case CRYPTO_GZIP_COMP:
break;
}
free(swd, M_CRYPTO_DATA);
}
return 0;
}
/*
* Process a software request.
*/
static int
swcr_process(void *arg, struct cryptop *crp, int hint)
{
struct cryptodesc *crd;
struct swcr_data *sw;
u_int32_t lid;
int type;
/* Sanity check */
if (crp == NULL)
return EINVAL;
if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
crp->crp_etype = EINVAL;
goto done;
}
lid = crp->crp_sid & 0xffffffff;
if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
crp->crp_etype = ENOENT;
goto done;
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
type = CRYPTO_BUF_MBUF;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
type = CRYPTO_BUF_IOV;
} else {
type = CRYPTO_BUF_CONTIG;
}
/* Go through crypto descriptors, processing as we go */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
/*
* Find the crypto context.
*
* XXX Note that the logic here prevents us from having
* XXX the same algorithm multiple times in a session
* XXX (or rather, we can but it won't give us the right
* XXX results). To do that, we'd need some way of differentiating
* XXX between the various instances of an algorithm (so we can
* XXX locate the correct crypto context).
*/
for (sw = swcr_sessions[lid];
sw && sw->sw_alg != crd->crd_alg;
sw = sw->sw_next)
;
/* No such context ? */
if (sw == NULL) {
crp->crp_etype = EINVAL;
goto done;
}
switch (sw->sw_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_SKIPJACK_CBC:
case CRYPTO_AES_CBC:
case CRYPTO_CAMELLIA_CBC:
case CRYPTO_AES_CTR:
if ((crp->crp_etype = swcr_encdec(crd, sw,
crp->crp_buf, type)) != 0)
goto done;
break;
case CRYPTO_NULL_CBC:
crp->crp_etype = 0;
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_MD5_HMAC_96:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA1_HMAC_96:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_RIPEMD160_HMAC_96:
case CRYPTO_NULL_HMAC:
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
case CRYPTO_MD5:
case CRYPTO_SHA1:
case CRYPTO_AES_XCBC_MAC_96:
if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
crp->crp_buf, type)) != 0)
goto done;
break;
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
crp->crp_etype = swcr_combined(crp, type);
goto done;
case CRYPTO_DEFLATE_COMP:
case CRYPTO_DEFLATE_COMP_NOGROW:
case CRYPTO_GZIP_COMP:
DPRINTF("compdec for %d\n", sw->sw_alg);
if ((crp->crp_etype = swcr_compdec(crd, sw,
crp->crp_buf, type, &crp->crp_olen)) != 0)
goto done;
break;
default:
/* Unknown/unsupported algorithm */
crp->crp_etype = EINVAL;
goto done;
}
}
done:
DPRINTF("request %p done\n", crp);
crypto_done(crp);
return 0;
}
static void
swcr_init(void)
{
swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
if (swcr_id < 0) {
/* This should never happen */
panic("Software crypto device cannot initialize!");
}
crypto_register(swcr_id, CRYPTO_DES_CBC,
0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
#define REGISTER(alg) \
crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
REGISTER(CRYPTO_3DES_CBC);
REGISTER(CRYPTO_BLF_CBC);
REGISTER(CRYPTO_CAST_CBC);
REGISTER(CRYPTO_SKIPJACK_CBC);
REGISTER(CRYPTO_CAMELLIA_CBC);
REGISTER(CRYPTO_AES_CTR);
REGISTER(CRYPTO_AES_GCM_16);
REGISTER(CRYPTO_AES_GMAC);
REGISTER(CRYPTO_NULL_CBC);
REGISTER(CRYPTO_MD5_HMAC);
REGISTER(CRYPTO_MD5_HMAC_96);
REGISTER(CRYPTO_SHA1_HMAC);
REGISTER(CRYPTO_SHA1_HMAC_96);
REGISTER(CRYPTO_SHA2_256_HMAC);
REGISTER(CRYPTO_SHA2_384_HMAC);
REGISTER(CRYPTO_SHA2_512_HMAC);
REGISTER(CRYPTO_RIPEMD160_HMAC);
REGISTER(CRYPTO_RIPEMD160_HMAC_96);
REGISTER(CRYPTO_NULL_HMAC);
REGISTER(CRYPTO_MD5_KPDK);
REGISTER(CRYPTO_SHA1_KPDK);
REGISTER(CRYPTO_MD5);
REGISTER(CRYPTO_SHA1);
REGISTER(CRYPTO_AES_XCBC_MAC_96);
REGISTER(CRYPTO_AES_128_GMAC);
REGISTER(CRYPTO_AES_192_GMAC);
REGISTER(CRYPTO_AES_256_GMAC);
REGISTER(CRYPTO_AES_CBC);
REGISTER(CRYPTO_DEFLATE_COMP);
REGISTER(CRYPTO_DEFLATE_COMP_NOGROW);
REGISTER(CRYPTO_GZIP_COMP);
#undef REGISTER
}
/*
* Pseudo-device init routine for software crypto.
*/
void
swcryptoattach(int num)
{
/*
* swcrypto_attach() must be called after attached cpus, because
* it calls softint_establish() through below call path.
* swcr_init() => crypto_get_driverid() => crypto_init()
* => crypto_init0()
* If softint_establish() is called before attached cpus that ncpu == 0,
* the softint handler is established to CPU#0 only.
*
* So, swcrypto_attach() must be called from not module_init_class()
* but config_finalize() when it is built as builtin module.
*/
swcryptoattach_internal();
}
void swcrypto_attach(device_t, device_t, void *);
void
swcrypto_attach(device_t parent, device_t self, void *opaque)
{
swcr_init();
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
}
int swcrypto_detach(device_t, int);
int
swcrypto_detach(device_t self, int flag)
{
pmf_device_deregister(self);
if (swcr_id >= 0)
crypto_unregister_all(swcr_id);
return 0;
}
int swcrypto_match(device_t, cfdata_t, void *);
int
swcrypto_match(device_t parent, cfdata_t data, void *opaque)
{
return 1;
}
MODULE(MODULE_CLASS_DRIVER, swcrypto,
"opencrypto,zlib,blowfish,des,cast128,camellia,skipjack");
CFDRIVER_DECL(swcrypto, DV_DULL, NULL);
CFATTACH_DECL2_NEW(swcrypto, 0, swcrypto_match, swcrypto_attach,
swcrypto_detach, NULL, NULL, NULL);
static int swcryptoloc[] = { -1, -1 };
static struct cfdata swcrypto_cfdata[] = {
{
.cf_name = "swcrypto",
.cf_atname = "swcrypto",
.cf_unit = 0,
.cf_fstate = 0,
.cf_loc = swcryptoloc,
.cf_flags = 0,
.cf_pspec = NULL,
},
{ NULL, NULL, 0, 0, NULL, 0, NULL }
};
/*
* Internal attach routine.
* Don't call before attached cpus.
*/
static int
swcryptoattach_internal(void)
{
int error;
error = config_cfdriver_attach(&swcrypto_cd);
if (error) {
return error;
}
error = config_cfattach_attach(swcrypto_cd.cd_name, &swcrypto_ca);
if (error) {
config_cfdriver_detach(&swcrypto_cd);
aprint_error("%s: unable to register cfattach\n",
swcrypto_cd.cd_name);
return error;
}
error = config_cfdata_attach(swcrypto_cfdata, 1);
if (error) {
config_cfattach_detach(swcrypto_cd.cd_name,
&swcrypto_ca);
config_cfdriver_detach(&swcrypto_cd);
aprint_error("%s: unable to register cfdata\n",
swcrypto_cd.cd_name);
return error;
}
(void)config_attach_pseudo(swcrypto_cfdata);
return 0;
}
static int
swcrypto_modcmd(modcmd_t cmd, void *arg)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = swcryptoattach_internal();
#endif
return error;
case MODULE_CMD_FINI:
#if 1
// XXX: Need to keep track if we are in use.
return ENOTTY;
#else
error = config_cfdata_detach(swcrypto_cfdata);
if (error) {
return error;
}
config_cfattach_detach(swcrypto_cd.cd_name, &swcrypto_ca);
config_cfdriver_detach(&swcrypto_cd);
return 0;
#endif
default:
return ENOTTY;
}
}