2aa8aa0f8f
when used by kmem(9), for example. Do sanity checks to detect such spans on DEBUG kernels.
1544 lines
33 KiB
C
1544 lines
33 KiB
C
/* $NetBSD: subr_vmem.c,v 1.44 2008/12/07 02:21:04 cegger Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c)2006 YAMAMOTO Takashi,
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* reference:
|
|
* - Magazines and Vmem: Extending the Slab Allocator
|
|
* to Many CPUs and Arbitrary Resources
|
|
* http://www.usenix.org/event/usenix01/bonwick.html
|
|
*
|
|
* todo:
|
|
* - decide how to import segments for vmem_xalloc.
|
|
* - don't rely on malloc(9).
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.44 2008/12/07 02:21:04 cegger Exp $");
|
|
|
|
#define VMEM_DEBUG
|
|
#if defined(_KERNEL)
|
|
#include "opt_ddb.h"
|
|
#define QCACHE
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/hash.h>
|
|
#include <sys/queue.h>
|
|
|
|
#if defined(_KERNEL)
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h> /* hz */
|
|
#include <sys/callout.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/once.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/vmem.h>
|
|
#include <sys/workqueue.h>
|
|
#else /* defined(_KERNEL) */
|
|
#include "../sys/vmem.h"
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
#if defined(_KERNEL)
|
|
#define LOCK_DECL(name) kmutex_t name
|
|
#else /* defined(_KERNEL) */
|
|
#include <errno.h>
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
|
|
#define KASSERT(a) assert(a)
|
|
#define LOCK_DECL(name) /* nothing */
|
|
#define mutex_init(a, b, c) /* nothing */
|
|
#define mutex_destroy(a) /* nothing */
|
|
#define mutex_enter(a) /* nothing */
|
|
#define mutex_exit(a) /* nothing */
|
|
#define mutex_owned(a) /* nothing */
|
|
#define ASSERT_SLEEPABLE() /* nothing */
|
|
#define IPL_VM 0
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
struct vmem;
|
|
struct vmem_btag;
|
|
|
|
#if defined(VMEM_DEBUG)
|
|
void vmem_dump(const vmem_t *);
|
|
#endif /* defined(VMEM_DEBUG) */
|
|
|
|
#define VMEM_MAXORDER (sizeof(vmem_size_t) * CHAR_BIT)
|
|
|
|
#define VMEM_HASHSIZE_MIN 1 /* XXX */
|
|
#define VMEM_HASHSIZE_MAX 8192 /* XXX */
|
|
#define VMEM_HASHSIZE_INIT VMEM_HASHSIZE_MIN
|
|
|
|
#define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
|
|
|
|
CIRCLEQ_HEAD(vmem_seglist, vmem_btag);
|
|
LIST_HEAD(vmem_freelist, vmem_btag);
|
|
LIST_HEAD(vmem_hashlist, vmem_btag);
|
|
|
|
#if defined(QCACHE)
|
|
#define VMEM_QCACHE_IDX_MAX 32
|
|
|
|
#define QC_NAME_MAX 16
|
|
|
|
struct qcache {
|
|
pool_cache_t qc_cache;
|
|
vmem_t *qc_vmem;
|
|
char qc_name[QC_NAME_MAX];
|
|
};
|
|
typedef struct qcache qcache_t;
|
|
#define QC_POOL_TO_QCACHE(pool) ((qcache_t *)(pool->pr_qcache))
|
|
#endif /* defined(QCACHE) */
|
|
|
|
/* vmem arena */
|
|
struct vmem {
|
|
LOCK_DECL(vm_lock);
|
|
vmem_addr_t (*vm_allocfn)(vmem_t *, vmem_size_t, vmem_size_t *,
|
|
vm_flag_t);
|
|
void (*vm_freefn)(vmem_t *, vmem_addr_t, vmem_size_t);
|
|
vmem_t *vm_source;
|
|
struct vmem_seglist vm_seglist;
|
|
struct vmem_freelist vm_freelist[VMEM_MAXORDER];
|
|
size_t vm_hashsize;
|
|
size_t vm_nbusytag;
|
|
struct vmem_hashlist *vm_hashlist;
|
|
size_t vm_quantum_mask;
|
|
int vm_quantum_shift;
|
|
const char *vm_name;
|
|
LIST_ENTRY(vmem) vm_alllist;
|
|
|
|
#if defined(QCACHE)
|
|
/* quantum cache */
|
|
size_t vm_qcache_max;
|
|
struct pool_allocator vm_qcache_allocator;
|
|
qcache_t vm_qcache_store[VMEM_QCACHE_IDX_MAX];
|
|
qcache_t *vm_qcache[VMEM_QCACHE_IDX_MAX];
|
|
#endif /* defined(QCACHE) */
|
|
};
|
|
|
|
#define VMEM_LOCK(vm) mutex_enter(&vm->vm_lock)
|
|
#define VMEM_TRYLOCK(vm) mutex_tryenter(&vm->vm_lock)
|
|
#define VMEM_UNLOCK(vm) mutex_exit(&vm->vm_lock)
|
|
#define VMEM_LOCK_INIT(vm, ipl) mutex_init(&vm->vm_lock, MUTEX_DEFAULT, ipl)
|
|
#define VMEM_LOCK_DESTROY(vm) mutex_destroy(&vm->vm_lock)
|
|
#define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&vm->vm_lock))
|
|
|
|
/* boundary tag */
|
|
struct vmem_btag {
|
|
CIRCLEQ_ENTRY(vmem_btag) bt_seglist;
|
|
union {
|
|
LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
|
|
LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
|
|
} bt_u;
|
|
#define bt_hashlist bt_u.u_hashlist
|
|
#define bt_freelist bt_u.u_freelist
|
|
vmem_addr_t bt_start;
|
|
vmem_size_t bt_size;
|
|
int bt_type;
|
|
};
|
|
|
|
#define BT_TYPE_SPAN 1
|
|
#define BT_TYPE_SPAN_STATIC 2
|
|
#define BT_TYPE_FREE 3
|
|
#define BT_TYPE_BUSY 4
|
|
#define BT_ISSPAN_P(bt) ((bt)->bt_type <= BT_TYPE_SPAN_STATIC)
|
|
|
|
#define BT_END(bt) ((bt)->bt_start + (bt)->bt_size)
|
|
|
|
typedef struct vmem_btag bt_t;
|
|
|
|
/* ---- misc */
|
|
|
|
#define VMEM_ALIGNUP(addr, align) \
|
|
(-(-(addr) & -(align)))
|
|
#define VMEM_CROSS_P(addr1, addr2, boundary) \
|
|
((((addr1) ^ (addr2)) & -(boundary)) != 0)
|
|
|
|
#define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
|
|
|
|
static int
|
|
calc_order(vmem_size_t size)
|
|
{
|
|
vmem_size_t target;
|
|
int i;
|
|
|
|
KASSERT(size != 0);
|
|
|
|
i = 0;
|
|
target = size >> 1;
|
|
while (ORDER2SIZE(i) <= target) {
|
|
i++;
|
|
}
|
|
|
|
KASSERT(ORDER2SIZE(i) <= size);
|
|
KASSERT(size < ORDER2SIZE(i + 1) || ORDER2SIZE(i + 1) < ORDER2SIZE(i));
|
|
|
|
return i;
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
static MALLOC_DEFINE(M_VMEM, "vmem", "vmem");
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
static void *
|
|
xmalloc(size_t sz, vm_flag_t flags)
|
|
{
|
|
|
|
#if defined(_KERNEL)
|
|
return malloc(sz, M_VMEM,
|
|
M_CANFAIL | ((flags & VM_SLEEP) ? M_WAITOK : M_NOWAIT));
|
|
#else /* defined(_KERNEL) */
|
|
return malloc(sz);
|
|
#endif /* defined(_KERNEL) */
|
|
}
|
|
|
|
static void
|
|
xfree(void *p)
|
|
{
|
|
|
|
#if defined(_KERNEL)
|
|
return free(p, M_VMEM);
|
|
#else /* defined(_KERNEL) */
|
|
return free(p);
|
|
#endif /* defined(_KERNEL) */
|
|
}
|
|
|
|
/* ---- boundary tag */
|
|
|
|
#if defined(_KERNEL)
|
|
static struct pool_cache bt_cache;
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
static bt_t *
|
|
bt_alloc(vmem_t *vm, vm_flag_t flags)
|
|
{
|
|
bt_t *bt;
|
|
|
|
#if defined(_KERNEL)
|
|
bt = pool_cache_get(&bt_cache,
|
|
(flags & VM_SLEEP) != 0 ? PR_WAITOK : PR_NOWAIT);
|
|
#else /* defined(_KERNEL) */
|
|
bt = malloc(sizeof *bt);
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
return bt;
|
|
}
|
|
|
|
static void
|
|
bt_free(vmem_t *vm, bt_t *bt)
|
|
{
|
|
|
|
#if defined(_KERNEL)
|
|
pool_cache_put(&bt_cache, bt);
|
|
#else /* defined(_KERNEL) */
|
|
free(bt);
|
|
#endif /* defined(_KERNEL) */
|
|
}
|
|
|
|
/*
|
|
* freelist[0] ... [1, 1]
|
|
* freelist[1] ... [2, 3]
|
|
* freelist[2] ... [4, 7]
|
|
* freelist[3] ... [8, 15]
|
|
* :
|
|
* freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
|
|
* :
|
|
*/
|
|
|
|
static struct vmem_freelist *
|
|
bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
|
|
{
|
|
const vmem_size_t qsize = size >> vm->vm_quantum_shift;
|
|
int idx;
|
|
|
|
KASSERT((size & vm->vm_quantum_mask) == 0);
|
|
KASSERT(size != 0);
|
|
|
|
idx = calc_order(qsize);
|
|
KASSERT(idx >= 0);
|
|
KASSERT(idx < VMEM_MAXORDER);
|
|
|
|
return &vm->vm_freelist[idx];
|
|
}
|
|
|
|
static struct vmem_freelist *
|
|
bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
|
|
{
|
|
const vmem_size_t qsize = size >> vm->vm_quantum_shift;
|
|
int idx;
|
|
|
|
KASSERT((size & vm->vm_quantum_mask) == 0);
|
|
KASSERT(size != 0);
|
|
|
|
idx = calc_order(qsize);
|
|
if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
|
|
idx++;
|
|
/* check too large request? */
|
|
}
|
|
KASSERT(idx >= 0);
|
|
KASSERT(idx < VMEM_MAXORDER);
|
|
|
|
return &vm->vm_freelist[idx];
|
|
}
|
|
|
|
/* ---- boundary tag hash */
|
|
|
|
static struct vmem_hashlist *
|
|
bt_hashhead(vmem_t *vm, vmem_addr_t addr)
|
|
{
|
|
struct vmem_hashlist *list;
|
|
unsigned int hash;
|
|
|
|
hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
|
|
list = &vm->vm_hashlist[hash % vm->vm_hashsize];
|
|
|
|
return list;
|
|
}
|
|
|
|
static bt_t *
|
|
bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
|
|
{
|
|
struct vmem_hashlist *list;
|
|
bt_t *bt;
|
|
|
|
list = bt_hashhead(vm, addr);
|
|
LIST_FOREACH(bt, list, bt_hashlist) {
|
|
if (bt->bt_start == addr) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return bt;
|
|
}
|
|
|
|
static void
|
|
bt_rembusy(vmem_t *vm, bt_t *bt)
|
|
{
|
|
|
|
KASSERT(vm->vm_nbusytag > 0);
|
|
vm->vm_nbusytag--;
|
|
LIST_REMOVE(bt, bt_hashlist);
|
|
}
|
|
|
|
static void
|
|
bt_insbusy(vmem_t *vm, bt_t *bt)
|
|
{
|
|
struct vmem_hashlist *list;
|
|
|
|
KASSERT(bt->bt_type == BT_TYPE_BUSY);
|
|
|
|
list = bt_hashhead(vm, bt->bt_start);
|
|
LIST_INSERT_HEAD(list, bt, bt_hashlist);
|
|
vm->vm_nbusytag++;
|
|
}
|
|
|
|
/* ---- boundary tag list */
|
|
|
|
static void
|
|
bt_remseg(vmem_t *vm, bt_t *bt)
|
|
{
|
|
|
|
CIRCLEQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
|
|
}
|
|
|
|
static void
|
|
bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
|
|
{
|
|
|
|
CIRCLEQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
|
|
}
|
|
|
|
static void
|
|
bt_insseg_tail(vmem_t *vm, bt_t *bt)
|
|
{
|
|
|
|
CIRCLEQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
|
|
}
|
|
|
|
static void
|
|
bt_remfree(vmem_t *vm, bt_t *bt)
|
|
{
|
|
|
|
KASSERT(bt->bt_type == BT_TYPE_FREE);
|
|
|
|
LIST_REMOVE(bt, bt_freelist);
|
|
}
|
|
|
|
static void
|
|
bt_insfree(vmem_t *vm, bt_t *bt)
|
|
{
|
|
struct vmem_freelist *list;
|
|
|
|
list = bt_freehead_tofree(vm, bt->bt_size);
|
|
LIST_INSERT_HEAD(list, bt, bt_freelist);
|
|
}
|
|
|
|
/* ---- vmem internal functions */
|
|
|
|
#if defined(_KERNEL)
|
|
static kmutex_t vmem_list_lock;
|
|
static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
#if defined(QCACHE)
|
|
static inline vm_flag_t
|
|
prf_to_vmf(int prflags)
|
|
{
|
|
vm_flag_t vmflags;
|
|
|
|
KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
|
|
if ((prflags & PR_WAITOK) != 0) {
|
|
vmflags = VM_SLEEP;
|
|
} else {
|
|
vmflags = VM_NOSLEEP;
|
|
}
|
|
return vmflags;
|
|
}
|
|
|
|
static inline int
|
|
vmf_to_prf(vm_flag_t vmflags)
|
|
{
|
|
int prflags;
|
|
|
|
if ((vmflags & VM_SLEEP) != 0) {
|
|
prflags = PR_WAITOK;
|
|
} else {
|
|
prflags = PR_NOWAIT;
|
|
}
|
|
return prflags;
|
|
}
|
|
|
|
static size_t
|
|
qc_poolpage_size(size_t qcache_max)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
|
|
/* nothing */
|
|
}
|
|
return ORDER2SIZE(i);
|
|
}
|
|
|
|
static void *
|
|
qc_poolpage_alloc(struct pool *pool, int prflags)
|
|
{
|
|
qcache_t *qc = QC_POOL_TO_QCACHE(pool);
|
|
vmem_t *vm = qc->qc_vmem;
|
|
|
|
return (void *)vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
|
|
prf_to_vmf(prflags) | VM_INSTANTFIT);
|
|
}
|
|
|
|
static void
|
|
qc_poolpage_free(struct pool *pool, void *addr)
|
|
{
|
|
qcache_t *qc = QC_POOL_TO_QCACHE(pool);
|
|
vmem_t *vm = qc->qc_vmem;
|
|
|
|
vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
|
|
}
|
|
|
|
static void
|
|
qc_init(vmem_t *vm, size_t qcache_max, int ipl)
|
|
{
|
|
qcache_t *prevqc;
|
|
struct pool_allocator *pa;
|
|
int qcache_idx_max;
|
|
int i;
|
|
|
|
KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
|
|
if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
|
|
qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
|
|
}
|
|
vm->vm_qcache_max = qcache_max;
|
|
pa = &vm->vm_qcache_allocator;
|
|
memset(pa, 0, sizeof(*pa));
|
|
pa->pa_alloc = qc_poolpage_alloc;
|
|
pa->pa_free = qc_poolpage_free;
|
|
pa->pa_pagesz = qc_poolpage_size(qcache_max);
|
|
|
|
qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
|
|
prevqc = NULL;
|
|
for (i = qcache_idx_max; i > 0; i--) {
|
|
qcache_t *qc = &vm->vm_qcache_store[i - 1];
|
|
size_t size = i << vm->vm_quantum_shift;
|
|
|
|
qc->qc_vmem = vm;
|
|
snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
|
|
vm->vm_name, size);
|
|
qc->qc_cache = pool_cache_init(size,
|
|
ORDER2SIZE(vm->vm_quantum_shift), 0,
|
|
PR_NOALIGN | PR_NOTOUCH /* XXX */,
|
|
qc->qc_name, pa, ipl, NULL, NULL, NULL);
|
|
KASSERT(qc->qc_cache != NULL); /* XXX */
|
|
if (prevqc != NULL &&
|
|
qc->qc_cache->pc_pool.pr_itemsperpage ==
|
|
prevqc->qc_cache->pc_pool.pr_itemsperpage) {
|
|
pool_cache_destroy(qc->qc_cache);
|
|
vm->vm_qcache[i - 1] = prevqc;
|
|
continue;
|
|
}
|
|
qc->qc_cache->pc_pool.pr_qcache = qc;
|
|
vm->vm_qcache[i - 1] = qc;
|
|
prevqc = qc;
|
|
}
|
|
}
|
|
|
|
static void
|
|
qc_destroy(vmem_t *vm)
|
|
{
|
|
const qcache_t *prevqc;
|
|
int i;
|
|
int qcache_idx_max;
|
|
|
|
qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
|
|
prevqc = NULL;
|
|
for (i = 0; i < qcache_idx_max; i++) {
|
|
qcache_t *qc = vm->vm_qcache[i];
|
|
|
|
if (prevqc == qc) {
|
|
continue;
|
|
}
|
|
pool_cache_destroy(qc->qc_cache);
|
|
prevqc = qc;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
qc_reap(vmem_t *vm)
|
|
{
|
|
const qcache_t *prevqc;
|
|
int i;
|
|
int qcache_idx_max;
|
|
bool didsomething = false;
|
|
|
|
qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
|
|
prevqc = NULL;
|
|
for (i = 0; i < qcache_idx_max; i++) {
|
|
qcache_t *qc = vm->vm_qcache[i];
|
|
|
|
if (prevqc == qc) {
|
|
continue;
|
|
}
|
|
if (pool_cache_reclaim(qc->qc_cache) != 0) {
|
|
didsomething = true;
|
|
}
|
|
prevqc = qc;
|
|
}
|
|
|
|
return didsomething;
|
|
}
|
|
#endif /* defined(QCACHE) */
|
|
|
|
#if defined(_KERNEL)
|
|
static int
|
|
vmem_init(void)
|
|
{
|
|
|
|
mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
pool_cache_bootstrap(&bt_cache, sizeof(bt_t), 0, 0, 0, "vmembt",
|
|
NULL, IPL_VM, NULL, NULL, NULL);
|
|
return 0;
|
|
}
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
static vmem_addr_t
|
|
vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
|
|
int spanbttype)
|
|
{
|
|
bt_t *btspan;
|
|
bt_t *btfree;
|
|
|
|
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
|
|
btspan = bt_alloc(vm, flags);
|
|
if (btspan == NULL) {
|
|
return VMEM_ADDR_NULL;
|
|
}
|
|
btfree = bt_alloc(vm, flags);
|
|
if (btfree == NULL) {
|
|
bt_free(vm, btspan);
|
|
return VMEM_ADDR_NULL;
|
|
}
|
|
|
|
btspan->bt_type = spanbttype;
|
|
btspan->bt_start = addr;
|
|
btspan->bt_size = size;
|
|
|
|
btfree->bt_type = BT_TYPE_FREE;
|
|
btfree->bt_start = addr;
|
|
btfree->bt_size = size;
|
|
|
|
VMEM_LOCK(vm);
|
|
bt_insseg_tail(vm, btspan);
|
|
bt_insseg(vm, btfree, btspan);
|
|
bt_insfree(vm, btfree);
|
|
VMEM_UNLOCK(vm);
|
|
|
|
return addr;
|
|
}
|
|
|
|
static void
|
|
vmem_destroy1(vmem_t *vm)
|
|
{
|
|
|
|
#if defined(QCACHE)
|
|
qc_destroy(vm);
|
|
#endif /* defined(QCACHE) */
|
|
if (vm->vm_hashlist != NULL) {
|
|
int i;
|
|
|
|
for (i = 0; i < vm->vm_hashsize; i++) {
|
|
bt_t *bt;
|
|
|
|
while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
|
|
KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
|
|
bt_free(vm, bt);
|
|
}
|
|
}
|
|
xfree(vm->vm_hashlist);
|
|
}
|
|
VMEM_LOCK_DESTROY(vm);
|
|
xfree(vm);
|
|
}
|
|
|
|
static int
|
|
vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
|
|
{
|
|
vmem_addr_t addr;
|
|
|
|
if (vm->vm_allocfn == NULL) {
|
|
return EINVAL;
|
|
}
|
|
|
|
addr = (*vm->vm_allocfn)(vm->vm_source, size, &size, flags);
|
|
if (addr == VMEM_ADDR_NULL) {
|
|
return ENOMEM;
|
|
}
|
|
|
|
if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) == VMEM_ADDR_NULL) {
|
|
(*vm->vm_freefn)(vm->vm_source, addr, size);
|
|
return ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
|
|
{
|
|
bt_t *bt;
|
|
int i;
|
|
struct vmem_hashlist *newhashlist;
|
|
struct vmem_hashlist *oldhashlist;
|
|
size_t oldhashsize;
|
|
|
|
KASSERT(newhashsize > 0);
|
|
|
|
newhashlist =
|
|
xmalloc(sizeof(struct vmem_hashlist *) * newhashsize, flags);
|
|
if (newhashlist == NULL) {
|
|
return ENOMEM;
|
|
}
|
|
for (i = 0; i < newhashsize; i++) {
|
|
LIST_INIT(&newhashlist[i]);
|
|
}
|
|
|
|
if (!VMEM_TRYLOCK(vm)) {
|
|
xfree(newhashlist);
|
|
return EBUSY;
|
|
}
|
|
oldhashlist = vm->vm_hashlist;
|
|
oldhashsize = vm->vm_hashsize;
|
|
vm->vm_hashlist = newhashlist;
|
|
vm->vm_hashsize = newhashsize;
|
|
if (oldhashlist == NULL) {
|
|
VMEM_UNLOCK(vm);
|
|
return 0;
|
|
}
|
|
for (i = 0; i < oldhashsize; i++) {
|
|
while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
|
|
bt_rembusy(vm, bt); /* XXX */
|
|
bt_insbusy(vm, bt);
|
|
}
|
|
}
|
|
VMEM_UNLOCK(vm);
|
|
|
|
xfree(oldhashlist);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* vmem_fit: check if a bt can satisfy the given restrictions.
|
|
*/
|
|
|
|
static vmem_addr_t
|
|
vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align, vmem_size_t phase,
|
|
vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr)
|
|
{
|
|
vmem_addr_t start;
|
|
vmem_addr_t end;
|
|
|
|
KASSERT(bt->bt_size >= size);
|
|
|
|
/*
|
|
* XXX assumption: vmem_addr_t and vmem_size_t are
|
|
* unsigned integer of the same size.
|
|
*/
|
|
|
|
start = bt->bt_start;
|
|
if (start < minaddr) {
|
|
start = minaddr;
|
|
}
|
|
end = BT_END(bt);
|
|
if (end > maxaddr - 1) {
|
|
end = maxaddr - 1;
|
|
}
|
|
if (start >= end) {
|
|
return VMEM_ADDR_NULL;
|
|
}
|
|
|
|
start = VMEM_ALIGNUP(start - phase, align) + phase;
|
|
if (start < bt->bt_start) {
|
|
start += align;
|
|
}
|
|
if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
|
|
KASSERT(align < nocross);
|
|
start = VMEM_ALIGNUP(start - phase, nocross) + phase;
|
|
}
|
|
if (start < end && end - start >= size) {
|
|
KASSERT((start & (align - 1)) == phase);
|
|
KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
|
|
KASSERT(minaddr <= start);
|
|
KASSERT(maxaddr == 0 || start + size <= maxaddr);
|
|
KASSERT(bt->bt_start <= start);
|
|
KASSERT(start + size <= BT_END(bt));
|
|
return start;
|
|
}
|
|
return VMEM_ADDR_NULL;
|
|
}
|
|
|
|
#if !defined(DEBUG)
|
|
#define vmem_check_sanity(vm) true
|
|
#else
|
|
|
|
static bool
|
|
vmem_check_sanity(vmem_t *vm)
|
|
{
|
|
const bt_t *bt, *bt2;
|
|
|
|
KASSERT(vm != NULL);
|
|
|
|
CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
|
|
if (bt->bt_start >= BT_END(bt)) {
|
|
printf("%s: bogus VMEM '%s' span 0x%"PRIx64
|
|
" - 0x%"PRIx64" %s\n",
|
|
__func__, vm->vm_name,
|
|
bt->bt_start, BT_END(bt),
|
|
(bt->bt_type == BT_TYPE_BUSY) ?
|
|
"allocated" : "free");
|
|
return false;
|
|
}
|
|
|
|
CIRCLEQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
|
|
if (bt2->bt_start >= BT_END(bt2)) {
|
|
printf("%s: bogus VMEM '%s' span 0x%"PRIx64
|
|
" - 0x%"PRIx64" %s\n",
|
|
__func__, vm->vm_name,
|
|
bt2->bt_start, BT_END(bt2),
|
|
(bt2->bt_type == BT_TYPE_BUSY) ?
|
|
"allocated" : "free");
|
|
return false;
|
|
}
|
|
if (bt == bt2)
|
|
continue;
|
|
|
|
if (bt->bt_start > bt2->bt_start) {
|
|
if (bt->bt_start >= BT_END(bt2))
|
|
continue;
|
|
|
|
printf("%s: overlapping VMEM '%s' span 0x%"
|
|
PRIx64" - 0x%"PRIx64" %s\n",
|
|
__func__, vm->vm_name,
|
|
bt->bt_start, BT_END(bt),
|
|
(bt->bt_type == BT_TYPE_BUSY) ?
|
|
"allocated" : "free");
|
|
printf("%s: overlapping VMEM '%s' span 0x%"
|
|
PRIx64" - 0x%"PRIx64" %s\n",
|
|
__func__, vm->vm_name,
|
|
bt2->bt_start, BT_END(bt2),
|
|
(bt2->bt_type == BT_TYPE_BUSY) ?
|
|
"allocated" : "free");
|
|
return false;
|
|
}
|
|
if (BT_END(bt) <= bt2->bt_start) {
|
|
if (BT_END(bt) < BT_END(bt2))
|
|
continue;
|
|
|
|
printf("%s: overlapping VMEM '%s' span 0x%"
|
|
PRIx64" - 0x%"PRIx64" %s\n",
|
|
__func__, vm->vm_name,
|
|
bt->bt_start, BT_END(bt),
|
|
(bt->bt_type == BT_TYPE_BUSY) ?
|
|
"allocated" : "free");
|
|
printf("%s: overlapping VMEM '%s' span 0x%"
|
|
PRIx64" - 0x%"PRIx64" %s\n",
|
|
__func__, vm->vm_name,
|
|
bt2->bt_start, BT_END(bt2),
|
|
(bt2->bt_type == BT_TYPE_BUSY) ?
|
|
"allocated" : "free");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
/* ---- vmem API */
|
|
|
|
/*
|
|
* vmem_create: create an arena.
|
|
*
|
|
* => must not be called from interrupt context.
|
|
*/
|
|
|
|
vmem_t *
|
|
vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
|
|
vmem_size_t quantum,
|
|
vmem_addr_t (*allocfn)(vmem_t *, vmem_size_t, vmem_size_t *, vm_flag_t),
|
|
void (*freefn)(vmem_t *, vmem_addr_t, vmem_size_t),
|
|
vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags,
|
|
int ipl)
|
|
{
|
|
vmem_t *vm;
|
|
int i;
|
|
#if defined(_KERNEL)
|
|
static ONCE_DECL(control);
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
|
|
#if defined(_KERNEL)
|
|
if (RUN_ONCE(&control, vmem_init)) {
|
|
return NULL;
|
|
}
|
|
#endif /* defined(_KERNEL) */
|
|
vm = xmalloc(sizeof(*vm), flags);
|
|
if (vm == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
VMEM_LOCK_INIT(vm, ipl);
|
|
vm->vm_name = name;
|
|
vm->vm_quantum_mask = quantum - 1;
|
|
vm->vm_quantum_shift = calc_order(quantum);
|
|
KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
|
|
vm->vm_allocfn = allocfn;
|
|
vm->vm_freefn = freefn;
|
|
vm->vm_source = source;
|
|
vm->vm_nbusytag = 0;
|
|
#if defined(QCACHE)
|
|
qc_init(vm, qcache_max, ipl);
|
|
#endif /* defined(QCACHE) */
|
|
|
|
CIRCLEQ_INIT(&vm->vm_seglist);
|
|
for (i = 0; i < VMEM_MAXORDER; i++) {
|
|
LIST_INIT(&vm->vm_freelist[i]);
|
|
}
|
|
vm->vm_hashlist = NULL;
|
|
if (vmem_rehash(vm, VMEM_HASHSIZE_INIT, flags)) {
|
|
vmem_destroy1(vm);
|
|
return NULL;
|
|
}
|
|
|
|
if (size != 0) {
|
|
if (vmem_add(vm, base, size, flags) == 0) {
|
|
vmem_destroy1(vm);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
#if defined(_KERNEL)
|
|
mutex_enter(&vmem_list_lock);
|
|
LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
|
|
mutex_exit(&vmem_list_lock);
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
return vm;
|
|
}
|
|
|
|
void
|
|
vmem_destroy(vmem_t *vm)
|
|
{
|
|
|
|
#if defined(_KERNEL)
|
|
mutex_enter(&vmem_list_lock);
|
|
LIST_REMOVE(vm, vm_alllist);
|
|
mutex_exit(&vmem_list_lock);
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
vmem_destroy1(vm);
|
|
}
|
|
|
|
vmem_size_t
|
|
vmem_roundup_size(vmem_t *vm, vmem_size_t size)
|
|
{
|
|
|
|
return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
|
|
}
|
|
|
|
/*
|
|
* vmem_alloc:
|
|
*
|
|
* => caller must ensure appropriate spl,
|
|
* if the arena can be accessed from interrupt context.
|
|
*/
|
|
|
|
vmem_addr_t
|
|
vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
|
|
{
|
|
const vm_flag_t strat __unused = flags & VM_FITMASK;
|
|
|
|
KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
|
|
|
|
KASSERT(size > 0);
|
|
KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
|
|
if ((flags & VM_SLEEP) != 0) {
|
|
ASSERT_SLEEPABLE();
|
|
}
|
|
|
|
#if defined(QCACHE)
|
|
if (size <= vm->vm_qcache_max) {
|
|
int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
|
|
qcache_t *qc = vm->vm_qcache[qidx - 1];
|
|
|
|
return (vmem_addr_t)pool_cache_get(qc->qc_cache,
|
|
vmf_to_prf(flags));
|
|
}
|
|
#endif /* defined(QCACHE) */
|
|
|
|
return vmem_xalloc(vm, size, 0, 0, 0, 0, 0, flags);
|
|
}
|
|
|
|
vmem_addr_t
|
|
vmem_xalloc(vmem_t *vm, vmem_size_t size0, vmem_size_t align, vmem_size_t phase,
|
|
vmem_size_t nocross, vmem_addr_t minaddr, vmem_addr_t maxaddr,
|
|
vm_flag_t flags)
|
|
{
|
|
struct vmem_freelist *list;
|
|
struct vmem_freelist *first;
|
|
struct vmem_freelist *end;
|
|
bt_t *bt;
|
|
bt_t *btnew;
|
|
bt_t *btnew2;
|
|
const vmem_size_t size = vmem_roundup_size(vm, size0);
|
|
vm_flag_t strat = flags & VM_FITMASK;
|
|
vmem_addr_t start;
|
|
|
|
KASSERT(size0 > 0);
|
|
KASSERT(size > 0);
|
|
KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
|
|
if ((flags & VM_SLEEP) != 0) {
|
|
ASSERT_SLEEPABLE();
|
|
}
|
|
KASSERT((align & vm->vm_quantum_mask) == 0);
|
|
KASSERT((align & (align - 1)) == 0);
|
|
KASSERT((phase & vm->vm_quantum_mask) == 0);
|
|
KASSERT((nocross & vm->vm_quantum_mask) == 0);
|
|
KASSERT((nocross & (nocross - 1)) == 0);
|
|
KASSERT((align == 0 && phase == 0) || phase < align);
|
|
KASSERT(nocross == 0 || nocross >= size);
|
|
KASSERT(maxaddr == 0 || minaddr < maxaddr);
|
|
KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
|
|
KASSERT(vmem_check_sanity(vm));
|
|
|
|
if (align == 0) {
|
|
align = vm->vm_quantum_mask + 1;
|
|
}
|
|
btnew = bt_alloc(vm, flags);
|
|
if (btnew == NULL) {
|
|
return VMEM_ADDR_NULL;
|
|
}
|
|
btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
|
|
if (btnew2 == NULL) {
|
|
bt_free(vm, btnew);
|
|
return VMEM_ADDR_NULL;
|
|
}
|
|
|
|
retry_strat:
|
|
first = bt_freehead_toalloc(vm, size, strat);
|
|
end = &vm->vm_freelist[VMEM_MAXORDER];
|
|
retry:
|
|
bt = NULL;
|
|
VMEM_LOCK(vm);
|
|
if (strat == VM_INSTANTFIT) {
|
|
for (list = first; list < end; list++) {
|
|
bt = LIST_FIRST(list);
|
|
if (bt != NULL) {
|
|
start = vmem_fit(bt, size, align, phase,
|
|
nocross, minaddr, maxaddr);
|
|
if (start != VMEM_ADDR_NULL) {
|
|
goto gotit;
|
|
}
|
|
}
|
|
}
|
|
} else { /* VM_BESTFIT */
|
|
for (list = first; list < end; list++) {
|
|
LIST_FOREACH(bt, list, bt_freelist) {
|
|
if (bt->bt_size >= size) {
|
|
start = vmem_fit(bt, size, align, phase,
|
|
nocross, minaddr, maxaddr);
|
|
if (start != VMEM_ADDR_NULL) {
|
|
goto gotit;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
VMEM_UNLOCK(vm);
|
|
#if 1
|
|
if (strat == VM_INSTANTFIT) {
|
|
strat = VM_BESTFIT;
|
|
goto retry_strat;
|
|
}
|
|
#endif
|
|
if (align != vm->vm_quantum_mask + 1 || phase != 0 ||
|
|
nocross != 0 || minaddr != 0 || maxaddr != 0) {
|
|
|
|
/*
|
|
* XXX should try to import a region large enough to
|
|
* satisfy restrictions?
|
|
*/
|
|
|
|
goto fail;
|
|
}
|
|
if (vmem_import(vm, size, flags) == 0) {
|
|
goto retry;
|
|
}
|
|
/* XXX */
|
|
fail:
|
|
bt_free(vm, btnew);
|
|
bt_free(vm, btnew2);
|
|
return VMEM_ADDR_NULL;
|
|
|
|
gotit:
|
|
KASSERT(bt->bt_type == BT_TYPE_FREE);
|
|
KASSERT(bt->bt_size >= size);
|
|
bt_remfree(vm, bt);
|
|
KASSERT(vmem_check_sanity(vm));
|
|
if (bt->bt_start != start) {
|
|
btnew2->bt_type = BT_TYPE_FREE;
|
|
btnew2->bt_start = bt->bt_start;
|
|
btnew2->bt_size = start - bt->bt_start;
|
|
bt->bt_start = start;
|
|
bt->bt_size -= btnew2->bt_size;
|
|
bt_insfree(vm, btnew2);
|
|
bt_insseg(vm, btnew2, CIRCLEQ_PREV(bt, bt_seglist));
|
|
btnew2 = NULL;
|
|
KASSERT(vmem_check_sanity(vm));
|
|
}
|
|
KASSERT(bt->bt_start == start);
|
|
if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
|
|
/* split */
|
|
btnew->bt_type = BT_TYPE_BUSY;
|
|
btnew->bt_start = bt->bt_start;
|
|
btnew->bt_size = size;
|
|
bt->bt_start = bt->bt_start + size;
|
|
bt->bt_size -= size;
|
|
bt_insfree(vm, bt);
|
|
bt_insseg(vm, btnew, CIRCLEQ_PREV(bt, bt_seglist));
|
|
bt_insbusy(vm, btnew);
|
|
VMEM_UNLOCK(vm);
|
|
KASSERT(vmem_check_sanity(vm));
|
|
} else {
|
|
bt->bt_type = BT_TYPE_BUSY;
|
|
bt_insbusy(vm, bt);
|
|
VMEM_UNLOCK(vm);
|
|
bt_free(vm, btnew);
|
|
btnew = bt;
|
|
KASSERT(vmem_check_sanity(vm));
|
|
}
|
|
if (btnew2 != NULL) {
|
|
bt_free(vm, btnew2);
|
|
}
|
|
KASSERT(btnew->bt_size >= size);
|
|
btnew->bt_type = BT_TYPE_BUSY;
|
|
|
|
KASSERT(vmem_check_sanity(vm));
|
|
return btnew->bt_start;
|
|
}
|
|
|
|
/*
|
|
* vmem_free:
|
|
*
|
|
* => caller must ensure appropriate spl,
|
|
* if the arena can be accessed from interrupt context.
|
|
*/
|
|
|
|
void
|
|
vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
|
|
{
|
|
|
|
KASSERT(addr != VMEM_ADDR_NULL);
|
|
KASSERT(size > 0);
|
|
|
|
#if defined(QCACHE)
|
|
if (size <= vm->vm_qcache_max) {
|
|
int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
|
|
qcache_t *qc = vm->vm_qcache[qidx - 1];
|
|
|
|
return pool_cache_put(qc->qc_cache, (void *)addr);
|
|
}
|
|
#endif /* defined(QCACHE) */
|
|
|
|
vmem_xfree(vm, addr, size);
|
|
}
|
|
|
|
void
|
|
vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
|
|
{
|
|
bt_t *bt;
|
|
bt_t *t;
|
|
|
|
KASSERT(addr != VMEM_ADDR_NULL);
|
|
KASSERT(size > 0);
|
|
|
|
VMEM_LOCK(vm);
|
|
|
|
bt = bt_lookupbusy(vm, addr);
|
|
KASSERT(bt != NULL);
|
|
KASSERT(bt->bt_start == addr);
|
|
KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
|
|
bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
|
|
KASSERT(bt->bt_type == BT_TYPE_BUSY);
|
|
bt_rembusy(vm, bt);
|
|
bt->bt_type = BT_TYPE_FREE;
|
|
|
|
/* coalesce */
|
|
t = CIRCLEQ_NEXT(bt, bt_seglist);
|
|
if (t != NULL && t->bt_type == BT_TYPE_FREE) {
|
|
KASSERT(BT_END(bt) == t->bt_start);
|
|
bt_remfree(vm, t);
|
|
bt_remseg(vm, t);
|
|
bt->bt_size += t->bt_size;
|
|
bt_free(vm, t);
|
|
}
|
|
t = CIRCLEQ_PREV(bt, bt_seglist);
|
|
if (t != NULL && t->bt_type == BT_TYPE_FREE) {
|
|
KASSERT(BT_END(t) == bt->bt_start);
|
|
bt_remfree(vm, t);
|
|
bt_remseg(vm, t);
|
|
bt->bt_size += t->bt_size;
|
|
bt->bt_start = t->bt_start;
|
|
bt_free(vm, t);
|
|
}
|
|
|
|
t = CIRCLEQ_PREV(bt, bt_seglist);
|
|
KASSERT(t != NULL);
|
|
KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
|
|
if (vm->vm_freefn != NULL && t->bt_type == BT_TYPE_SPAN &&
|
|
t->bt_size == bt->bt_size) {
|
|
vmem_addr_t spanaddr;
|
|
vmem_size_t spansize;
|
|
|
|
KASSERT(t->bt_start == bt->bt_start);
|
|
spanaddr = bt->bt_start;
|
|
spansize = bt->bt_size;
|
|
bt_remseg(vm, bt);
|
|
bt_free(vm, bt);
|
|
bt_remseg(vm, t);
|
|
bt_free(vm, t);
|
|
VMEM_UNLOCK(vm);
|
|
(*vm->vm_freefn)(vm->vm_source, spanaddr, spansize);
|
|
} else {
|
|
bt_insfree(vm, bt);
|
|
VMEM_UNLOCK(vm);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vmem_add:
|
|
*
|
|
* => caller must ensure appropriate spl,
|
|
* if the arena can be accessed from interrupt context.
|
|
*/
|
|
|
|
vmem_addr_t
|
|
vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
|
|
{
|
|
|
|
return vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
|
|
}
|
|
|
|
/*
|
|
* vmem_reap: reap unused resources.
|
|
*
|
|
* => return true if we successfully reaped something.
|
|
*/
|
|
|
|
bool
|
|
vmem_reap(vmem_t *vm)
|
|
{
|
|
bool didsomething = false;
|
|
|
|
#if defined(QCACHE)
|
|
didsomething = qc_reap(vm);
|
|
#endif /* defined(QCACHE) */
|
|
return didsomething;
|
|
}
|
|
|
|
/* ---- rehash */
|
|
|
|
#if defined(_KERNEL)
|
|
static struct callout vmem_rehash_ch;
|
|
static int vmem_rehash_interval;
|
|
static struct workqueue *vmem_rehash_wq;
|
|
static struct work vmem_rehash_wk;
|
|
|
|
static void
|
|
vmem_rehash_all(struct work *wk, void *dummy)
|
|
{
|
|
vmem_t *vm;
|
|
|
|
KASSERT(wk == &vmem_rehash_wk);
|
|
mutex_enter(&vmem_list_lock);
|
|
LIST_FOREACH(vm, &vmem_list, vm_alllist) {
|
|
size_t desired;
|
|
size_t current;
|
|
|
|
if (!VMEM_TRYLOCK(vm)) {
|
|
continue;
|
|
}
|
|
desired = vm->vm_nbusytag;
|
|
current = vm->vm_hashsize;
|
|
VMEM_UNLOCK(vm);
|
|
|
|
if (desired > VMEM_HASHSIZE_MAX) {
|
|
desired = VMEM_HASHSIZE_MAX;
|
|
} else if (desired < VMEM_HASHSIZE_MIN) {
|
|
desired = VMEM_HASHSIZE_MIN;
|
|
}
|
|
if (desired > current * 2 || desired * 2 < current) {
|
|
vmem_rehash(vm, desired, VM_NOSLEEP);
|
|
}
|
|
}
|
|
mutex_exit(&vmem_list_lock);
|
|
|
|
callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
|
|
}
|
|
|
|
static void
|
|
vmem_rehash_all_kick(void *dummy)
|
|
{
|
|
|
|
workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
|
|
}
|
|
|
|
void
|
|
vmem_rehash_start(void)
|
|
{
|
|
int error;
|
|
|
|
error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
|
|
vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
|
|
if (error) {
|
|
panic("%s: workqueue_create %d\n", __func__, error);
|
|
}
|
|
callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
|
|
callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
|
|
|
|
vmem_rehash_interval = hz * 10;
|
|
callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
|
|
}
|
|
#endif /* defined(_KERNEL) */
|
|
|
|
/* ---- debug */
|
|
|
|
#if defined(DDB)
|
|
static bt_t *
|
|
vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
|
|
{
|
|
bt_t *bt;
|
|
|
|
CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
|
|
if (BT_ISSPAN_P(bt)) {
|
|
continue;
|
|
}
|
|
if (bt->bt_start <= addr && addr < BT_END(bt)) {
|
|
return bt;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
|
|
{
|
|
vmem_t *vm;
|
|
|
|
LIST_FOREACH(vm, &vmem_list, vm_alllist) {
|
|
bt_t *bt;
|
|
|
|
bt = vmem_whatis_lookup(vm, addr);
|
|
if (bt == NULL) {
|
|
continue;
|
|
}
|
|
(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
|
|
(void *)addr, (void *)bt->bt_start,
|
|
(size_t)(addr - bt->bt_start), vm->vm_name,
|
|
(bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
|
|
}
|
|
}
|
|
|
|
static void
|
|
vmem_showall(void (*pr)(const char *, ...))
|
|
{
|
|
vmem_t *vm;
|
|
|
|
LIST_FOREACH(vm, &vmem_list, vm_alllist) {
|
|
(*pr)("VMEM '%s' at %p\n", vm->vm_name, vm);
|
|
if (vm->vm_source)
|
|
(*pr)(" VMEM backend '%s' at %p\n",
|
|
vm->vm_source->vm_name, vm->vm_source);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vmem_show(uintptr_t addr, void (*pr)(const char *, ...))
|
|
{
|
|
vmem_t *vm;
|
|
bt_t *bt = NULL;
|
|
|
|
LIST_FOREACH(vm, &vmem_list, vm_alllist) {
|
|
if ((uintptr_t)vm == addr)
|
|
goto found;
|
|
|
|
bt = vmem_whatis_lookup(vm, addr);
|
|
if (bt != NULL)
|
|
goto found;
|
|
}
|
|
|
|
if (bt == NULL)
|
|
return;
|
|
found:
|
|
|
|
(*pr)("VMEM '%s' spans\n", vm->vm_name);
|
|
CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
|
|
(*pr)(" 0x%"PRIx64" - 0x%"PRIx64" %s %s\n",
|
|
bt->bt_start, BT_END(bt),
|
|
(bt->bt_type == BT_TYPE_SPAN_STATIC) ? "static" : "",
|
|
(bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
|
|
}
|
|
}
|
|
|
|
void
|
|
vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
|
|
{
|
|
if (modif[0] == 'a') {
|
|
vmem_showall(pr);
|
|
return;
|
|
}
|
|
|
|
vmem_show(addr, pr);
|
|
}
|
|
#endif /* defined(DDB) */
|
|
|
|
#if defined(VMEM_DEBUG)
|
|
|
|
#if !defined(_KERNEL)
|
|
#include <stdio.h>
|
|
#endif /* !defined(_KERNEL) */
|
|
|
|
void bt_dump(const bt_t *);
|
|
|
|
void
|
|
bt_dump(const bt_t *bt)
|
|
{
|
|
|
|
printf("\t%p: %" PRIu64 ", %" PRIu64 ", %d\n",
|
|
bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
|
|
bt->bt_type);
|
|
}
|
|
|
|
void
|
|
vmem_dump(const vmem_t *vm)
|
|
{
|
|
const bt_t *bt;
|
|
int i;
|
|
|
|
printf("vmem %p '%s'\n", vm, vm->vm_name);
|
|
CIRCLEQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
|
|
bt_dump(bt);
|
|
}
|
|
|
|
for (i = 0; i < VMEM_MAXORDER; i++) {
|
|
const struct vmem_freelist *fl = &vm->vm_freelist[i];
|
|
|
|
if (LIST_EMPTY(fl)) {
|
|
continue;
|
|
}
|
|
|
|
printf("freelist[%d]\n", i);
|
|
LIST_FOREACH(bt, fl, bt_freelist) {
|
|
bt_dump(bt);
|
|
if (bt->bt_size) {
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if !defined(_KERNEL)
|
|
|
|
int
|
|
main()
|
|
{
|
|
vmem_t *vm;
|
|
vmem_addr_t p;
|
|
struct reg {
|
|
vmem_addr_t p;
|
|
vmem_size_t sz;
|
|
bool x;
|
|
} *reg = NULL;
|
|
int nreg = 0;
|
|
int nalloc = 0;
|
|
int nfree = 0;
|
|
vmem_size_t total = 0;
|
|
#if 1
|
|
vm_flag_t strat = VM_INSTANTFIT;
|
|
#else
|
|
vm_flag_t strat = VM_BESTFIT;
|
|
#endif
|
|
|
|
vm = vmem_create("test", VMEM_ADDR_NULL, 0, 1,
|
|
NULL, NULL, NULL, 0, VM_SLEEP);
|
|
if (vm == NULL) {
|
|
printf("vmem_create\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
vmem_dump(vm);
|
|
|
|
p = vmem_add(vm, 100, 200, VM_SLEEP);
|
|
p = vmem_add(vm, 2000, 1, VM_SLEEP);
|
|
p = vmem_add(vm, 40000, 0x10000000>>12, VM_SLEEP);
|
|
p = vmem_add(vm, 10000, 10000, VM_SLEEP);
|
|
p = vmem_add(vm, 500, 1000, VM_SLEEP);
|
|
vmem_dump(vm);
|
|
for (;;) {
|
|
struct reg *r;
|
|
int t = rand() % 100;
|
|
|
|
if (t > 45) {
|
|
/* alloc */
|
|
vmem_size_t sz = rand() % 500 + 1;
|
|
bool x;
|
|
vmem_size_t align, phase, nocross;
|
|
vmem_addr_t minaddr, maxaddr;
|
|
|
|
if (t > 70) {
|
|
x = true;
|
|
/* XXX */
|
|
align = 1 << (rand() % 15);
|
|
phase = rand() % 65536;
|
|
nocross = 1 << (rand() % 15);
|
|
if (align <= phase) {
|
|
phase = 0;
|
|
}
|
|
if (VMEM_CROSS_P(phase, phase + sz - 1,
|
|
nocross)) {
|
|
nocross = 0;
|
|
}
|
|
minaddr = rand() % 50000;
|
|
maxaddr = rand() % 70000;
|
|
if (minaddr > maxaddr) {
|
|
minaddr = 0;
|
|
maxaddr = 0;
|
|
}
|
|
printf("=== xalloc %" PRIu64
|
|
" align=%" PRIu64 ", phase=%" PRIu64
|
|
", nocross=%" PRIu64 ", min=%" PRIu64
|
|
", max=%" PRIu64 "\n",
|
|
(uint64_t)sz,
|
|
(uint64_t)align,
|
|
(uint64_t)phase,
|
|
(uint64_t)nocross,
|
|
(uint64_t)minaddr,
|
|
(uint64_t)maxaddr);
|
|
p = vmem_xalloc(vm, sz, align, phase, nocross,
|
|
minaddr, maxaddr, strat|VM_SLEEP);
|
|
} else {
|
|
x = false;
|
|
printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
|
|
p = vmem_alloc(vm, sz, strat|VM_SLEEP);
|
|
}
|
|
printf("-> %" PRIu64 "\n", (uint64_t)p);
|
|
vmem_dump(vm);
|
|
if (p == VMEM_ADDR_NULL) {
|
|
if (x) {
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
nreg++;
|
|
reg = realloc(reg, sizeof(*reg) * nreg);
|
|
r = ®[nreg - 1];
|
|
r->p = p;
|
|
r->sz = sz;
|
|
r->x = x;
|
|
total += sz;
|
|
nalloc++;
|
|
} else if (nreg != 0) {
|
|
/* free */
|
|
r = ®[rand() % nreg];
|
|
printf("=== free %" PRIu64 ", %" PRIu64 "\n",
|
|
(uint64_t)r->p, (uint64_t)r->sz);
|
|
if (r->x) {
|
|
vmem_xfree(vm, r->p, r->sz);
|
|
} else {
|
|
vmem_free(vm, r->p, r->sz);
|
|
}
|
|
total -= r->sz;
|
|
vmem_dump(vm);
|
|
*r = reg[nreg - 1];
|
|
nreg--;
|
|
nfree++;
|
|
}
|
|
printf("total=%" PRIu64 "\n", (uint64_t)total);
|
|
}
|
|
fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
|
|
(uint64_t)total, nalloc, nfree);
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
#endif /* !defined(_KERNEL) */
|
|
#endif /* defined(VMEM_DEBUG) */
|