NetBSD/sys/dev/mvme/mvmebus.c
chs cbab9cadce split device_t/softc for all remaining drivers.
replace "struct device *" with "device_t".
use device_xname(), device_unit(), etc.
2012-10-27 17:17:22 +00:00

828 lines
22 KiB
C

/* $NetBSD: mvmebus.c,v 1.19 2012/10/27 17:18:27 chs Exp $ */
/*-
* Copyright (c) 2000, 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Steve C. Woodford.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mvmebus.c,v 1.19 2012/10/27 17:18:27 chs Exp $");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/kcore.h>
#include <sys/cpu.h>
#include <sys/bus.h>
#include <dev/vme/vmereg.h>
#include <dev/vme/vmevar.h>
#include <dev/mvme/mvmebus.h>
#ifdef DIAGNOSTIC
int mvmebus_dummy_dmamap_create(bus_dma_tag_t, bus_size_t, int, bus_size_t,
bus_size_t, int, bus_dmamap_t *);
void mvmebus_dummy_dmamap_destroy(bus_dma_tag_t, bus_dmamap_t);
int mvmebus_dummy_dmamem_alloc(bus_dma_tag_t, bus_size_t, bus_size_t,
bus_size_t, bus_dma_segment_t *, int, int *, int);
void mvmebus_dummy_dmamem_free(bus_dma_tag_t, bus_dma_segment_t *, int);
#endif
#ifdef DEBUG
static const char *mvmebus_mod_string(vme_addr_t, vme_size_t,
vme_am_t, vme_datasize_t);
#endif
static void mvmebus_offboard_ram(struct mvmebus_softc *);
static int mvmebus_dmamap_load_common(struct mvmebus_softc *, bus_dmamap_t);
vme_am_t _mvmebus_am_cap[] = {
MVMEBUS_AM_CAP_BLKD64 | MVMEBUS_AM_CAP_USER,
MVMEBUS_AM_CAP_DATA | MVMEBUS_AM_CAP_USER,
MVMEBUS_AM_CAP_PROG | MVMEBUS_AM_CAP_USER,
MVMEBUS_AM_CAP_BLK | MVMEBUS_AM_CAP_USER,
MVMEBUS_AM_CAP_BLKD64 | MVMEBUS_AM_CAP_SUPER,
MVMEBUS_AM_CAP_DATA | MVMEBUS_AM_CAP_SUPER,
MVMEBUS_AM_CAP_PROG | MVMEBUS_AM_CAP_SUPER,
MVMEBUS_AM_CAP_BLK | MVMEBUS_AM_CAP_SUPER
};
const char *mvmebus_irq_name[] = {
"vmeirq0", "vmeirq1", "vmeirq2", "vmeirq3",
"vmeirq4", "vmeirq5", "vmeirq6", "vmeirq7"
};
extern phys_ram_seg_t mem_clusters[0];
extern int mem_cluster_cnt;
static void
mvmebus_offboard_ram(struct mvmebus_softc *sc)
{
struct mvmebus_range *svr, *mvr;
vme_addr_t start, end, size;
int i;
/*
* If we have any offboard RAM (i.e. a VMEbus RAM board) then
* we need to record its details since it's effectively another
* VMEbus slave image as far as we're concerned.
* The chip-specific backend will have reserved sc->sc_slaves[0]
* for exactly this purpose.
*/
svr = sc->sc_slaves;
if (mem_cluster_cnt < 2) {
svr->vr_am = MVMEBUS_AM_DISABLED;
return;
}
start = mem_clusters[1].start;
size = mem_clusters[1].size - 1;
end = start + size;
/*
* Figure out which VMEbus master image the RAM is
* visible through. This will tell us the address
* modifier and datasizes it uses, as well as allowing
* us to calculate its `real' VMEbus address.
*
* XXX FIXME: This is broken if the RAM is mapped through
* a translated address space. For example, on mvme167 it's
* perfectly legal to set up the following A32 mapping:
*
* vr_locaddr == 0x80000000
* vr_vmestart == 0x10000000
* vr_vmeend == 0x10ffffff
*
* In this case, RAM at VMEbus address 0x10800000 will appear at local
* address 0x80800000, but we need to set the slave vr_vmestart to
* 0x10800000.
*/
for (i = 0, mvr = sc->sc_masters; i < sc->sc_nmasters; i++, mvr++) {
vme_addr_t vstart = mvr->vr_locstart + mvr->vr_vmestart;
if (start >= vstart &&
end <= vstart + (mvr->vr_vmeend - mvr->vr_vmestart))
break;
}
if (i == sc->sc_nmasters) {
svr->vr_am = MVMEBUS_AM_DISABLED;
#ifdef DEBUG
printf("%s: No VMEbus master mapping for offboard RAM!\n",
device_xname(sc->sc_dev));
#endif
return;
}
svr->vr_locstart = start;
svr->vr_vmestart = start & mvr->vr_mask;
svr->vr_vmeend = svr->vr_vmestart + size;
svr->vr_datasize = mvr->vr_datasize;
svr->vr_mask = mvr->vr_mask;
svr->vr_am = mvr->vr_am & VME_AM_ADRSIZEMASK;
svr->vr_am |= MVMEBUS_AM_CAP_DATA | MVMEBUS_AM_CAP_PROG |
MVMEBUS_AM_CAP_SUPER | MVMEBUS_AM_CAP_USER;
}
void
mvmebus_attach(struct mvmebus_softc *sc)
{
struct vmebus_attach_args vaa;
int i;
/* Zap the IRQ reference counts */
for (i = 0; i < 8; i++)
sc->sc_irqref[i] = 0;
/* If there's offboard RAM, get its VMEbus slave attributes */
mvmebus_offboard_ram(sc);
#ifdef DEBUG
for (i = 0; i < sc->sc_nmasters; i++) {
struct mvmebus_range *vr = &sc->sc_masters[i];
if (vr->vr_am == MVMEBUS_AM_DISABLED) {
printf("%s: Master#%d: disabled\n",
device_xname(sc->sc_dev), i);
continue;
}
printf("%s: Master#%d: 0x%08lx -> %s\n",
device_xname(sc->sc_dev), i,
vr->vr_locstart + (vr->vr_vmestart & vr->vr_mask),
mvmebus_mod_string(vr->vr_vmestart,
(vr->vr_vmeend - vr->vr_vmestart) + 1,
vr->vr_am, vr->vr_datasize));
}
for (i = 0; i < sc->sc_nslaves; i++) {
struct mvmebus_range *vr = &sc->sc_slaves[i];
if (vr->vr_am == MVMEBUS_AM_DISABLED) {
printf("%s: Slave#%d: disabled\n",
device_xname(sc->sc_dev), i);
continue;
}
printf("%s: Slave#%d: 0x%08lx -> %s\n",
device_xname(sc->sc_dev), i, vr->vr_locstart,
mvmebus_mod_string(vr->vr_vmestart,
(vr->vr_vmeend - vr->vr_vmestart) + 1,
vr->vr_am, vr->vr_datasize));
}
#endif
sc->sc_vct.cookie = sc;
sc->sc_vct.vct_probe = mvmebus_probe;
sc->sc_vct.vct_map = mvmebus_map;
sc->sc_vct.vct_unmap = mvmebus_unmap;
sc->sc_vct.vct_int_map = mvmebus_intmap;
sc->sc_vct.vct_int_evcnt = mvmebus_intr_evcnt;
sc->sc_vct.vct_int_establish = mvmebus_intr_establish;
sc->sc_vct.vct_int_disestablish = mvmebus_intr_disestablish;
sc->sc_vct.vct_dmamap_create = mvmebus_dmamap_create;
sc->sc_vct.vct_dmamap_destroy = mvmebus_dmamap_destroy;
sc->sc_vct.vct_dmamem_alloc = mvmebus_dmamem_alloc;
sc->sc_vct.vct_dmamem_free = mvmebus_dmamem_free;
sc->sc_mvmedmat._cookie = sc;
sc->sc_mvmedmat._dmamap_load = mvmebus_dmamap_load;
sc->sc_mvmedmat._dmamap_load_mbuf = mvmebus_dmamap_load_mbuf;
sc->sc_mvmedmat._dmamap_load_uio = mvmebus_dmamap_load_uio;
sc->sc_mvmedmat._dmamap_load_raw = mvmebus_dmamap_load_raw;
sc->sc_mvmedmat._dmamap_unload = mvmebus_dmamap_unload;
sc->sc_mvmedmat._dmamap_sync = mvmebus_dmamap_sync;
sc->sc_mvmedmat._dmamem_map = mvmebus_dmamem_map;
sc->sc_mvmedmat._dmamem_unmap = mvmebus_dmamem_unmap;
sc->sc_mvmedmat._dmamem_mmap = mvmebus_dmamem_mmap;
#ifdef DIAGNOSTIC
sc->sc_mvmedmat._dmamap_create = mvmebus_dummy_dmamap_create;
sc->sc_mvmedmat._dmamap_destroy = mvmebus_dummy_dmamap_destroy;
sc->sc_mvmedmat._dmamem_alloc = mvmebus_dummy_dmamem_alloc;
sc->sc_mvmedmat._dmamem_free = mvmebus_dummy_dmamem_free;
#else
sc->sc_mvmedmat._dmamap_create = NULL;
sc->sc_mvmedmat._dmamap_destroy = NULL;
sc->sc_mvmedmat._dmamem_alloc = NULL;
sc->sc_mvmedmat._dmamem_free = NULL;
#endif
vaa.va_vct = &sc->sc_vct;
vaa.va_bdt = &sc->sc_mvmedmat;
vaa.va_slaveconfig = NULL;
config_found(sc->sc_dev, &vaa, 0);
}
int
mvmebus_map(void *vsc, vme_addr_t vmeaddr, vme_size_t len, vme_am_t am, vme_datasize_t datasize, vme_swap_t swap, bus_space_tag_t *tag, bus_space_handle_t *handle, vme_mapresc_t *resc)
{
struct mvmebus_softc *sc;
struct mvmebus_mapresc *mr;
struct mvmebus_range *vr;
vme_addr_t end;
vme_am_t cap, as;
paddr_t paddr;
int rv, i;
sc = vsc;
end = (vmeaddr + len) - 1;
paddr = 0;
vr = sc->sc_masters;
cap = MVMEBUS_AM2CAP(am);
as = am & VME_AM_ADRSIZEMASK;
for (i = 0; i < sc->sc_nmasters && paddr == 0; i++, vr++) {
if (vr->vr_am == MVMEBUS_AM_DISABLED)
continue;
if (cap == (vr->vr_am & cap) &&
as == (vr->vr_am & VME_AM_ADRSIZEMASK) &&
datasize <= vr->vr_datasize &&
vmeaddr >= vr->vr_vmestart && end < vr->vr_vmeend)
paddr = vr->vr_locstart + (vmeaddr & vr->vr_mask);
}
if (paddr == 0)
return (ENOMEM);
rv = bus_space_map(sc->sc_bust, paddr, len, 0, handle);
if (rv != 0)
return (rv);
/* Allocate space for the resource tag */
if ((mr = malloc(sizeof(*mr), M_DEVBUF, M_NOWAIT)) == NULL) {
bus_space_unmap(sc->sc_bust, *handle, len);
return (ENOMEM);
}
/* Record the range's details */
mr->mr_am = am;
mr->mr_datasize = datasize;
mr->mr_addr = vmeaddr;
mr->mr_size = len;
mr->mr_handle = *handle;
mr->mr_range = i;
*tag = sc->sc_bust;
*resc = (vme_mapresc_t *) mr;
return (0);
}
/* ARGSUSED */
void
mvmebus_unmap(void *vsc, vme_mapresc_t resc)
{
struct mvmebus_softc *sc = vsc;
struct mvmebus_mapresc *mr = (struct mvmebus_mapresc *) resc;
bus_space_unmap(sc->sc_bust, mr->mr_handle, mr->mr_size);
free(mr, M_DEVBUF);
}
int
mvmebus_probe(void *vsc, vme_addr_t vmeaddr, vme_size_t len, vme_am_t am, vme_datasize_t datasize, int (*callback)(void *, bus_space_tag_t, bus_space_handle_t), void *arg)
{
bus_space_tag_t tag;
bus_space_handle_t handle;
vme_mapresc_t resc;
vme_size_t offs;
int rv;
/* Get a temporary mapping to the VMEbus range */
rv = mvmebus_map(vsc, vmeaddr, len, am, datasize, 0,
&tag, &handle, &resc);
if (rv)
return (rv);
if (callback)
rv = (*callback) (arg, tag, handle);
else
for (offs = 0; offs < len && rv == 0;) {
switch (datasize) {
case VME_D8:
rv = bus_space_peek_1(tag, handle, offs, NULL);
offs += 1;
break;
case VME_D16:
rv = bus_space_peek_2(tag, handle, offs, NULL);
offs += 2;
break;
case VME_D32:
rv = bus_space_peek_4(tag, handle, offs, NULL);
offs += 4;
break;
}
}
mvmebus_unmap(vsc, resc);
return (rv);
}
/* ARGSUSED */
int
mvmebus_intmap(void *vsc, int level, int vector, vme_intr_handle_t *handlep)
{
if (level < 1 || level > 7 || vector < 0x80 || vector > 0xff)
return (EINVAL);
/* This is rather gross */
*handlep = (void *) (int) ((level << 8) | vector);
return (0);
}
/* ARGSUSED */
const struct evcnt *
mvmebus_intr_evcnt(void *vsc, vme_intr_handle_t handle)
{
struct mvmebus_softc *sc = vsc;
return (&sc->sc_evcnt[(((int) handle) >> 8) - 1]);
}
void *
mvmebus_intr_establish(void *vsc, vme_intr_handle_t handle, int prior, int (*func)(void *), void *arg)
{
struct mvmebus_softc *sc;
int level, vector, first;
sc = vsc;
/* Extract the interrupt's level and vector */
level = ((int) handle) >> 8;
vector = ((int) handle) & 0xff;
#ifdef DIAGNOSTIC
if (vector < 0 || vector > 0xff) {
printf("%s: Illegal vector offset: 0x%x\n",
device_xname(sc->sc_dev), vector);
panic("mvmebus_intr_establish");
}
if (level < 1 || level > 7) {
printf("%s: Illegal interrupt level: %d\n",
device_xname(sc->sc_dev), level);
panic("mvmebus_intr_establish");
}
#endif
first = (sc->sc_irqref[level]++ == 0);
(*sc->sc_intr_establish)(sc->sc_chip, prior, level, vector, first,
func, arg, &sc->sc_evcnt[level - 1]);
return ((void *) handle);
}
void
mvmebus_intr_disestablish(void *vsc, vme_intr_handle_t handle)
{
struct mvmebus_softc *sc;
int level, vector, last;
sc = vsc;
/* Extract the interrupt's level and vector */
level = ((int) handle) >> 8;
vector = ((int) handle) & 0xff;
#ifdef DIAGNOSTIC
if (vector < 0 || vector > 0xff) {
printf("%s: Illegal vector offset: 0x%x\n",
device_xname(sc->sc_dev), vector);
panic("mvmebus_intr_disestablish");
}
if (level < 1 || level > 7) {
printf("%s: Illegal interrupt level: %d\n",
device_xname(sc->sc_dev), level);
panic("mvmebus_intr_disestablish");
}
if (sc->sc_irqref[level] == 0) {
printf("%s: VMEirq#%d: Reference count already zero!\n",
device_xname(sc->sc_dev), level);
panic("mvmebus_intr_disestablish");
}
#endif
last = (--(sc->sc_irqref[level]) == 0);
(*sc->sc_intr_disestablish)(sc->sc_chip, level, vector, last,
&sc->sc_evcnt[level - 1]);
}
#ifdef DIAGNOSTIC
/* ARGSUSED */
int
mvmebus_dummy_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegs, bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
{
panic("Must use vme_dmamap_create() in place of bus_dmamap_create()");
return (0); /* Shutup the compiler */
}
/* ARGSUSED */
void
mvmebus_dummy_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
{
panic("Must use vme_dmamap_destroy() in place of bus_dmamap_destroy()");
}
#endif
/* ARGSUSED */
int
mvmebus_dmamap_create(
void *vsc,
vme_size_t len,
vme_am_t am,
vme_datasize_t datasize,
vme_swap_t swap,
int nsegs,
vme_size_t segsz,
vme_addr_t bound,
int flags,
bus_dmamap_t *mapp)
{
struct mvmebus_softc *sc = vsc;
struct mvmebus_dmamap *vmap;
struct mvmebus_range *vr;
vme_am_t cap, as;
int i, rv;
cap = MVMEBUS_AM2CAP(am);
as = am & VME_AM_ADRSIZEMASK;
/*
* Verify that we even stand a chance of satisfying
* the VMEbus address space and datasize requested.
*/
for (i = 0, vr = sc->sc_slaves; i < sc->sc_nslaves; i++, vr++) {
if (vr->vr_am == MVMEBUS_AM_DISABLED)
continue;
if (as == (vr->vr_am & VME_AM_ADRSIZEMASK) &&
cap == (vr->vr_am & cap) && datasize <= vr->vr_datasize &&
len <= (vr->vr_vmeend - vr->vr_vmestart))
break;
}
if (i == sc->sc_nslaves)
return (EINVAL);
if ((vmap = malloc(sizeof(*vmap), M_DMAMAP,
(flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)) == NULL)
return (ENOMEM);
rv = bus_dmamap_create(sc->sc_dmat, len, nsegs, segsz,
bound, flags, mapp);
if (rv != 0) {
free(vmap, M_DMAMAP);
return (rv);
}
vmap->vm_am = am;
vmap->vm_datasize = datasize;
vmap->vm_swap = swap;
vmap->vm_slave = vr;
(*mapp)->_dm_cookie = vmap;
return (0);
}
void
mvmebus_dmamap_destroy(void *vsc, bus_dmamap_t map)
{
struct mvmebus_softc *sc = vsc;
free(map->_dm_cookie, M_DMAMAP);
bus_dmamap_destroy(sc->sc_dmat, map);
}
static int
mvmebus_dmamap_load_common(struct mvmebus_softc *sc, bus_dmamap_t map)
{
struct mvmebus_dmamap *vmap = map->_dm_cookie;
struct mvmebus_range *vr = vmap->vm_slave;
bus_dma_segment_t *ds;
vme_am_t cap, am;
int i;
cap = MVMEBUS_AM2CAP(vmap->vm_am);
am = vmap->vm_am & VME_AM_ADRSIZEMASK;
/*
* Traverse the list of segments which make up this map, and
* convert the CPU-relative addresses therein to VMEbus addresses.
*/
for (ds = &map->dm_segs[0]; ds < &map->dm_segs[map->dm_nsegs]; ds++) {
/*
* First, see if this map's slave image can access the
* segment, otherwise we have to waste time scanning all
* the slave images.
*/
vr = vmap->vm_slave;
if (am == (vr->vr_am & VME_AM_ADRSIZEMASK) &&
cap == (vr->vr_am & cap) &&
vmap->vm_datasize <= vr->vr_datasize &&
ds->_ds_cpuaddr >= vr->vr_locstart &&
ds->ds_len <= (vr->vr_vmeend - vr->vr_vmestart))
goto found;
for (i = 0, vr = sc->sc_slaves; i < sc->sc_nslaves; i++, vr++) {
if (vr->vr_am == MVMEBUS_AM_DISABLED)
continue;
/*
* Filter out any slave images which don't have the
* same VMEbus address modifier and datasize as
* this DMA map, and those which don't cover the
* physical address region containing the segment.
*/
if (vr != vmap->vm_slave &&
am == (vr->vr_am & VME_AM_ADRSIZEMASK) &&
cap == (vr->vr_am & cap) &&
vmap->vm_datasize <= vr->vr_datasize &&
ds->_ds_cpuaddr >= vr->vr_locstart &&
ds->ds_len <= (vr->vr_vmeend - vr->vr_vmestart))
break;
}
/*
* Did we find an applicable slave image which covers this
* segment?
*/
if (i == sc->sc_nslaves) {
/*
* XXX TODO:
*
* Bounce this segment via a bounce buffer allocated
* from this DMA map.
*/
printf("mvmebus_dmamap_load_common: bounce needed!\n");
return (EINVAL);
}
found:
/*
* Generate the VMEbus address of this segment
*/
ds->ds_addr = (ds->_ds_cpuaddr - vr->vr_locstart) +
vr->vr_vmestart;
}
return (0);
}
int
mvmebus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf, bus_size_t buflen, struct proc *p, int flags)
{
struct mvmebus_softc *sc = t->_cookie;
int rv;
rv = bus_dmamap_load(sc->sc_dmat, map, buf, buflen, p, flags);
if (rv != 0)
return rv;
return mvmebus_dmamap_load_common(sc, map);
}
int
mvmebus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *chain, int flags)
{
struct mvmebus_softc *sc = t->_cookie;
int rv;
rv = bus_dmamap_load_mbuf(sc->sc_dmat, map, chain, flags);
if (rv != 0)
return rv;
return mvmebus_dmamap_load_common(sc, map);
}
int
mvmebus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio, int flags)
{
struct mvmebus_softc *sc = t->_cookie;
int rv;
rv = bus_dmamap_load_uio(sc->sc_dmat, map, uio, flags);
if (rv != 0)
return rv;
return mvmebus_dmamap_load_common(sc, map);
}
int
mvmebus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map, bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
{
struct mvmebus_softc *sc = t->_cookie;
int rv;
/*
* mvmebus_dmamem_alloc() will ensure that the physical memory
* backing these segments is 100% accessible in at least one
* of the board's VMEbus slave images.
*/
rv = bus_dmamap_load_raw(sc->sc_dmat, map, segs, nsegs, size, flags);
if (rv != 0)
return rv;
return mvmebus_dmamap_load_common(sc, map);
}
void
mvmebus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
{
struct mvmebus_softc *sc = t->_cookie;
/* XXX Deal with bounce buffers */
bus_dmamap_unload(sc->sc_dmat, map);
}
void
mvmebus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset, bus_size_t len, int ops)
{
struct mvmebus_softc *sc = t->_cookie;
/* XXX Bounce buffers */
bus_dmamap_sync(sc->sc_dmat, map, offset, len, ops);
}
#ifdef DIAGNOSTIC
/* ARGSUSED */
int
mvmebus_dummy_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t align, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags)
{
panic("Must use vme_dmamem_alloc() in place of bus_dmamem_alloc()");
}
/* ARGSUSED */
void
mvmebus_dummy_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
{
panic("Must use vme_dmamem_free() in place of bus_dmamem_free()");
}
#endif
/* ARGSUSED */
int
mvmebus_dmamem_alloc(void *vsc, vme_size_t len, vme_am_t am, vme_datasize_t datasize, vme_swap_t swap, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags)
{
extern paddr_t avail_start;
struct mvmebus_softc *sc = vsc;
struct mvmebus_range *vr;
bus_addr_t low, high;
bus_size_t bound;
vme_am_t cap;
int i;
cap = MVMEBUS_AM2CAP(am);
am &= VME_AM_ADRSIZEMASK;
/*
* Find a slave mapping in the requested VMEbus address space.
*/
for (i = 0, vr = sc->sc_slaves; i < sc->sc_nslaves; i++, vr++) {
if (vr->vr_am == MVMEBUS_AM_DISABLED)
continue;
if (i == 0 && (flags & BUS_DMA_ONBOARD_RAM) != 0)
continue;
if (am == (vr->vr_am & VME_AM_ADRSIZEMASK) &&
cap == (vr->vr_am & cap) && datasize <= vr->vr_datasize &&
len <= (vr->vr_vmeend - vr->vr_vmestart))
break;
}
if (i == sc->sc_nslaves)
return (EINVAL);
/*
* Set up the constraints so we can allocate physical memory which
* is visible in the requested address space
*/
low = max(vr->vr_locstart, avail_start);
high = vr->vr_locstart + (vr->vr_vmeend - vr->vr_vmestart) + 1;
bound = (bus_size_t) vr->vr_mask + 1;
/*
* Allocate physical memory.
*
* Note: This fills in the segments with CPU-relative physical
* addresses. A further call to bus_dmamap_load_raw() (with a
* DMA map which specifies the same VMEbus address space and
* constraints as the call to here) must be made. The segments
* of the DMA map will then contain VMEbus-relative physical
* addresses of the memory allocated here.
*/
return _bus_dmamem_alloc_common(sc->sc_dmat, low, high,
len, 0, bound, segs, nsegs, rsegs, flags);
}
void
mvmebus_dmamem_free(void *vsc, bus_dma_segment_t *segs, int nsegs)
{
struct mvmebus_softc *sc = vsc;
bus_dmamem_free(sc->sc_dmat, segs, nsegs);
}
int
mvmebus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs, size_t size, void **kvap, int flags)
{
struct mvmebus_softc *sc = t->_cookie;
return bus_dmamem_map(sc->sc_dmat, segs, nsegs, size, kvap, flags);
}
void
mvmebus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
{
struct mvmebus_softc *sc = t->_cookie;
bus_dmamem_unmap(sc->sc_dmat, kva, size);
}
paddr_t
mvmebus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs, off_t offset, int prot, int flags)
{
struct mvmebus_softc *sc = t->_cookie;
return bus_dmamem_mmap(sc->sc_dmat, segs, nsegs, offset, prot, flags);
}
#ifdef DEBUG
static const char *
mvmebus_mod_string(vme_addr_t addr, vme_size_t len, vme_am_t am, vme_datasize_t ds)
{
static const char *mode[] = {"BLT64)", "DATA)", "PROG)", "BLT32)"};
static const char *dsiz[] = {"(", "(D8,", "(D16,", "(D16-D8,",
"(D32,", "(D32,D8,", "(D32-D16,", "(D32-D8,"};
static const char *adrfmt[] = { "A32:%08x-%08x ", "USR:%08x-%08x ",
"A16:%04x-%04x ", "A24:%06x-%06x " };
static char mstring[40];
snprintf(mstring, sizeof(mstring),
adrfmt[(am & VME_AM_ADRSIZEMASK) >> VME_AM_ADRSIZESHIFT],
addr, addr + len - 1);
strlcat(mstring, dsiz[ds & 0x7], sizeof(mstring));
if (MVMEBUS_AM_HAS_CAP(am)) {
if (am & MVMEBUS_AM_CAP_DATA)
strlcat(mstring, "D", sizeof(mstring));
if (am & MVMEBUS_AM_CAP_PROG)
strlcat(mstring, "P", sizeof(mstring));
if (am & MVMEBUS_AM_CAP_USER)
strlcat(mstring, "U", sizeof(mstring));
if (am & MVMEBUS_AM_CAP_SUPER)
strlcat(mstring, "S", sizeof(mstring));
if (am & MVMEBUS_AM_CAP_BLK)
strlcat(mstring, "B", sizeof(mstring));
if (am & MVMEBUS_AM_CAP_BLKD64)
strlcat(mstring, "6", sizeof(mstring));
strlcat(mstring, ")", sizeof(mstring));
} else {
strlcat(mstring, ((am & VME_AM_PRIVMASK) == VME_AM_USER) ?
"USER," : "SUPER,", sizeof(mstring));
strlcat(mstring, mode[am & VME_AM_MODEMASK], sizeof(mstring));
}
return (mstring);
}
#endif