2019 lines
45 KiB
C
2019 lines
45 KiB
C
/* $NetBSD: if_ethersubr.c,v 1.323 2022/11/15 10:47:39 roy Exp $ */
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.323 2022/11/15 10:47:39 roy Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_inet.h"
|
|
#include "opt_atalk.h"
|
|
#include "opt_mbuftrace.h"
|
|
#include "opt_mpls.h"
|
|
#include "opt_gateway.h"
|
|
#include "opt_pppoe.h"
|
|
#include "opt_net_mpsafe.h"
|
|
#endif
|
|
|
|
#include "vlan.h"
|
|
#include "pppoe.h"
|
|
#include "bridge.h"
|
|
#include "arp.h"
|
|
#include "agr.h"
|
|
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
#include <sys/entropy.h>
|
|
#include <sys/rndsource.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/hook.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
#include <net/if_llc.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/pktqueue.h>
|
|
|
|
#include <net/if_media.h>
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#if NARP == 0
|
|
/*
|
|
* XXX there should really be a way to issue this warning from within config(8)
|
|
*/
|
|
#error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
|
|
#endif
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <net/if_ether.h>
|
|
#include <net/if_vlanvar.h>
|
|
|
|
#if NPPPOE > 0
|
|
#include <net/if_pppoe.h>
|
|
#endif
|
|
|
|
#if NAGR > 0
|
|
#include <net/ether_slowprotocols.h>
|
|
#include <net/agr/ieee8023ad.h>
|
|
#include <net/agr/if_agrvar.h>
|
|
#endif
|
|
|
|
#if NBRIDGE > 0
|
|
#include <net/if_bridgevar.h>
|
|
#endif
|
|
|
|
#include <netinet/in.h>
|
|
#ifdef INET
|
|
#include <netinet/in_var.h>
|
|
#endif
|
|
#include <netinet/if_inarp.h>
|
|
|
|
#ifdef INET6
|
|
#ifndef INET
|
|
#include <netinet/in.h>
|
|
#endif
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
#endif
|
|
|
|
#include "carp.h"
|
|
#if NCARP > 0
|
|
#include <netinet/ip_carp.h>
|
|
#endif
|
|
|
|
#ifdef NETATALK
|
|
#include <netatalk/at.h>
|
|
#include <netatalk/at_var.h>
|
|
#include <netatalk/at_extern.h>
|
|
|
|
#define llc_snap_org_code llc_un.type_snap.org_code
|
|
#define llc_snap_ether_type llc_un.type_snap.ether_type
|
|
|
|
extern u_char at_org_code[3];
|
|
extern u_char aarp_org_code[3];
|
|
#endif /* NETATALK */
|
|
|
|
#ifdef MPLS
|
|
#include <netmpls/mpls.h>
|
|
#include <netmpls/mpls_var.h>
|
|
#endif
|
|
|
|
CTASSERT(sizeof(struct ether_addr) == 6);
|
|
CTASSERT(sizeof(struct ether_header) == 14);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
static struct timeval bigpktppslim_last;
|
|
static int bigpktppslim = 2; /* XXX */
|
|
static int bigpktpps_count;
|
|
static kmutex_t bigpktpps_lock __cacheline_aligned;
|
|
#endif
|
|
|
|
const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
|
|
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
|
|
const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
|
|
{ 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
|
|
#define senderr(e) { error = (e); goto bad;}
|
|
|
|
static pktq_rps_hash_func_t ether_pktq_rps_hash_p;
|
|
|
|
static int ether_output(struct ifnet *, struct mbuf *,
|
|
const struct sockaddr *, const struct rtentry *);
|
|
|
|
/*
|
|
* Ethernet output routine.
|
|
* Encapsulate a packet of type family for the local net.
|
|
* Assumes that ifp is actually pointer to ethercom structure.
|
|
*/
|
|
static int
|
|
ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
|
|
const struct sockaddr * const dst, const struct rtentry *rt)
|
|
{
|
|
uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
|
|
uint16_t etype = 0;
|
|
int error = 0, hdrcmplt = 0;
|
|
struct mbuf *m = m0;
|
|
struct mbuf *mcopy = NULL;
|
|
struct ether_header *eh;
|
|
struct ifnet *ifp = ifp0;
|
|
#ifdef INET
|
|
struct arphdr *ah;
|
|
#endif
|
|
#ifdef NETATALK
|
|
struct at_ifaddr *aa;
|
|
#endif
|
|
|
|
#ifdef MBUFTRACE
|
|
m_claimm(m, ifp->if_mowner);
|
|
#endif
|
|
|
|
#if NCARP > 0
|
|
if (ifp->if_type == IFT_CARP) {
|
|
struct ifaddr *ifa;
|
|
int s = pserialize_read_enter();
|
|
|
|
/* loop back if this is going to the carp interface */
|
|
if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
|
|
(ifa = ifa_ifwithaddr(dst)) != NULL) {
|
|
if (ifa->ifa_ifp == ifp0) {
|
|
pserialize_read_exit(s);
|
|
return looutput(ifp0, m, dst, rt);
|
|
}
|
|
}
|
|
pserialize_read_exit(s);
|
|
|
|
ifp = ifp->if_carpdev;
|
|
/* ac = (struct arpcom *)ifp; */
|
|
|
|
if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
|
|
(IFF_UP | IFF_RUNNING))
|
|
senderr(ENETDOWN);
|
|
}
|
|
#endif
|
|
|
|
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
|
|
senderr(ENETDOWN);
|
|
|
|
switch (dst->sa_family) {
|
|
|
|
#ifdef INET
|
|
case AF_INET:
|
|
if (m->m_flags & M_BCAST) {
|
|
memcpy(edst, etherbroadcastaddr, sizeof(edst));
|
|
} else if (m->m_flags & M_MCAST) {
|
|
ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
|
|
} else {
|
|
error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
|
|
if (error)
|
|
return (error == EWOULDBLOCK) ? 0 : error;
|
|
}
|
|
/* If broadcasting on a simplex interface, loopback a copy */
|
|
if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
|
|
mcopy = m_copypacket(m, M_DONTWAIT);
|
|
etype = htons(ETHERTYPE_IP);
|
|
break;
|
|
|
|
case AF_ARP:
|
|
ah = mtod(m, struct arphdr *);
|
|
if (m->m_flags & M_BCAST) {
|
|
memcpy(edst, etherbroadcastaddr, sizeof(edst));
|
|
} else {
|
|
void *tha = ar_tha(ah);
|
|
|
|
if (tha == NULL) {
|
|
/* fake with ARPHRD_IEEE1394 */
|
|
m_freem(m);
|
|
return 0;
|
|
}
|
|
memcpy(edst, tha, sizeof(edst));
|
|
}
|
|
|
|
ah->ar_hrd = htons(ARPHRD_ETHER);
|
|
|
|
switch (ntohs(ah->ar_op)) {
|
|
case ARPOP_REVREQUEST:
|
|
case ARPOP_REVREPLY:
|
|
etype = htons(ETHERTYPE_REVARP);
|
|
break;
|
|
|
|
case ARPOP_REQUEST:
|
|
case ARPOP_REPLY:
|
|
default:
|
|
etype = htons(ETHERTYPE_ARP);
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
if (m->m_flags & M_BCAST) {
|
|
memcpy(edst, etherbroadcastaddr, sizeof(edst));
|
|
} else if (m->m_flags & M_MCAST) {
|
|
ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
|
|
edst);
|
|
} else {
|
|
error = nd6_resolve(ifp0, rt, m, dst, edst,
|
|
sizeof(edst));
|
|
if (error)
|
|
return (error == EWOULDBLOCK) ? 0 : error;
|
|
}
|
|
etype = htons(ETHERTYPE_IPV6);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef NETATALK
|
|
case AF_APPLETALK: {
|
|
struct ifaddr *ifa;
|
|
int s;
|
|
|
|
KERNEL_LOCK(1, NULL);
|
|
|
|
if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ifaddr is the first thing in at_ifaddr
|
|
*/
|
|
s = pserialize_read_enter();
|
|
ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
|
|
if (ifa == NULL) {
|
|
pserialize_read_exit(s);
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
senderr(EADDRNOTAVAIL);
|
|
}
|
|
aa = (struct at_ifaddr *)ifa;
|
|
|
|
/*
|
|
* In the phase 2 case, we need to prepend an mbuf for the
|
|
* llc header.
|
|
*/
|
|
if (aa->aa_flags & AFA_PHASE2) {
|
|
struct llc llc;
|
|
|
|
M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
|
|
if (m == NULL) {
|
|
pserialize_read_exit(s);
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
senderr(ENOBUFS);
|
|
}
|
|
|
|
llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
|
|
llc.llc_control = LLC_UI;
|
|
memcpy(llc.llc_snap_org_code, at_org_code,
|
|
sizeof(llc.llc_snap_org_code));
|
|
llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
|
|
memcpy(mtod(m, void *), &llc, sizeof(struct llc));
|
|
} else {
|
|
etype = htons(ETHERTYPE_ATALK);
|
|
}
|
|
pserialize_read_exit(s);
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
break;
|
|
}
|
|
#endif /* NETATALK */
|
|
|
|
case pseudo_AF_HDRCMPLT:
|
|
hdrcmplt = 1;
|
|
memcpy(esrc,
|
|
((const struct ether_header *)dst->sa_data)->ether_shost,
|
|
sizeof(esrc));
|
|
/* FALLTHROUGH */
|
|
|
|
case AF_UNSPEC:
|
|
memcpy(edst,
|
|
((const struct ether_header *)dst->sa_data)->ether_dhost,
|
|
sizeof(edst));
|
|
/* AF_UNSPEC doesn't swap the byte order of the ether_type. */
|
|
etype = ((const struct ether_header *)dst->sa_data)->ether_type;
|
|
break;
|
|
|
|
default:
|
|
printf("%s: can't handle af%d\n", ifp->if_xname,
|
|
dst->sa_family);
|
|
senderr(EAFNOSUPPORT);
|
|
}
|
|
|
|
#ifdef MPLS
|
|
{
|
|
struct m_tag *mtag;
|
|
mtag = m_tag_find(m, PACKET_TAG_MPLS);
|
|
if (mtag != NULL) {
|
|
/* Having the tag itself indicates it's MPLS */
|
|
etype = htons(ETHERTYPE_MPLS);
|
|
m_tag_delete(m, mtag);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (mcopy)
|
|
(void)looutput(ifp, mcopy, dst, rt);
|
|
|
|
KASSERT((m->m_flags & M_PKTHDR) != 0);
|
|
|
|
/*
|
|
* If no ether type is set, this must be a 802.2 formatted packet.
|
|
*/
|
|
if (etype == 0)
|
|
etype = htons(m->m_pkthdr.len);
|
|
|
|
/*
|
|
* Add local net header. If no space in first mbuf, allocate another.
|
|
*/
|
|
M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
|
|
if (m == NULL)
|
|
senderr(ENOBUFS);
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
/* Note: etype is already in network byte order. */
|
|
memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
|
|
memcpy(eh->ether_dhost, edst, sizeof(edst));
|
|
if (hdrcmplt) {
|
|
memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
|
|
} else {
|
|
memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
|
|
sizeof(eh->ether_shost));
|
|
}
|
|
|
|
#if NCARP > 0
|
|
if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
|
|
memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
|
|
sizeof(eh->ether_shost));
|
|
}
|
|
#endif
|
|
|
|
if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
|
|
return error;
|
|
if (m == NULL)
|
|
return 0;
|
|
|
|
#if NBRIDGE > 0
|
|
/*
|
|
* Bridges require special output handling.
|
|
*/
|
|
if (ifp->if_bridge)
|
|
return bridge_output(ifp, m, NULL, NULL);
|
|
#endif
|
|
|
|
#if NCARP > 0
|
|
if (ifp != ifp0)
|
|
if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
|
|
#endif
|
|
|
|
#ifdef ALTQ
|
|
KERNEL_LOCK(1, NULL);
|
|
/*
|
|
* If ALTQ is enabled on the parent interface, do
|
|
* classification; the queueing discipline might not
|
|
* require classification, but might require the
|
|
* address family/header pointer in the pktattr.
|
|
*/
|
|
if (ALTQ_IS_ENABLED(&ifp->if_snd))
|
|
altq_etherclassify(&ifp->if_snd, m);
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
#endif
|
|
return ifq_enqueue(ifp, m);
|
|
|
|
bad:
|
|
if_statinc(ifp, if_oerrors);
|
|
if (m)
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
|
|
#ifdef ALTQ
|
|
/*
|
|
* This routine is a slight hack to allow a packet to be classified
|
|
* if the Ethernet headers are present. It will go away when ALTQ's
|
|
* classification engine understands link headers.
|
|
*
|
|
* XXX: We may need to do m_pullups here. First to ensure struct ether_header
|
|
* is indeed contiguous, then to read the LLC and so on.
|
|
*/
|
|
void
|
|
altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
|
|
{
|
|
struct ether_header *eh;
|
|
struct mbuf *mtop = m;
|
|
uint16_t ether_type;
|
|
int hlen, af, hdrsize;
|
|
void *hdr;
|
|
|
|
KASSERT((mtop->m_flags & M_PKTHDR) != 0);
|
|
|
|
hlen = ETHER_HDR_LEN;
|
|
eh = mtod(m, struct ether_header *);
|
|
|
|
ether_type = htons(eh->ether_type);
|
|
|
|
if (ether_type < ETHERMTU) {
|
|
/* LLC/SNAP */
|
|
struct llc *llc = (struct llc *)(eh + 1);
|
|
hlen += 8;
|
|
|
|
if (m->m_len < hlen ||
|
|
llc->llc_dsap != LLC_SNAP_LSAP ||
|
|
llc->llc_ssap != LLC_SNAP_LSAP ||
|
|
llc->llc_control != LLC_UI) {
|
|
/* Not SNAP. */
|
|
goto bad;
|
|
}
|
|
|
|
ether_type = htons(llc->llc_un.type_snap.ether_type);
|
|
}
|
|
|
|
switch (ether_type) {
|
|
case ETHERTYPE_IP:
|
|
af = AF_INET;
|
|
hdrsize = 20; /* sizeof(struct ip) */
|
|
break;
|
|
|
|
case ETHERTYPE_IPV6:
|
|
af = AF_INET6;
|
|
hdrsize = 40; /* sizeof(struct ip6_hdr) */
|
|
break;
|
|
|
|
default:
|
|
af = AF_UNSPEC;
|
|
hdrsize = 0;
|
|
break;
|
|
}
|
|
|
|
while (m->m_len <= hlen) {
|
|
hlen -= m->m_len;
|
|
m = m->m_next;
|
|
if (m == NULL)
|
|
goto bad;
|
|
}
|
|
|
|
if (m->m_len < (hlen + hdrsize)) {
|
|
/*
|
|
* protocol header not in a single mbuf.
|
|
* We can't cope with this situation right
|
|
* now (but it shouldn't ever happen, really, anyhow).
|
|
*/
|
|
#ifdef DEBUG
|
|
printf("altq_etherclassify: headers span multiple mbufs: "
|
|
"%d < %d\n", m->m_len, (hlen + hdrsize));
|
|
#endif
|
|
goto bad;
|
|
}
|
|
|
|
m->m_data += hlen;
|
|
m->m_len -= hlen;
|
|
|
|
hdr = mtod(m, void *);
|
|
|
|
if (ALTQ_NEEDS_CLASSIFY(ifq)) {
|
|
mtop->m_pkthdr.pattr_class =
|
|
(*ifq->altq_classify)(ifq->altq_clfier, m, af);
|
|
}
|
|
mtop->m_pkthdr.pattr_af = af;
|
|
mtop->m_pkthdr.pattr_hdr = hdr;
|
|
|
|
m->m_data -= hlen;
|
|
m->m_len += hlen;
|
|
|
|
return;
|
|
|
|
bad:
|
|
mtop->m_pkthdr.pattr_class = NULL;
|
|
mtop->m_pkthdr.pattr_hdr = NULL;
|
|
mtop->m_pkthdr.pattr_af = AF_UNSPEC;
|
|
}
|
|
#endif /* ALTQ */
|
|
|
|
#if defined (LLC) || defined (NETATALK)
|
|
static void
|
|
ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
|
|
{
|
|
pktqueue_t *pktq = NULL;
|
|
struct llc *l;
|
|
|
|
if (m->m_len < sizeof(*eh) + sizeof(struct llc))
|
|
goto error;
|
|
|
|
l = (struct llc *)(eh+1);
|
|
switch (l->llc_dsap) {
|
|
#ifdef NETATALK
|
|
case LLC_SNAP_LSAP:
|
|
switch (l->llc_control) {
|
|
case LLC_UI:
|
|
if (l->llc_ssap != LLC_SNAP_LSAP)
|
|
goto error;
|
|
|
|
if (memcmp(&(l->llc_snap_org_code)[0],
|
|
at_org_code, sizeof(at_org_code)) == 0 &&
|
|
ntohs(l->llc_snap_ether_type) ==
|
|
ETHERTYPE_ATALK) {
|
|
pktq = at_pktq2;
|
|
m_adj(m, sizeof(struct ether_header)
|
|
+ sizeof(struct llc));
|
|
break;
|
|
}
|
|
|
|
if (memcmp(&(l->llc_snap_org_code)[0],
|
|
aarp_org_code,
|
|
sizeof(aarp_org_code)) == 0 &&
|
|
ntohs(l->llc_snap_ether_type) ==
|
|
ETHERTYPE_AARP) {
|
|
m_adj(m, sizeof(struct ether_header)
|
|
+ sizeof(struct llc));
|
|
aarpinput(ifp, m); /* XXX queue? */
|
|
return;
|
|
}
|
|
|
|
default:
|
|
goto error;
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
goto noproto;
|
|
}
|
|
|
|
KASSERT(pktq != NULL);
|
|
if (__predict_false(!pktq_enqueue(pktq, m, 0))) {
|
|
m_freem(m);
|
|
}
|
|
return;
|
|
|
|
noproto:
|
|
m_freem(m);
|
|
if_statinc(ifp, if_noproto);
|
|
return;
|
|
error:
|
|
m_freem(m);
|
|
if_statinc(ifp, if_ierrors);
|
|
return;
|
|
}
|
|
#endif /* defined (LLC) || defined (NETATALK) */
|
|
|
|
/*
|
|
* Process a received Ethernet packet;
|
|
* the packet is in the mbuf chain m with
|
|
* the ether header.
|
|
*/
|
|
void
|
|
ether_input(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
#if NVLAN > 0 || defined(MBUFTRACE)
|
|
struct ethercom *ec = (struct ethercom *) ifp;
|
|
#endif
|
|
pktqueue_t *pktq = NULL;
|
|
uint16_t etype;
|
|
struct ether_header *eh;
|
|
size_t ehlen;
|
|
static int earlypkts;
|
|
|
|
/* No RPS for not-IP. */
|
|
pktq_rps_hash_func_t rps_hash = NULL;
|
|
|
|
KASSERT(!cpu_intr_p());
|
|
KASSERT((m->m_flags & M_PKTHDR) != 0);
|
|
|
|
if ((ifp->if_flags & IFF_UP) == 0)
|
|
goto drop;
|
|
|
|
#ifdef MBUFTRACE
|
|
m_claimm(m, &ec->ec_rx_mowner);
|
|
#endif
|
|
|
|
if (__predict_false(m->m_len < sizeof(*eh))) {
|
|
if ((m = m_pullup(m, sizeof(*eh))) == NULL) {
|
|
if_statinc(ifp, if_ierrors);
|
|
return;
|
|
}
|
|
}
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
etype = ntohs(eh->ether_type);
|
|
ehlen = sizeof(*eh);
|
|
|
|
if (__predict_false(earlypkts < 100 ||
|
|
entropy_epoch() == (unsigned)-1)) {
|
|
rnd_add_data(NULL, eh, ehlen, 0);
|
|
earlypkts++;
|
|
}
|
|
|
|
/*
|
|
* Determine if the packet is within its size limits. For MPLS the
|
|
* header length is variable, so we skip the check.
|
|
*/
|
|
if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
|
|
ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
|
|
#ifdef DIAGNOSTIC
|
|
mutex_enter(&bigpktpps_lock);
|
|
if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
|
|
bigpktppslim)) {
|
|
printf("%s: discarding oversize frame (len=%d)\n",
|
|
ifp->if_xname, m->m_pkthdr.len);
|
|
}
|
|
mutex_exit(&bigpktpps_lock);
|
|
#endif
|
|
goto error;
|
|
}
|
|
|
|
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
|
|
/*
|
|
* If this is not a simplex interface, drop the packet
|
|
* if it came from us.
|
|
*/
|
|
if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
|
|
memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
|
|
ETHER_ADDR_LEN) == 0) {
|
|
goto drop;
|
|
}
|
|
|
|
if (memcmp(etherbroadcastaddr,
|
|
eh->ether_dhost, ETHER_ADDR_LEN) == 0)
|
|
m->m_flags |= M_BCAST;
|
|
else
|
|
m->m_flags |= M_MCAST;
|
|
if_statinc(ifp, if_imcasts);
|
|
}
|
|
|
|
/* If the CRC is still on the packet, trim it off. */
|
|
if (m->m_flags & M_HASFCS) {
|
|
m_adj(m, -ETHER_CRC_LEN);
|
|
m->m_flags &= ~M_HASFCS;
|
|
}
|
|
|
|
if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
|
|
|
|
if (!vlan_has_tag(m) && etype == ETHERTYPE_VLAN) {
|
|
m = ether_strip_vlantag(m);
|
|
if (m == NULL) {
|
|
if_statinc(ifp, if_ierrors);
|
|
return;
|
|
}
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
etype = ntohs(eh->ether_type);
|
|
ehlen = sizeof(*eh);
|
|
}
|
|
|
|
if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
|
|
(ifp->if_flags & IFF_PROMISC) != 0 &&
|
|
memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
|
|
ETHER_ADDR_LEN) != 0) {
|
|
m->m_flags |= M_PROMISC;
|
|
}
|
|
|
|
if ((m->m_flags & M_PROMISC) == 0) {
|
|
if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
|
|
return;
|
|
if (m == NULL)
|
|
return;
|
|
|
|
eh = mtod(m, struct ether_header *);
|
|
etype = ntohs(eh->ether_type);
|
|
}
|
|
|
|
/*
|
|
* Processing a logical interfaces that are able
|
|
* to configure vlan(4).
|
|
*/
|
|
#if NAGR > 0
|
|
if (ifp->if_lagg != NULL &&
|
|
__predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
|
|
m->m_flags &= ~M_PROMISC;
|
|
agr_input(ifp, m);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* VLAN processing.
|
|
*
|
|
* VLAN provides service delimiting so the frames are
|
|
* processed before other handlings. If a VLAN interface
|
|
* does not exist to take those frames, they're returned
|
|
* to ether_input().
|
|
*/
|
|
|
|
if (vlan_has_tag(m)) {
|
|
if (EVL_VLANOFTAG(vlan_get_tag(m)) == 0) {
|
|
if (etype == ETHERTYPE_VLAN ||
|
|
etype == ETHERTYPE_QINQ)
|
|
goto drop;
|
|
|
|
/* XXX we should actually use the prio value? */
|
|
m->m_flags &= ~M_VLANTAG;
|
|
} else {
|
|
#if NVLAN > 0
|
|
if (ec->ec_nvlans > 0) {
|
|
m = vlan_input(ifp, m);
|
|
|
|
/* vlan_input() called ether_input() recursively */
|
|
if (m == NULL)
|
|
return;
|
|
}
|
|
#endif
|
|
/* drop VLAN frames not for this port. */
|
|
goto noproto;
|
|
}
|
|
}
|
|
|
|
#if NCARP > 0
|
|
if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
|
|
/*
|
|
* Clear M_PROMISC, in case the packet comes from a
|
|
* vlan.
|
|
*/
|
|
m->m_flags &= ~M_PROMISC;
|
|
if (carp_input(m, (uint8_t *)&eh->ether_shost,
|
|
(uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Handle protocols that expect to have the Ethernet header
|
|
* (and possibly FCS) intact.
|
|
*/
|
|
switch (etype) {
|
|
#if NPPPOE > 0
|
|
case ETHERTYPE_PPPOEDISC:
|
|
pppoedisc_input(ifp, m);
|
|
return;
|
|
|
|
case ETHERTYPE_PPPOE:
|
|
pppoe_input(ifp, m);
|
|
return;
|
|
#endif
|
|
|
|
case ETHERTYPE_SLOWPROTOCOLS: {
|
|
uint8_t subtype;
|
|
|
|
if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
|
|
goto error;
|
|
|
|
m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
|
|
switch (subtype) {
|
|
#if NAGR > 0
|
|
case SLOWPROTOCOLS_SUBTYPE_LACP:
|
|
if (ifp->if_lagg != NULL) {
|
|
ieee8023ad_lacp_input(ifp, m);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case SLOWPROTOCOLS_SUBTYPE_MARKER:
|
|
if (ifp->if_lagg != NULL) {
|
|
ieee8023ad_marker_input(ifp, m);
|
|
return;
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
if (subtype == 0 || subtype > 10) {
|
|
/* illegal value */
|
|
goto error;
|
|
}
|
|
/* unknown subtype */
|
|
break;
|
|
}
|
|
}
|
|
/* FALLTHROUGH */
|
|
default:
|
|
if (m->m_flags & M_PROMISC)
|
|
goto drop;
|
|
}
|
|
|
|
/* If the CRC is still on the packet, trim it off. */
|
|
if (m->m_flags & M_HASFCS) {
|
|
m_adj(m, -ETHER_CRC_LEN);
|
|
m->m_flags &= ~M_HASFCS;
|
|
}
|
|
|
|
/* etype represents the size of the payload in this case */
|
|
if (etype <= ETHERMTU + sizeof(struct ether_header)) {
|
|
KASSERT(ehlen == sizeof(*eh));
|
|
#if defined (LLC) || defined (NETATALK)
|
|
ether_input_llc(ifp, m, eh);
|
|
return;
|
|
#else
|
|
/* ethertype of 0-1500 is regarded as noproto */
|
|
goto noproto;
|
|
#endif
|
|
}
|
|
|
|
/* For ARP packets, store the source address so that
|
|
* ARP DAD probes can be validated. */
|
|
if (etype == ETHERTYPE_ARP) {
|
|
struct m_tag *mtag;
|
|
|
|
mtag = m_tag_get(PACKET_TAG_ETHERNET_SRC, ETHER_ADDR_LEN,
|
|
M_NOWAIT);
|
|
if (mtag != NULL) {
|
|
memcpy(mtag + 1, &eh->ether_shost, ETHER_ADDR_LEN);
|
|
m_tag_prepend(m, mtag);
|
|
}
|
|
}
|
|
|
|
/* Strip off the Ethernet header. */
|
|
m_adj(m, ehlen);
|
|
|
|
switch (etype) {
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
#ifdef GATEWAY
|
|
if (ipflow_fastforward(m))
|
|
return;
|
|
#endif
|
|
pktq = ip_pktq;
|
|
rps_hash = atomic_load_relaxed(ðer_pktq_rps_hash_p);
|
|
break;
|
|
|
|
case ETHERTYPE_ARP:
|
|
pktq = arp_pktq;
|
|
break;
|
|
|
|
case ETHERTYPE_REVARP:
|
|
revarpinput(m); /* XXX queue? */
|
|
return;
|
|
#endif
|
|
|
|
#ifdef INET6
|
|
case ETHERTYPE_IPV6:
|
|
if (__predict_false(!in6_present))
|
|
goto noproto;
|
|
#ifdef GATEWAY
|
|
if (ip6flow_fastforward(&m))
|
|
return;
|
|
#endif
|
|
pktq = ip6_pktq;
|
|
rps_hash = atomic_load_relaxed(ðer_pktq_rps_hash_p);
|
|
break;
|
|
#endif
|
|
|
|
#ifdef NETATALK
|
|
case ETHERTYPE_ATALK:
|
|
pktq = at_pktq1;
|
|
break;
|
|
|
|
case ETHERTYPE_AARP:
|
|
aarpinput(ifp, m); /* XXX queue? */
|
|
return;
|
|
#endif
|
|
|
|
#ifdef MPLS
|
|
case ETHERTYPE_MPLS:
|
|
pktq = mpls_pktq;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
goto noproto;
|
|
}
|
|
|
|
KASSERT(pktq != NULL);
|
|
const uint32_t h = rps_hash ? pktq_rps_hash(&rps_hash, m) : 0;
|
|
if (__predict_false(!pktq_enqueue(pktq, m, h))) {
|
|
m_freem(m);
|
|
}
|
|
return;
|
|
|
|
drop:
|
|
m_freem(m);
|
|
if_statinc(ifp, if_iqdrops);
|
|
return;
|
|
noproto:
|
|
m_freem(m);
|
|
if_statinc(ifp, if_noproto);
|
|
return;
|
|
error:
|
|
m_freem(m);
|
|
if_statinc(ifp, if_ierrors);
|
|
return;
|
|
}
|
|
|
|
static void
|
|
ether_bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
|
|
{
|
|
struct ether_vlan_header evl;
|
|
struct m_hdr mh, md;
|
|
|
|
KASSERT(bp != NULL);
|
|
|
|
if (!vlan_has_tag(m)) {
|
|
bpf_mtap3(bp, m, direction);
|
|
return;
|
|
}
|
|
|
|
memcpy(&evl, mtod(m, char *), ETHER_HDR_LEN);
|
|
evl.evl_proto = evl.evl_encap_proto;
|
|
evl.evl_encap_proto = htons(ETHERTYPE_VLAN);
|
|
evl.evl_tag = htons(vlan_get_tag(m));
|
|
|
|
md.mh_flags = 0;
|
|
md.mh_data = m->m_data + ETHER_HDR_LEN;
|
|
md.mh_len = m->m_len - ETHER_HDR_LEN;
|
|
md.mh_next = m->m_next;
|
|
|
|
mh.mh_flags = 0;
|
|
mh.mh_data = (char *)&evl;
|
|
mh.mh_len = sizeof(evl);
|
|
mh.mh_next = (struct mbuf *)&md;
|
|
|
|
bpf_mtap3(bp, (struct mbuf *)&mh, direction);
|
|
}
|
|
|
|
/*
|
|
* Convert Ethernet address to printable (loggable) representation.
|
|
*/
|
|
char *
|
|
ether_sprintf(const u_char *ap)
|
|
{
|
|
static char etherbuf[3 * ETHER_ADDR_LEN];
|
|
return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
|
|
}
|
|
|
|
char *
|
|
ether_snprintf(char *buf, size_t len, const u_char *ap)
|
|
{
|
|
char *cp = buf;
|
|
size_t i;
|
|
|
|
for (i = 0; i < len / 3; i++) {
|
|
*cp++ = hexdigits[*ap >> 4];
|
|
*cp++ = hexdigits[*ap++ & 0xf];
|
|
*cp++ = ':';
|
|
}
|
|
*--cp = '\0';
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* Perform common duties while attaching to interface list
|
|
*/
|
|
void
|
|
ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
|
|
{
|
|
struct ethercom *ec = (struct ethercom *)ifp;
|
|
char xnamebuf[HOOKNAMSIZ];
|
|
|
|
ifp->if_type = IFT_ETHER;
|
|
ifp->if_hdrlen = ETHER_HDR_LEN;
|
|
ifp->if_dlt = DLT_EN10MB;
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_output = ether_output;
|
|
ifp->_if_input = ether_input;
|
|
ifp->if_bpf_mtap = ether_bpf_mtap;
|
|
if (ifp->if_baudrate == 0)
|
|
ifp->if_baudrate = IF_Mbps(10); /* just a default */
|
|
|
|
if (lla != NULL)
|
|
if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
|
|
|
|
LIST_INIT(&ec->ec_multiaddrs);
|
|
SIMPLEQ_INIT(&ec->ec_vids);
|
|
ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
|
|
ec->ec_flags = 0;
|
|
ifp->if_broadcastaddr = etherbroadcastaddr;
|
|
bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
snprintf(xnamebuf, sizeof(xnamebuf),
|
|
"%s-ether_ifdetachhooks", ifp->if_xname);
|
|
ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf);
|
|
#ifdef MBUFTRACE
|
|
mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
|
|
mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
|
|
MOWNER_ATTACH(&ec->ec_tx_mowner);
|
|
MOWNER_ATTACH(&ec->ec_rx_mowner);
|
|
ifp->if_mowner = &ec->ec_tx_mowner;
|
|
#endif
|
|
}
|
|
|
|
void
|
|
ether_ifdetach(struct ifnet *ifp)
|
|
{
|
|
struct ethercom *ec = (void *) ifp;
|
|
struct ether_multi *enm;
|
|
|
|
IFNET_ASSERT_UNLOCKED(ifp);
|
|
/*
|
|
* Prevent further calls to ioctl (for example turning off
|
|
* promiscuous mode from the bridge code), which eventually can
|
|
* call if_init() which can cause panics because the interface
|
|
* is in the process of being detached. Return device not configured
|
|
* instead.
|
|
*/
|
|
ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
|
|
enxio);
|
|
|
|
simplehook_dohooks(ec->ec_ifdetach_hooks);
|
|
KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks));
|
|
simplehook_destroy(ec->ec_ifdetach_hooks);
|
|
|
|
bpf_detach(ifp);
|
|
|
|
ETHER_LOCK(ec);
|
|
KASSERT(ec->ec_nvlans == 0);
|
|
while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
|
|
LIST_REMOVE(enm, enm_list);
|
|
kmem_free(enm, sizeof(*enm));
|
|
ec->ec_multicnt--;
|
|
}
|
|
ETHER_UNLOCK(ec);
|
|
|
|
mutex_obj_free(ec->ec_lock);
|
|
ec->ec_lock = NULL;
|
|
|
|
ifp->if_mowner = NULL;
|
|
MOWNER_DETACH(&ec->ec_rx_mowner);
|
|
MOWNER_DETACH(&ec->ec_tx_mowner);
|
|
}
|
|
|
|
void *
|
|
ether_ifdetachhook_establish(struct ifnet *ifp,
|
|
void (*fn)(void *), void *arg)
|
|
{
|
|
struct ethercom *ec;
|
|
khook_t *hk;
|
|
|
|
if (ifp->if_type != IFT_ETHER)
|
|
return NULL;
|
|
|
|
ec = (struct ethercom *)ifp;
|
|
hk = simplehook_establish(ec->ec_ifdetach_hooks,
|
|
fn, arg);
|
|
|
|
return (void *)hk;
|
|
}
|
|
|
|
void
|
|
ether_ifdetachhook_disestablish(struct ifnet *ifp,
|
|
void *vhook, kmutex_t *lock)
|
|
{
|
|
struct ethercom *ec;
|
|
|
|
if (vhook == NULL)
|
|
return;
|
|
|
|
ec = (struct ethercom *)ifp;
|
|
simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock);
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* This is for reference. We have a table-driven version
|
|
* of the little-endian crc32 generator, which is faster
|
|
* than the double-loop.
|
|
*/
|
|
uint32_t
|
|
ether_crc32_le(const uint8_t *buf, size_t len)
|
|
{
|
|
uint32_t c, crc, carry;
|
|
size_t i, j;
|
|
|
|
crc = 0xffffffffU; /* initial value */
|
|
|
|
for (i = 0; i < len; i++) {
|
|
c = buf[i];
|
|
for (j = 0; j < 8; j++) {
|
|
carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
|
|
crc >>= 1;
|
|
c >>= 1;
|
|
if (carry)
|
|
crc = (crc ^ ETHER_CRC_POLY_LE);
|
|
}
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
#else
|
|
uint32_t
|
|
ether_crc32_le(const uint8_t *buf, size_t len)
|
|
{
|
|
static const uint32_t crctab[] = {
|
|
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
|
|
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
|
|
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
|
|
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
|
|
};
|
|
uint32_t crc;
|
|
size_t i;
|
|
|
|
crc = 0xffffffffU; /* initial value */
|
|
|
|
for (i = 0; i < len; i++) {
|
|
crc ^= buf[i];
|
|
crc = (crc >> 4) ^ crctab[crc & 0xf];
|
|
crc = (crc >> 4) ^ crctab[crc & 0xf];
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
#endif
|
|
|
|
uint32_t
|
|
ether_crc32_be(const uint8_t *buf, size_t len)
|
|
{
|
|
uint32_t c, crc, carry;
|
|
size_t i, j;
|
|
|
|
crc = 0xffffffffU; /* initial value */
|
|
|
|
for (i = 0; i < len; i++) {
|
|
c = buf[i];
|
|
for (j = 0; j < 8; j++) {
|
|
carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
|
|
crc <<= 1;
|
|
c >>= 1;
|
|
if (carry)
|
|
crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
|
|
}
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
|
|
#ifdef INET
|
|
const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
|
|
{ 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
|
|
const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
|
|
{ 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
|
|
#endif
|
|
#ifdef INET6
|
|
const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
|
|
{ 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
|
|
const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
|
|
{ 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
|
|
#endif
|
|
|
|
/*
|
|
* ether_aton implementation, not using a static buffer.
|
|
*/
|
|
int
|
|
ether_aton_r(u_char *dest, size_t len, const char *str)
|
|
{
|
|
const u_char *cp = (const void *)str;
|
|
u_char *ep;
|
|
|
|
#define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
|
|
|
|
if (len < ETHER_ADDR_LEN)
|
|
return ENOSPC;
|
|
|
|
ep = dest + ETHER_ADDR_LEN;
|
|
|
|
while (*cp) {
|
|
if (!isxdigit(*cp))
|
|
return EINVAL;
|
|
|
|
*dest = atox(*cp);
|
|
cp++;
|
|
if (isxdigit(*cp)) {
|
|
*dest = (*dest << 4) | atox(*cp);
|
|
cp++;
|
|
}
|
|
dest++;
|
|
|
|
if (dest == ep)
|
|
return (*cp == '\0') ? 0 : ENAMETOOLONG;
|
|
|
|
switch (*cp) {
|
|
case ':':
|
|
case '-':
|
|
case '.':
|
|
cp++;
|
|
break;
|
|
}
|
|
}
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/*
|
|
* Convert a sockaddr into an Ethernet address or range of Ethernet
|
|
* addresses.
|
|
*/
|
|
int
|
|
ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
|
|
uint8_t addrhi[ETHER_ADDR_LEN])
|
|
{
|
|
#ifdef INET
|
|
const struct sockaddr_in *sin;
|
|
#endif
|
|
#ifdef INET6
|
|
const struct sockaddr_in6 *sin6;
|
|
#endif
|
|
|
|
switch (sa->sa_family) {
|
|
|
|
case AF_UNSPEC:
|
|
memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
|
|
memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
|
|
break;
|
|
|
|
#ifdef INET
|
|
case AF_INET:
|
|
sin = satocsin(sa);
|
|
if (sin->sin_addr.s_addr == INADDR_ANY) {
|
|
/*
|
|
* An IP address of INADDR_ANY means listen to
|
|
* or stop listening to all of the Ethernet
|
|
* multicast addresses used for IP.
|
|
* (This is for the sake of IP multicast routers.)
|
|
*/
|
|
memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
|
|
memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
|
|
} else {
|
|
ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
|
|
memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case AF_INET6:
|
|
sin6 = satocsin6(sa);
|
|
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
|
|
/*
|
|
* An IP6 address of 0 means listen to or stop
|
|
* listening to all of the Ethernet multicast
|
|
* address used for IP6.
|
|
* (This is used for multicast routers.)
|
|
*/
|
|
memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
|
|
memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
|
|
} else {
|
|
ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
|
|
memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
|
|
}
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
return EAFNOSUPPORT;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add an Ethernet multicast address or range of addresses to the list for a
|
|
* given interface.
|
|
*/
|
|
int
|
|
ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
|
|
{
|
|
struct ether_multi *enm, *_enm;
|
|
u_char addrlo[ETHER_ADDR_LEN];
|
|
u_char addrhi[ETHER_ADDR_LEN];
|
|
int error = 0;
|
|
|
|
/* Allocate out of lock */
|
|
enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
|
|
|
|
ETHER_LOCK(ec);
|
|
error = ether_multiaddr(sa, addrlo, addrhi);
|
|
if (error != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Verify that we have valid Ethernet multicast addresses.
|
|
*/
|
|
if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* See if the address range is already in the list.
|
|
*/
|
|
_enm = ether_lookup_multi(addrlo, addrhi, ec);
|
|
if (_enm != NULL) {
|
|
/*
|
|
* Found it; just increment the reference count.
|
|
*/
|
|
++_enm->enm_refcount;
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Link a new multicast record into the interface's multicast list.
|
|
*/
|
|
memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
|
|
memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
|
|
enm->enm_refcount = 1;
|
|
LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
|
|
ec->ec_multicnt++;
|
|
|
|
/*
|
|
* Return ENETRESET to inform the driver that the list has changed
|
|
* and its reception filter should be adjusted accordingly.
|
|
*/
|
|
error = ENETRESET;
|
|
enm = NULL;
|
|
|
|
out:
|
|
ETHER_UNLOCK(ec);
|
|
if (enm != NULL)
|
|
kmem_free(enm, sizeof(*enm));
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Delete a multicast address record.
|
|
*/
|
|
int
|
|
ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
|
|
{
|
|
struct ether_multi *enm;
|
|
u_char addrlo[ETHER_ADDR_LEN];
|
|
u_char addrhi[ETHER_ADDR_LEN];
|
|
int error;
|
|
|
|
ETHER_LOCK(ec);
|
|
error = ether_multiaddr(sa, addrlo, addrhi);
|
|
if (error != 0)
|
|
goto error;
|
|
|
|
/*
|
|
* Look up the address in our list.
|
|
*/
|
|
enm = ether_lookup_multi(addrlo, addrhi, ec);
|
|
if (enm == NULL) {
|
|
error = ENXIO;
|
|
goto error;
|
|
}
|
|
if (--enm->enm_refcount != 0) {
|
|
/*
|
|
* Still some claims to this record.
|
|
*/
|
|
error = 0;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* No remaining claims to this record; unlink and free it.
|
|
*/
|
|
LIST_REMOVE(enm, enm_list);
|
|
ec->ec_multicnt--;
|
|
ETHER_UNLOCK(ec);
|
|
kmem_free(enm, sizeof(*enm));
|
|
|
|
/*
|
|
* Return ENETRESET to inform the driver that the list has changed
|
|
* and its reception filter should be adjusted accordingly.
|
|
*/
|
|
return ENETRESET;
|
|
|
|
error:
|
|
ETHER_UNLOCK(ec);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
|
|
{
|
|
ec->ec_ifflags_cb = cb;
|
|
}
|
|
|
|
void
|
|
ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
|
|
{
|
|
|
|
ec->ec_vlan_cb = cb;
|
|
}
|
|
|
|
static int
|
|
ether_ioctl_reinit(struct ethercom *ec)
|
|
{
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
int error;
|
|
|
|
KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
|
|
|
|
switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
|
|
case IFF_RUNNING:
|
|
/*
|
|
* If interface is marked down and it is running,
|
|
* then stop and disable it.
|
|
*/
|
|
if_stop(ifp, 1);
|
|
break;
|
|
case IFF_UP:
|
|
/*
|
|
* If interface is marked up and it is stopped, then
|
|
* start it.
|
|
*/
|
|
return if_init(ifp);
|
|
case IFF_UP | IFF_RUNNING:
|
|
error = 0;
|
|
if (ec->ec_ifflags_cb != NULL) {
|
|
error = (*ec->ec_ifflags_cb)(ec);
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Reset the interface to pick up
|
|
* changes in any other flags that
|
|
* affect the hardware state.
|
|
*/
|
|
return if_init(ifp);
|
|
}
|
|
} else
|
|
error = if_init(ifp);
|
|
return error;
|
|
case 0:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Common ioctls for Ethernet interfaces. Note, we must be
|
|
* called at splnet().
|
|
*/
|
|
int
|
|
ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct ethercom *ec = (void *)ifp;
|
|
struct eccapreq *eccr;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
struct if_laddrreq *iflr = data;
|
|
const struct sockaddr_dl *sdl;
|
|
static const uint8_t zero[ETHER_ADDR_LEN];
|
|
int error;
|
|
|
|
switch (cmd) {
|
|
case SIOCINITIFADDR:
|
|
{
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
if (ifa->ifa_addr->sa_family != AF_LINK
|
|
&& (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
|
|
(IFF_UP | IFF_RUNNING)) {
|
|
ifp->if_flags |= IFF_UP;
|
|
if ((error = if_init(ifp)) != 0)
|
|
return error;
|
|
}
|
|
#ifdef INET
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
arp_ifinit(ifp, ifa);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
case SIOCSIFMTU:
|
|
{
|
|
int maxmtu;
|
|
|
|
if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
|
|
maxmtu = ETHERMTU_JUMBO;
|
|
else
|
|
maxmtu = ETHERMTU;
|
|
|
|
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
|
|
return EINVAL;
|
|
else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
|
|
return error;
|
|
else if (ifp->if_flags & IFF_UP) {
|
|
/* Make sure the device notices the MTU change. */
|
|
return if_init(ifp);
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
|
|
return error;
|
|
return ether_ioctl_reinit(ec);
|
|
case SIOCGIFFLAGS:
|
|
error = ifioctl_common(ifp, cmd, data);
|
|
if (error == 0) {
|
|
/* Set IFF_ALLMULTI for backcompat */
|
|
ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
|
|
IFF_ALLMULTI : 0;
|
|
}
|
|
return error;
|
|
case SIOCGETHERCAP:
|
|
eccr = (struct eccapreq *)data;
|
|
eccr->eccr_capabilities = ec->ec_capabilities;
|
|
eccr->eccr_capenable = ec->ec_capenable;
|
|
return 0;
|
|
case SIOCSETHERCAP:
|
|
eccr = (struct eccapreq *)data;
|
|
if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
|
|
return EINVAL;
|
|
if (eccr->eccr_capenable == ec->ec_capenable)
|
|
return 0;
|
|
#if 0 /* notyet */
|
|
ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
|
|
| (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
|
|
#else
|
|
ec->ec_capenable = eccr->eccr_capenable;
|
|
#endif
|
|
return ether_ioctl_reinit(ec);
|
|
case SIOCADDMULTI:
|
|
return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
|
|
case SIOCDELMULTI:
|
|
return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
if (ec->ec_mii != NULL)
|
|
return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
|
|
cmd);
|
|
else if (ec->ec_ifmedia != NULL)
|
|
return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
|
|
else
|
|
return ENOTTY;
|
|
break;
|
|
case SIOCALIFADDR:
|
|
sdl = satocsdl(sstocsa(&iflr->addr));
|
|
if (sdl->sdl_family != AF_LINK)
|
|
;
|
|
else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
|
|
return EINVAL;
|
|
else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
|
|
return EINVAL;
|
|
/*FALLTHROUGH*/
|
|
default:
|
|
return ifioctl_common(ifp, cmd, data);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Enable/disable passing VLAN packets if the parent interface supports it.
|
|
* Return:
|
|
* 0: Ok
|
|
* -1: Parent interface does not support vlans
|
|
* >0: Error
|
|
*/
|
|
int
|
|
ether_enable_vlan_mtu(struct ifnet *ifp)
|
|
{
|
|
int error;
|
|
struct ethercom *ec = (void *)ifp;
|
|
|
|
/* Parent does not support VLAN's */
|
|
if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
|
|
return -1;
|
|
|
|
/*
|
|
* Parent supports the VLAN_MTU capability,
|
|
* i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
|
|
* enable it.
|
|
*/
|
|
ec->ec_capenable |= ETHERCAP_VLAN_MTU;
|
|
|
|
/* Interface is down, defer for later */
|
|
if ((ifp->if_flags & IFF_UP) == 0)
|
|
return 0;
|
|
|
|
if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
|
|
return 0;
|
|
|
|
ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
|
|
return error;
|
|
}
|
|
|
|
int
|
|
ether_disable_vlan_mtu(struct ifnet *ifp)
|
|
{
|
|
int error;
|
|
struct ethercom *ec = (void *)ifp;
|
|
|
|
/* We still have VLAN's, defer for later */
|
|
if (ec->ec_nvlans != 0)
|
|
return 0;
|
|
|
|
/* Parent does not support VLAB's, nothing to do. */
|
|
if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
|
|
return -1;
|
|
|
|
/*
|
|
* Disable Tx/Rx of VLAN-sized frames.
|
|
*/
|
|
ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
|
|
|
|
/* Interface is down, defer for later */
|
|
if ((ifp->if_flags & IFF_UP) == 0)
|
|
return 0;
|
|
|
|
if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
|
|
return 0;
|
|
|
|
ec->ec_capenable |= ETHERCAP_VLAN_MTU;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Add and delete VLAN TAG
|
|
*/
|
|
int
|
|
ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status)
|
|
{
|
|
struct ethercom *ec = (void *)ifp;
|
|
struct vlanid_list *vidp;
|
|
bool vlanmtu_enabled;
|
|
uint16_t vid = EVL_VLANOFTAG(vtag);
|
|
int error;
|
|
|
|
vlanmtu_enabled = false;
|
|
|
|
/* Add a vid to the list */
|
|
vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP);
|
|
vidp->vid = vid;
|
|
|
|
ETHER_LOCK(ec);
|
|
ec->ec_nvlans++;
|
|
SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list);
|
|
ETHER_UNLOCK(ec);
|
|
|
|
if (ec->ec_nvlans == 1) {
|
|
IFNET_LOCK(ifp);
|
|
error = ether_enable_vlan_mtu(ifp);
|
|
IFNET_UNLOCK(ifp);
|
|
|
|
if (error == 0) {
|
|
vlanmtu_enabled = true;
|
|
} else if (error != -1) {
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (ec->ec_vlan_cb != NULL) {
|
|
error = (*ec->ec_vlan_cb)(ec, vid, true);
|
|
if (error != 0)
|
|
goto fail;
|
|
}
|
|
|
|
if (vlanmtu_status != NULL)
|
|
*vlanmtu_status = vlanmtu_enabled;
|
|
|
|
return 0;
|
|
fail:
|
|
ETHER_LOCK(ec);
|
|
ec->ec_nvlans--;
|
|
SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list);
|
|
ETHER_UNLOCK(ec);
|
|
|
|
if (vlanmtu_enabled) {
|
|
IFNET_LOCK(ifp);
|
|
(void)ether_disable_vlan_mtu(ifp);
|
|
IFNET_UNLOCK(ifp);
|
|
}
|
|
|
|
kmem_free(vidp, sizeof(*vidp));
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
ether_del_vlantag(struct ifnet *ifp, uint16_t vtag)
|
|
{
|
|
struct ethercom *ec = (void *)ifp;
|
|
struct vlanid_list *vidp;
|
|
uint16_t vid = EVL_VLANOFTAG(vtag);
|
|
|
|
ETHER_LOCK(ec);
|
|
SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) {
|
|
if (vidp->vid == vid) {
|
|
SIMPLEQ_REMOVE(&ec->ec_vids, vidp,
|
|
vlanid_list, vid_list);
|
|
ec->ec_nvlans--;
|
|
break;
|
|
}
|
|
}
|
|
ETHER_UNLOCK(ec);
|
|
|
|
if (vidp == NULL)
|
|
return ENOENT;
|
|
|
|
if (ec->ec_vlan_cb != NULL) {
|
|
(void)(*ec->ec_vlan_cb)(ec, vidp->vid, false);
|
|
}
|
|
|
|
if (ec->ec_nvlans == 0) {
|
|
IFNET_LOCK(ifp);
|
|
(void)ether_disable_vlan_mtu(ifp);
|
|
IFNET_UNLOCK(ifp);
|
|
}
|
|
|
|
kmem_free(vidp, sizeof(*vidp));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ether_inject_vlantag(struct mbuf **mp, uint16_t etype, uint16_t tag)
|
|
{
|
|
static const size_t min_data_len =
|
|
ETHER_MIN_LEN - ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
/* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
|
|
static const char vlan_zero_pad_buff[ETHER_MIN_LEN] = { 0 };
|
|
|
|
struct ether_vlan_header *evl;
|
|
struct mbuf *m = *mp;
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
if (m->m_len < sizeof(*evl)) {
|
|
m = m_pullup(m, sizeof(*evl));
|
|
if (m == NULL) {
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transform the Ethernet header into an
|
|
* Ethernet header with 802.1Q encapsulation.
|
|
*/
|
|
memmove(mtod(m, void *),
|
|
mtod(m, char *) + ETHER_VLAN_ENCAP_LEN,
|
|
sizeof(struct ether_header));
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
evl->evl_proto = evl->evl_encap_proto;
|
|
evl->evl_encap_proto = htons(etype);
|
|
evl->evl_tag = htons(tag);
|
|
|
|
/*
|
|
* To cater for VLAN-aware layer 2 ethernet
|
|
* switches which may need to strip the tag
|
|
* before forwarding the packet, make sure
|
|
* the packet+tag is at least 68 bytes long.
|
|
* This is necessary because our parent will
|
|
* only pad to 64 bytes (ETHER_MIN_LEN) and
|
|
* some switches will not pad by themselves
|
|
* after deleting a tag.
|
|
*/
|
|
if (m->m_pkthdr.len < min_data_len) {
|
|
m_copyback(m, m->m_pkthdr.len,
|
|
min_data_len - m->m_pkthdr.len,
|
|
vlan_zero_pad_buff);
|
|
}
|
|
|
|
m->m_flags &= ~M_VLANTAG;
|
|
|
|
out:
|
|
*mp = m;
|
|
return error;
|
|
}
|
|
|
|
struct mbuf *
|
|
ether_strip_vlantag(struct mbuf *m)
|
|
{
|
|
struct ether_vlan_header *evl;
|
|
|
|
if (m->m_len < sizeof(*evl) &&
|
|
(m = m_pullup(m, sizeof(*evl))) == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (m_makewritable(&m, 0, sizeof(*evl), M_DONTWAIT)) {
|
|
m_freem(m);
|
|
return NULL;
|
|
}
|
|
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
|
|
|
|
vlan_set_tag(m, ntohs(evl->evl_tag));
|
|
|
|
/*
|
|
* Restore the original ethertype. We'll remove
|
|
* the encapsulation after we've found the vlan
|
|
* interface corresponding to the tag.
|
|
*/
|
|
evl->evl_encap_proto = evl->evl_proto;
|
|
|
|
/*
|
|
* Remove the encapsulation header and append tag.
|
|
* The original header has already been fixed up above.
|
|
*/
|
|
vlan_set_tag(m, ntohs(evl->evl_tag));
|
|
memmove((char *)evl + ETHER_VLAN_ENCAP_LEN, evl,
|
|
offsetof(struct ether_vlan_header, evl_encap_proto));
|
|
m_adj(m, ETHER_VLAN_ENCAP_LEN);
|
|
|
|
return m;
|
|
}
|
|
|
|
static int
|
|
ether_multicast_sysctl(SYSCTLFN_ARGS)
|
|
{
|
|
struct ether_multi *enm;
|
|
struct ifnet *ifp;
|
|
struct ethercom *ec;
|
|
int error = 0;
|
|
size_t written;
|
|
struct psref psref;
|
|
int bound;
|
|
unsigned int multicnt;
|
|
struct ether_multi_sysctl *addrs;
|
|
int i;
|
|
|
|
if (namelen != 1)
|
|
return EINVAL;
|
|
|
|
bound = curlwp_bind();
|
|
ifp = if_get_byindex(name[0], &psref);
|
|
if (ifp == NULL) {
|
|
error = ENODEV;
|
|
goto out;
|
|
}
|
|
if (ifp->if_type != IFT_ETHER) {
|
|
if_put(ifp, &psref);
|
|
*oldlenp = 0;
|
|
goto out;
|
|
}
|
|
ec = (struct ethercom *)ifp;
|
|
|
|
if (oldp == NULL) {
|
|
if_put(ifp, &psref);
|
|
*oldlenp = ec->ec_multicnt * sizeof(*addrs);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
|
|
* is sleepable, while holding it. Copy data to a local buffer first
|
|
* with the lock taken and then call sysctl_copyout without holding it.
|
|
*/
|
|
retry:
|
|
multicnt = ec->ec_multicnt;
|
|
|
|
if (multicnt == 0) {
|
|
if_put(ifp, &psref);
|
|
*oldlenp = 0;
|
|
goto out;
|
|
}
|
|
|
|
addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
|
|
|
|
ETHER_LOCK(ec);
|
|
if (multicnt != ec->ec_multicnt) {
|
|
/* The number of multicast addresses has changed */
|
|
ETHER_UNLOCK(ec);
|
|
kmem_free(addrs, sizeof(*addrs) * multicnt);
|
|
goto retry;
|
|
}
|
|
|
|
i = 0;
|
|
LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
|
|
struct ether_multi_sysctl *addr = &addrs[i];
|
|
addr->enm_refcount = enm->enm_refcount;
|
|
memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
|
|
i++;
|
|
}
|
|
ETHER_UNLOCK(ec);
|
|
|
|
error = 0;
|
|
written = 0;
|
|
for (i = 0; i < multicnt; i++) {
|
|
struct ether_multi_sysctl *addr = &addrs[i];
|
|
|
|
if (written + sizeof(*addr) > *oldlenp)
|
|
break;
|
|
error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
|
|
if (error)
|
|
break;
|
|
written += sizeof(*addr);
|
|
oldp = (char *)oldp + sizeof(*addr);
|
|
}
|
|
kmem_free(addrs, sizeof(*addrs) * multicnt);
|
|
|
|
if_put(ifp, &psref);
|
|
|
|
*oldlenp = written;
|
|
out:
|
|
curlwp_bindx(bound);
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
ether_sysctl_setup(struct sysctllog **clog)
|
|
{
|
|
const struct sysctlnode *rnode = NULL;
|
|
|
|
sysctl_createv(clog, 0, NULL, &rnode,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "ether",
|
|
SYSCTL_DESCR("Ethernet-specific information"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_NET, CTL_CREATE, CTL_EOL);
|
|
|
|
sysctl_createv(clog, 0, &rnode, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "multicast",
|
|
SYSCTL_DESCR("multicast addresses"),
|
|
ether_multicast_sysctl, 0, NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
|
|
sysctl_createv(clog, 0, &rnode, NULL,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
|
|
CTLTYPE_STRING, "rps_hash",
|
|
SYSCTL_DESCR("Interface rps hash function control"),
|
|
sysctl_pktq_rps_hash_handler, 0, (void *)ðer_pktq_rps_hash_p,
|
|
PKTQ_RPS_HASH_NAME_LEN,
|
|
CTL_CREATE, CTL_EOL);
|
|
}
|
|
|
|
void
|
|
etherinit(void)
|
|
{
|
|
|
|
#ifdef DIAGNOSTIC
|
|
mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
|
|
#endif
|
|
ether_pktq_rps_hash_p = pktq_rps_hash_default;
|
|
ether_sysctl_setup(NULL);
|
|
}
|