NetBSD/common/lib/libprop/prop_dictionary.c
thorpej 296508b606 Use a red-black tree to unique'ify the dictionary key symbols, rather than
a sorted array.  Using a tree puts the linkage into the key symbol itself,
allowing us to avoid having to allocate memory with a mutex held.
2006-07-07 17:09:36 +00:00

1045 lines
27 KiB
C

/* $NetBSD: prop_dictionary.c,v 1.8 2006/07/07 17:09:36 thorpej Exp $ */
/*-
* Copyright (c) 2006 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <prop/prop_dictionary.h>
#include <prop/prop_string.h>
#include "prop_object_impl.h"
#if defined(__NetBSD__)
#include <sys/tree.h>
#else
#error Need to find a NetBSD sys/tree.h
#endif
/*
* We implement these like arrays, but we keep them sorted by key.
* This allows us to binary-search as well as keep externalized output
* sane-looking for human eyes.
*/
#define EXPAND_STEP 16
/*
* prop_dictionary_keysym_t is allocated with space at the end to hold the
* key. This must be a regular object so that we can maintain sane iterator
* semantics -- we don't want to require that the caller release the result
* of prop_object_iterator_next().
*
* We'd like to have some small'ish keysym objects for up-to-16 characters
* in a key, some for up-to-32 characters in a key, and then a final bucket
* for up-to-128 characters in a key (not including NUL). Keys longer than
* 128 characters are not allowed.
*/
struct _prop_dictionary_keysym {
struct _prop_object pdk_obj;
size_t pdk_size;
RB_ENTRY(_prop_dictionary_keysym) pdk_link;
char pdk_key[1];
/* actually variable length */
};
/* pdk_key[1] takes care of the NUL */
#define PDK_SIZE_16 (sizeof(struct _prop_dictionary_keysym) + 16)
#define PDK_SIZE_32 (sizeof(struct _prop_dictionary_keysym) + 32)
#define PDK_SIZE_128 (sizeof(struct _prop_dictionary_keysym) + 128)
#define PDK_MAXKEY 128
_PROP_POOL_INIT(_prop_dictionary_keysym16_pool, PDK_SIZE_16, "pdict16")
_PROP_POOL_INIT(_prop_dictionary_keysym32_pool, PDK_SIZE_32, "pdict32")
_PROP_POOL_INIT(_prop_dictionary_keysym128_pool, PDK_SIZE_128, "pdict128")
struct _prop_dict_entry {
prop_dictionary_keysym_t pde_key;
prop_object_t pde_objref;
};
struct _prop_dictionary {
struct _prop_object pd_obj;
struct _prop_dict_entry *pd_array;
unsigned int pd_capacity;
unsigned int pd_count;
int pd_flags;
uint32_t pd_version;
};
#define PD_F_IMMUTABLE 0x01 /* dictionary is immutable */
_PROP_POOL_INIT(_prop_dictionary_pool, sizeof(struct _prop_dictionary),
"propdict")
_PROP_MALLOC_DEFINE(M_PROP_DICT, "prop dictionary",
"property dictionary container object")
static void _prop_dictionary_free(void *);
static boolean_t _prop_dictionary_externalize(
struct _prop_object_externalize_context *,
void *);
static boolean_t _prop_dictionary_equals(void *, void *);
static const struct _prop_object_type _prop_object_type_dictionary = {
.pot_type = PROP_TYPE_DICTIONARY,
.pot_free = _prop_dictionary_free,
.pot_extern = _prop_dictionary_externalize,
.pot_equals = _prop_dictionary_equals,
};
static void _prop_dict_keysym_free(void *);
static boolean_t _prop_dict_keysym_externalize(
struct _prop_object_externalize_context *,
void *);
static boolean_t _prop_dict_keysym_equals(void *, void *);
static const struct _prop_object_type _prop_object_type_dict_keysym = {
.pot_type = PROP_TYPE_DICT_KEYSYM,
.pot_free = _prop_dict_keysym_free,
.pot_extern = _prop_dict_keysym_externalize,
.pot_equals = _prop_dict_keysym_equals,
};
#define prop_object_is_dictionary(x) \
((x)->pd_obj.po_type == &_prop_object_type_dictionary)
#define prop_object_is_dictionary_keysym(x) \
((x)->pdk_obj.po_type == &_prop_object_type_dict_keysym)
#define prop_dictionary_is_immutable(x) \
(((x)->pd_flags & PD_F_IMMUTABLE) != 0)
struct _prop_dictionary_iterator {
struct _prop_object_iterator pdi_base;
unsigned int pdi_index;
};
/*
* Dictionary key symbols are immutable, and we are likely to have many
* duplicated key symbols. So, to save memory, we unique'ify key symbols
* so we only have to have one copy of each string.
*/
static int
_prop_dict_keysym_tree_cmp(prop_dictionary_keysym_t pdk1,
prop_dictionary_keysym_t pdk2)
{
return (strcmp(pdk1->pdk_key, pdk2->pdk_key));
}
static RB_HEAD(_prop_dict_keysym_tree, _prop_dictionary_keysym)
_prop_dict_keysym_tree = RB_INITIALIZER(&_prop_dict_keysym_tree);
RB_PROTOTYPE(_prop_dict_keysym_tree, _prop_dictionary_keysym, pdk_link,
_prop_dict_keysym_tree_cmp)
RB_GENERATE(_prop_dict_keysym_tree, _prop_dictionary_keysym, pdk_link,
_prop_dict_keysym_tree_cmp)
_PROP_MUTEX_DECL(_prop_dict_keysym_tree_mutex)
static void
_prop_dict_keysym_put(prop_dictionary_keysym_t pdk)
{
if (pdk->pdk_size <= PDK_SIZE_16)
_PROP_POOL_PUT(_prop_dictionary_keysym16_pool, pdk);
else if (pdk->pdk_size <= PDK_SIZE_32)
_PROP_POOL_PUT(_prop_dictionary_keysym32_pool, pdk);
else {
_PROP_ASSERT(pdk->pdk_size <= PDK_SIZE_128);
_PROP_POOL_PUT(_prop_dictionary_keysym128_pool, pdk);
}
}
static void
_prop_dict_keysym_free(void *v)
{
prop_dictionary_keysym_t pdk = v;
_PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
RB_REMOVE(_prop_dict_keysym_tree, &_prop_dict_keysym_tree, pdk);
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
_prop_dict_keysym_put(pdk);
}
static boolean_t
_prop_dict_keysym_externalize(struct _prop_object_externalize_context *ctx,
void *v)
{
prop_dictionary_keysym_t pdk = v;
/* We externalize these as strings, and they're never empty. */
_PROP_ASSERT(pdk->pdk_key[0] != '\0');
if (_prop_object_externalize_start_tag(ctx, "string") == FALSE ||
_prop_object_externalize_append_encoded_cstring(ctx,
pdk->pdk_key) == FALSE ||
_prop_object_externalize_end_tag(ctx, "string") == FALSE)
return (FALSE);
return (TRUE);
}
static boolean_t
_prop_dict_keysym_equals(void *v1, void *v2)
{
prop_dictionary_keysym_t pdk1 = v1;
prop_dictionary_keysym_t pdk2 = v2;
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk1));
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk2));
/*
* There is only ever one copy of a keysym at any given time,
* so we can reduce this to a simple pointer equality check.
*/
return (pdk1 == pdk2);
}
static prop_dictionary_keysym_t
_prop_dict_keysym_alloc(const char *key)
{
prop_dictionary_keysym_t opdk, pdk;
size_t size;
/*
* Because of the way our RB trees work, we need to create the
* new keysym in order to check if it's already in the tree.
* Oh well.
*/
size = sizeof(*pdk) + strlen(key) /* pdk_key[1] covers the NUL */;
if (size <= PDK_SIZE_16)
pdk = _PROP_POOL_GET(_prop_dictionary_keysym16_pool);
else if (size <= PDK_SIZE_32)
pdk = _PROP_POOL_GET(_prop_dictionary_keysym32_pool);
else if (size <= PDK_SIZE_128)
pdk = _PROP_POOL_GET(_prop_dictionary_keysym128_pool);
else
pdk = NULL; /* key too long */
if (pdk == NULL)
return (NULL);
_prop_object_init(&pdk->pdk_obj, &_prop_object_type_dict_keysym);
strcpy(pdk->pdk_key, key);
pdk->pdk_size = size;
/*
* Now check to see if this already exists in the tree. If it
* does, we return a reference to the existing one and free the
* new one we just created.
*/
_PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
opdk = RB_INSERT(_prop_dict_keysym_tree, &_prop_dict_keysym_tree, pdk);
if (opdk != NULL) {
prop_object_retain(opdk);
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
_prop_dict_keysym_put(pdk);
return (opdk);
}
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
return (pdk);
}
static void
_prop_dictionary_free(void *v)
{
prop_dictionary_t pd = v;
prop_dictionary_keysym_t pdk;
prop_object_t po;
unsigned int idx;
_PROP_ASSERT(pd->pd_count <= pd->pd_capacity);
_PROP_ASSERT((pd->pd_capacity == 0 && pd->pd_array == NULL) ||
(pd->pd_capacity != 0 && pd->pd_array != NULL));
for (idx = 0; idx < pd->pd_count; idx++) {
pdk = pd->pd_array[idx].pde_key;
_PROP_ASSERT(pdk != NULL);
prop_object_release(pdk);
po = pd->pd_array[idx].pde_objref;
_PROP_ASSERT(po != NULL);
prop_object_release(po);
}
if (pd->pd_array != NULL)
_PROP_FREE(pd->pd_array, M_PROP_DICT);
_PROP_POOL_PUT(_prop_dictionary_pool, pd);
}
static boolean_t
_prop_dictionary_externalize(struct _prop_object_externalize_context *ctx,
void *v)
{
prop_dictionary_t pd = v;
prop_dictionary_keysym_t pdk;
struct _prop_object *po;
prop_object_iterator_t pi;
unsigned int i;
if (pd->pd_count == 0)
return (_prop_object_externalize_empty_tag(ctx, "dict"));
if (_prop_object_externalize_start_tag(ctx, "dict") == FALSE ||
_prop_object_externalize_append_char(ctx, '\n') == FALSE)
return (FALSE);
pi = prop_dictionary_iterator(pd);
if (pi == NULL)
return (FALSE);
ctx->poec_depth++;
_PROP_ASSERT(ctx->poec_depth != 0);
while ((pdk = prop_object_iterator_next(pi)) != NULL) {
po = prop_dictionary_get_keysym(pd, pdk);
if (po == NULL ||
_prop_object_externalize_start_tag(ctx, "key") == FALSE ||
_prop_object_externalize_append_encoded_cstring(ctx,
pdk->pdk_key) == FALSE ||
_prop_object_externalize_end_tag(ctx, "key") == FALSE ||
(*po->po_type->pot_extern)(ctx, po) == FALSE) {
prop_object_iterator_release(pi);
return (FALSE);
}
}
prop_object_iterator_release(pi);
ctx->poec_depth--;
for (i = 0; i < ctx->poec_depth; i++) {
if (_prop_object_externalize_append_char(ctx, '\t') == FALSE)
return (FALSE);
}
if (_prop_object_externalize_end_tag(ctx, "dict") == FALSE)
return (FALSE);
return (TRUE);
}
static boolean_t
_prop_dictionary_equals(void *v1, void *v2)
{
prop_dictionary_t dict1 = v1;
prop_dictionary_t dict2 = v2;
const struct _prop_dict_entry *pde1, *pde2;
unsigned int idx;
_PROP_ASSERT(prop_object_is_dictionary(dict1));
_PROP_ASSERT(prop_object_is_dictionary(dict2));
if (dict1 == dict2)
return (TRUE);
if (dict1->pd_count != dict2->pd_count)
return (FALSE);
for (idx = 0; idx < dict1->pd_count; idx++) {
pde1 = &dict1->pd_array[idx];
pde2 = &dict2->pd_array[idx];
if (prop_dictionary_keysym_equals(pde1->pde_key,
pde2->pde_key) == FALSE)
return (FALSE);
if (prop_object_equals(pde1->pde_objref,
pde2->pde_objref) == FALSE)
return (FALSE);
}
return (TRUE);
}
static prop_dictionary_t
_prop_dictionary_alloc(unsigned int capacity)
{
prop_dictionary_t pd;
struct _prop_dict_entry *array;
if (capacity != 0) {
array = _PROP_CALLOC(capacity * sizeof(*array), M_PROP_DICT);
if (array == NULL)
return (NULL);
} else
array = NULL;
pd = _PROP_POOL_GET(_prop_dictionary_pool);
if (pd != NULL) {
_prop_object_init(&pd->pd_obj, &_prop_object_type_dictionary);
pd->pd_array = array;
pd->pd_capacity = capacity;
pd->pd_count = 0;
pd->pd_flags = 0;
pd->pd_version = 0;
} else if (array != NULL)
_PROP_FREE(array, M_PROP_DICT);
return (pd);
}
static boolean_t
_prop_dictionary_expand(prop_dictionary_t pd, unsigned int capacity)
{
struct _prop_dict_entry *array, *oarray;
oarray = pd->pd_array;
array = _PROP_CALLOC(capacity * sizeof(*array), M_PROP_DICT);
if (array == NULL)
return (FALSE);
if (oarray != NULL)
memcpy(array, oarray, pd->pd_capacity * sizeof(*array));
pd->pd_array = array;
pd->pd_capacity = capacity;
if (oarray != NULL)
_PROP_FREE(oarray, M_PROP_DICT);
return (TRUE);
}
static prop_object_t
_prop_dictionary_iterator_next_object(void *v)
{
struct _prop_dictionary_iterator *pdi = v;
prop_dictionary_t pd = pdi->pdi_base.pi_obj;
prop_dictionary_keysym_t pdk;
_PROP_ASSERT(prop_object_is_dictionary(pd));
if (pd->pd_version != pdi->pdi_base.pi_version)
return (NULL); /* dictionary changed during iteration */
_PROP_ASSERT(pdi->pdi_index <= pd->pd_count);
if (pdi->pdi_index == pd->pd_count)
return (NULL); /* we've iterated all objects */
pdk = pd->pd_array[pdi->pdi_index].pde_key;
pdi->pdi_index++;
return (pdk);
}
static void
_prop_dictionary_iterator_reset(void *v)
{
struct _prop_dictionary_iterator *pdi = v;
prop_dictionary_t pd = pdi->pdi_base.pi_obj;
_PROP_ASSERT(prop_object_is_dictionary(pd));
pdi->pdi_index = 0;
pdi->pdi_base.pi_version = pd->pd_version;
}
/*
* prop_dictionary_create --
* Create a dictionary.
*/
prop_dictionary_t
prop_dictionary_create(void)
{
return (_prop_dictionary_alloc(0));
}
/*
* prop_dictionary_create_with_capacity --
* Create a dictionary with the capacity to store N objects.
*/
prop_dictionary_t
prop_dictionary_create_with_capacity(unsigned int capacity)
{
return (_prop_dictionary_alloc(capacity));
}
/*
* prop_dictionary_copy --
* Copy a dictionary. The new dictionary has an initial capacity equal
* to the number of objects stored int the original dictionary. The new
* dictionary contains refrences to the original dictionary's objects,
* not copies of those objects (i.e. a shallow copy).
*/
prop_dictionary_t
prop_dictionary_copy(prop_dictionary_t opd)
{
prop_dictionary_t pd;
prop_dictionary_keysym_t pdk;
prop_object_t po;
unsigned int idx;
_PROP_ASSERT(prop_object_is_dictionary(opd));
pd = _prop_dictionary_alloc(opd->pd_count);
if (pd != NULL) {
for (idx = 0; idx < opd->pd_count; idx++) {
pdk = opd->pd_array[idx].pde_key;
po = opd->pd_array[idx].pde_objref;
prop_object_retain(pdk);
prop_object_retain(po);
pd->pd_array[idx].pde_key = pdk;
pd->pd_array[idx].pde_objref = po;
}
pd->pd_count = opd->pd_count;
pd->pd_flags = opd->pd_flags;
}
return (pd);
}
/*
* prop_dictionary_copy_mutable --
* Like prop_dictionary_copy(), but the resulting dictionary is
* mutable.
*/
prop_dictionary_t
prop_dictionary_copy_mutable(prop_dictionary_t opd)
{
prop_dictionary_t pd;
_PROP_ASSERT(prop_object_is_dictionary(opd));
pd = prop_dictionary_copy(opd);
if (pd != NULL)
pd->pd_flags &= ~PD_F_IMMUTABLE;
return (pd);
}
/*
* prop_dictionary_count --
* Return the number of objects stored in the dictionary.
*/
unsigned int
prop_dictionary_count(prop_dictionary_t pd)
{
_PROP_ASSERT(prop_object_is_dictionary(pd));
return (pd->pd_count);
}
/*
* prop_dictionary_ensure_capacity --
* Ensure that the dictionary has the capacity to store the specified
* total number of objects (including the objects already stored in
* the dictionary).
*/
boolean_t
prop_dictionary_ensure_capacity(prop_dictionary_t pd, unsigned int capacity)
{
_PROP_ASSERT(prop_object_is_dictionary(pd));
if (capacity > pd->pd_capacity)
return (_prop_dictionary_expand(pd, capacity));
return (TRUE);
}
/*
* prop_dictionary_iterator --
* Return an iterator for the dictionary. The dictionary is retained by
* the iterator.
*/
prop_object_iterator_t
prop_dictionary_iterator(prop_dictionary_t pd)
{
struct _prop_dictionary_iterator *pdi;
_PROP_ASSERT(prop_object_is_dictionary(pd));
pdi = _PROP_CALLOC(sizeof(*pdi), M_TEMP);
if (pdi == NULL)
return (NULL);
pdi->pdi_base.pi_next_object = _prop_dictionary_iterator_next_object;
pdi->pdi_base.pi_reset = _prop_dictionary_iterator_reset;
prop_object_retain(pd);
pdi->pdi_base.pi_obj = pd;
pdi->pdi_base.pi_version = pd->pd_version;
_prop_dictionary_iterator_reset(pdi);
return (&pdi->pdi_base);
}
static struct _prop_dict_entry *
_prop_dict_lookup(prop_dictionary_t pd, const char *key,
unsigned int *idxp)
{
struct _prop_dict_entry *pde;
unsigned int base, idx, distance;
int res;
for (idx = 0, base = 0, distance = pd->pd_count; distance != 0;
distance >>= 1) {
idx = base + (distance >> 1);
pde = &pd->pd_array[idx];
_PROP_ASSERT(pde->pde_key != NULL);
res = strcmp(key, pde->pde_key->pdk_key);
if (res == 0) {
if (idxp != NULL)
*idxp = idx;
return (pde);
}
if (res > 0) { /* key > pdk_key: move right */
base = idx + 1;
distance--;
} /* else move left */
}
/* idx points to the slot we looked at last. */
if (idxp != NULL)
*idxp = idx;
return (NULL);
}
/*
* prop_dictionary_get --
* Return the object stored with specified key.
*/
prop_object_t
prop_dictionary_get(prop_dictionary_t pd, const char *key)
{
const struct _prop_dict_entry *pde;
_PROP_ASSERT(prop_object_is_dictionary(pd));
pde = _prop_dict_lookup(pd, key, NULL);
if (pde != NULL) {
_PROP_ASSERT(pde->pde_objref != NULL);
return (pde->pde_objref);
}
return (NULL);
}
/*
* prop_dictionary_get_keysym --
* Return the object stored at the location encoded by the keysym.
*/
prop_object_t
prop_dictionary_get_keysym(prop_dictionary_t pd, prop_dictionary_keysym_t pdk)
{
_PROP_ASSERT(prop_object_is_dictionary(pd));
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk));
return (prop_dictionary_get(pd, pdk->pdk_key));
}
/*
* prop_dictionary_set --
* Store a reference to an object at with the specified key.
* If the key already exisit, the original object is released.
*/
boolean_t
prop_dictionary_set(prop_dictionary_t pd, const char *key, prop_object_t po)
{
struct _prop_dict_entry *pde;
prop_dictionary_keysym_t pdk;
unsigned int idx;
_PROP_ASSERT(prop_object_is_dictionary(pd));
_PROP_ASSERT(pd->pd_count <= pd->pd_capacity);
if (prop_dictionary_is_immutable(pd))
return (FALSE);
pde = _prop_dict_lookup(pd, key, &idx);
if (pde != NULL) {
prop_object_t opo = pde->pde_objref;
prop_object_retain(po);
pde->pde_objref = po;
prop_object_release(opo);
return (TRUE);
}
pdk = _prop_dict_keysym_alloc(key);
if (pdk == NULL)
return (FALSE);
if (pd->pd_count == pd->pd_capacity &&
_prop_dictionary_expand(pd,
pd->pd_capacity + EXPAND_STEP) == FALSE) {
prop_object_release(pdk);
return (FALSE);
}
/* At this point, the store will succeed. */
prop_object_retain(po);
if (pd->pd_count == 0) {
pd->pd_array[0].pde_key = pdk;
pd->pd_array[0].pde_objref = po;
pd->pd_count++;
pd->pd_version++;
return (TRUE);
}
pde = &pd->pd_array[idx];
_PROP_ASSERT(pde->pde_key != NULL);
if (strcmp(key, pde->pde_key->pdk_key) < 0) {
/*
* key < pdk_key: insert to the left. This is the same as
* inserting to the right, except we decrement the current
* index first.
*
* Because we're unsigned, we have to special case 0
* (grumble).
*/
if (idx == 0) {
memmove(&pd->pd_array[1], &pd->pd_array[0],
pd->pd_count * sizeof(*pde));
pd->pd_array[0].pde_key = pdk;
pd->pd_array[0].pde_objref = po;
pd->pd_count++;
pd->pd_version++;
return (TRUE);
}
idx--;
}
memmove(&pd->pd_array[idx + 2], &pd->pd_array[idx + 1],
(pd->pd_count - (idx + 1)) * sizeof(*pde));
pd->pd_array[idx + 1].pde_key = pdk;
pd->pd_array[idx + 1].pde_objref = po;
pd->pd_count++;
pd->pd_version++;
return (TRUE);
}
/*
* prop_dictionary_set_keysym --
* Replace the object in the dictionary at the location encoded by
* the keysym.
*/
boolean_t
prop_dictionary_set_keysym(prop_dictionary_t pd, prop_dictionary_keysym_t pdk,
prop_object_t po)
{
_PROP_ASSERT(prop_object_is_dictionary(pd));
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk));
if (prop_dictionary_is_immutable(pd))
return (FALSE);
/*
* XXX We could optimize out the _prop_dict_keysym_alloc() call
* XXX if we re-factor the code a little.
*/
return (prop_dictionary_set(pd, pdk->pdk_key, po));
}
static void
_prop_dictionary_remove(prop_dictionary_t pd, struct _prop_dict_entry *pde,
unsigned int idx)
{
prop_dictionary_keysym_t pdk = pde->pde_key;
prop_object_t po = pde->pde_objref;
_PROP_ASSERT(pd->pd_count != 0);
_PROP_ASSERT(idx < pd->pd_count);
_PROP_ASSERT(pde == &pd->pd_array[idx]);
idx++;
memmove(&pd->pd_array[idx - 1], &pd->pd_array[idx],
(pd->pd_count - idx) * sizeof(*pde));
pd->pd_count--;
pd->pd_version++;
prop_object_release(pdk);
prop_object_release(po);
}
/*
* prop_dictionary_remove --
* Remove the reference to an object with the specified key from
* the dictionary.
*/
void
prop_dictionary_remove(prop_dictionary_t pd, const char *key)
{
struct _prop_dict_entry *pde;
unsigned int idx;
_PROP_ASSERT(prop_object_is_dictionary(pd));
/* XXX Should this be a _PROP_ASSERT()? */
if (prop_dictionary_is_immutable(pd))
return;
pde = _prop_dict_lookup(pd, key, &idx);
/* XXX Should this be a _PROP_ASSERT()? */
if (pde == NULL)
return;
_prop_dictionary_remove(pd, pde, idx);
}
/*
* prop_dictionary_remove_keysym --
* Remove a reference to an object stored in the dictionary at the
* location encoded by the keysym.
*/
void
prop_dictionary_remove_keysym(prop_dictionary_t pd,
prop_dictionary_keysym_t pdk)
{
_PROP_ASSERT(prop_object_is_dictionary(pd));
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk));
/* XXX Should this be a _PROP_ASSERT()? */
if (prop_dictionary_is_immutable(pd))
return;
prop_dictionary_remove(pd, pdk->pdk_key);
}
/*
* prop_dictionary_equals --
* Return TRUE if the two dictionaries are equivalent. Note we do a
* by-value comparison of the objects in the dictionary.
*/
boolean_t
prop_dictionary_equals(prop_dictionary_t dict1, prop_dictionary_t dict2)
{
return (_prop_dictionary_equals(dict1, dict2));
}
/*
* prop_dictionary_keysym_cstring_nocopy --
* Return an immutable reference to the keysym's value.
*/
const char *
prop_dictionary_keysym_cstring_nocopy(prop_dictionary_keysym_t pdk)
{
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk));
return (pdk->pdk_key);
}
/*
* prop_dictionary_keysym_equals --
* Return TRUE if the two dictionary key symbols are equivalent.
* Note: We do not compare the object references.
*/
boolean_t
prop_dictionary_keysym_equals(prop_dictionary_keysym_t pdk1,
prop_dictionary_keysym_t pdk2)
{
return (_prop_dict_keysym_equals(pdk1, pdk2));
}
/*
* prop_dictionary_externalize --
* Externalize a dictionary, returning a NUL-terminated buffer
* containing the XML-style representation. The buffer is allocated
* with the M_TEMP memory type.
*/
char *
prop_dictionary_externalize(prop_dictionary_t pd)
{
struct _prop_object_externalize_context *ctx;
char *cp;
ctx = _prop_object_externalize_context_alloc();
if (ctx == NULL)
return (NULL);
if (_prop_object_externalize_start_tag(ctx,
"plist version=\"1.0\"") == FALSE ||
_prop_object_externalize_append_char(ctx, '\n') == FALSE ||
(*pd->pd_obj.po_type->pot_extern)(ctx, pd) == FALSE ||
_prop_object_externalize_end_tag(ctx, "plist") == FALSE ||
_prop_object_externalize_append_char(ctx, '\0') == FALSE) {
/* We are responsible for releasing the buffer. */
_PROP_FREE(ctx->poec_buf, M_TEMP);
_prop_object_externalize_context_free(ctx);
return (NULL);
}
cp = ctx->poec_buf;
_prop_object_externalize_context_free(ctx);
return (cp);
}
/*
* _prop_dictionary_internalize --
* Parse a <dict>...</dict> and return the object created from the
* external representation.
*/
prop_object_t
_prop_dictionary_internalize(struct _prop_object_internalize_context *ctx)
{
prop_dictionary_t dict;
prop_object_t val;
size_t keylen;
char *tmpkey;
/* We don't currently understand any attributes. */
if (ctx->poic_tagattr != NULL)
return (NULL);
dict = prop_dictionary_create();
if (dict == NULL)
return (NULL);
if (ctx->poic_is_empty_element)
return (dict);
tmpkey = _PROP_MALLOC(PDK_MAXKEY + 1, M_TEMP);
if (tmpkey == NULL)
goto bad;
for (;;) {
/* Fetch the next tag. */
if (_prop_object_internalize_find_tag(ctx, NULL,
_PROP_TAG_TYPE_EITHER) == FALSE)
goto bad;
/* Check to see if this is the end of the dictionary. */
if (_PROP_TAG_MATCH(ctx, "dict") &&
ctx->poic_tag_type == _PROP_TAG_TYPE_END)
break;
/* Ok, it must be a non-empty key start tag. */
if (!_PROP_TAG_MATCH(ctx, "key") ||
ctx->poic_tag_type != _PROP_TAG_TYPE_START ||
ctx->poic_is_empty_element)
goto bad;
if (_prop_object_internalize_decode_string(ctx,
tmpkey, PDK_MAXKEY, &keylen,
&ctx->poic_cp) == FALSE)
goto bad;
_PROP_ASSERT(keylen <= PDK_MAXKEY);
tmpkey[keylen] = '\0';
if (_prop_object_internalize_find_tag(ctx, "key",
_PROP_TAG_TYPE_END) == FALSE)
goto bad;
/* ..and now the beginning of the value. */
if (_prop_object_internalize_find_tag(ctx, NULL,
_PROP_TAG_TYPE_START) == FALSE)
goto bad;
val = _prop_object_internalize_by_tag(ctx);
if (val == NULL)
goto bad;
if (prop_dictionary_set(dict, tmpkey, val) == FALSE) {
prop_object_release(val);
goto bad;
}
prop_object_release(val);
}
_PROP_FREE(tmpkey, M_TEMP);
return (dict);
bad:
if (tmpkey != NULL)
_PROP_FREE(tmpkey, M_TEMP);
prop_object_release(dict);
return (NULL);
}
/*
* prop_dictionary_internalize --
* Create a dictionary by parsing the NUL-terminated XML-style
* representation.
*/
prop_dictionary_t
prop_dictionary_internalize(const char *xml)
{
prop_dictionary_t dict = NULL;
struct _prop_object_internalize_context *ctx;
ctx = _prop_object_internalize_context_alloc(xml);
if (ctx == NULL)
return (NULL);
/* We start with a <plist> tag. */
if (_prop_object_internalize_find_tag(ctx, "plist",
_PROP_TAG_TYPE_START) == FALSE)
goto out;
/* Plist elements cannot be empty. */
if (ctx->poic_is_empty_element)
goto out;
/*
* We don't understand any plist attributes, but Apple XML
* property lists often have a "version" attibute. If we
* see that one, we simply ignore it.
*/
if (ctx->poic_tagattr != NULL &&
!_PROP_TAGATTR_MATCH(ctx, "version"))
goto out;
/* Next we expect to see <dict>. */
if (_prop_object_internalize_find_tag(ctx, "dict",
_PROP_TAG_TYPE_START) == FALSE)
goto out;
dict = _prop_dictionary_internalize(ctx);
if (dict == NULL)
goto out;
/* We've advanced past </dict>. Now we want </plist>. */
if (_prop_object_internalize_find_tag(ctx, "plist",
_PROP_TAG_TYPE_END) == FALSE) {
prop_object_release(dict);
dict = NULL;
}
out:
_prop_object_internalize_context_free(ctx);
return (dict);
}