296508b606
a sorted array. Using a tree puts the linkage into the key symbol itself, allowing us to avoid having to allocate memory with a mutex held.
1045 lines
27 KiB
C
1045 lines
27 KiB
C
/* $NetBSD: prop_dictionary.c,v 1.8 2006/07/07 17:09:36 thorpej Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2006 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <prop/prop_dictionary.h>
|
|
#include <prop/prop_string.h>
|
|
#include "prop_object_impl.h"
|
|
|
|
#if defined(__NetBSD__)
|
|
#include <sys/tree.h>
|
|
#else
|
|
#error Need to find a NetBSD sys/tree.h
|
|
#endif
|
|
|
|
/*
|
|
* We implement these like arrays, but we keep them sorted by key.
|
|
* This allows us to binary-search as well as keep externalized output
|
|
* sane-looking for human eyes.
|
|
*/
|
|
|
|
#define EXPAND_STEP 16
|
|
|
|
/*
|
|
* prop_dictionary_keysym_t is allocated with space at the end to hold the
|
|
* key. This must be a regular object so that we can maintain sane iterator
|
|
* semantics -- we don't want to require that the caller release the result
|
|
* of prop_object_iterator_next().
|
|
*
|
|
* We'd like to have some small'ish keysym objects for up-to-16 characters
|
|
* in a key, some for up-to-32 characters in a key, and then a final bucket
|
|
* for up-to-128 characters in a key (not including NUL). Keys longer than
|
|
* 128 characters are not allowed.
|
|
*/
|
|
struct _prop_dictionary_keysym {
|
|
struct _prop_object pdk_obj;
|
|
size_t pdk_size;
|
|
RB_ENTRY(_prop_dictionary_keysym) pdk_link;
|
|
char pdk_key[1];
|
|
/* actually variable length */
|
|
};
|
|
|
|
/* pdk_key[1] takes care of the NUL */
|
|
#define PDK_SIZE_16 (sizeof(struct _prop_dictionary_keysym) + 16)
|
|
#define PDK_SIZE_32 (sizeof(struct _prop_dictionary_keysym) + 32)
|
|
#define PDK_SIZE_128 (sizeof(struct _prop_dictionary_keysym) + 128)
|
|
|
|
#define PDK_MAXKEY 128
|
|
|
|
_PROP_POOL_INIT(_prop_dictionary_keysym16_pool, PDK_SIZE_16, "pdict16")
|
|
_PROP_POOL_INIT(_prop_dictionary_keysym32_pool, PDK_SIZE_32, "pdict32")
|
|
_PROP_POOL_INIT(_prop_dictionary_keysym128_pool, PDK_SIZE_128, "pdict128")
|
|
|
|
struct _prop_dict_entry {
|
|
prop_dictionary_keysym_t pde_key;
|
|
prop_object_t pde_objref;
|
|
};
|
|
|
|
struct _prop_dictionary {
|
|
struct _prop_object pd_obj;
|
|
struct _prop_dict_entry *pd_array;
|
|
unsigned int pd_capacity;
|
|
unsigned int pd_count;
|
|
int pd_flags;
|
|
|
|
uint32_t pd_version;
|
|
};
|
|
|
|
#define PD_F_IMMUTABLE 0x01 /* dictionary is immutable */
|
|
|
|
_PROP_POOL_INIT(_prop_dictionary_pool, sizeof(struct _prop_dictionary),
|
|
"propdict")
|
|
_PROP_MALLOC_DEFINE(M_PROP_DICT, "prop dictionary",
|
|
"property dictionary container object")
|
|
|
|
static void _prop_dictionary_free(void *);
|
|
static boolean_t _prop_dictionary_externalize(
|
|
struct _prop_object_externalize_context *,
|
|
void *);
|
|
static boolean_t _prop_dictionary_equals(void *, void *);
|
|
|
|
static const struct _prop_object_type _prop_object_type_dictionary = {
|
|
.pot_type = PROP_TYPE_DICTIONARY,
|
|
.pot_free = _prop_dictionary_free,
|
|
.pot_extern = _prop_dictionary_externalize,
|
|
.pot_equals = _prop_dictionary_equals,
|
|
};
|
|
|
|
static void _prop_dict_keysym_free(void *);
|
|
static boolean_t _prop_dict_keysym_externalize(
|
|
struct _prop_object_externalize_context *,
|
|
void *);
|
|
static boolean_t _prop_dict_keysym_equals(void *, void *);
|
|
|
|
static const struct _prop_object_type _prop_object_type_dict_keysym = {
|
|
.pot_type = PROP_TYPE_DICT_KEYSYM,
|
|
.pot_free = _prop_dict_keysym_free,
|
|
.pot_extern = _prop_dict_keysym_externalize,
|
|
.pot_equals = _prop_dict_keysym_equals,
|
|
};
|
|
|
|
#define prop_object_is_dictionary(x) \
|
|
((x)->pd_obj.po_type == &_prop_object_type_dictionary)
|
|
#define prop_object_is_dictionary_keysym(x) \
|
|
((x)->pdk_obj.po_type == &_prop_object_type_dict_keysym)
|
|
|
|
#define prop_dictionary_is_immutable(x) \
|
|
(((x)->pd_flags & PD_F_IMMUTABLE) != 0)
|
|
|
|
struct _prop_dictionary_iterator {
|
|
struct _prop_object_iterator pdi_base;
|
|
unsigned int pdi_index;
|
|
};
|
|
|
|
/*
|
|
* Dictionary key symbols are immutable, and we are likely to have many
|
|
* duplicated key symbols. So, to save memory, we unique'ify key symbols
|
|
* so we only have to have one copy of each string.
|
|
*/
|
|
|
|
static int
|
|
_prop_dict_keysym_tree_cmp(prop_dictionary_keysym_t pdk1,
|
|
prop_dictionary_keysym_t pdk2)
|
|
{
|
|
|
|
return (strcmp(pdk1->pdk_key, pdk2->pdk_key));
|
|
}
|
|
|
|
static RB_HEAD(_prop_dict_keysym_tree, _prop_dictionary_keysym)
|
|
_prop_dict_keysym_tree = RB_INITIALIZER(&_prop_dict_keysym_tree);
|
|
RB_PROTOTYPE(_prop_dict_keysym_tree, _prop_dictionary_keysym, pdk_link,
|
|
_prop_dict_keysym_tree_cmp)
|
|
RB_GENERATE(_prop_dict_keysym_tree, _prop_dictionary_keysym, pdk_link,
|
|
_prop_dict_keysym_tree_cmp)
|
|
|
|
_PROP_MUTEX_DECL(_prop_dict_keysym_tree_mutex)
|
|
|
|
static void
|
|
_prop_dict_keysym_put(prop_dictionary_keysym_t pdk)
|
|
{
|
|
|
|
if (pdk->pdk_size <= PDK_SIZE_16)
|
|
_PROP_POOL_PUT(_prop_dictionary_keysym16_pool, pdk);
|
|
else if (pdk->pdk_size <= PDK_SIZE_32)
|
|
_PROP_POOL_PUT(_prop_dictionary_keysym32_pool, pdk);
|
|
else {
|
|
_PROP_ASSERT(pdk->pdk_size <= PDK_SIZE_128);
|
|
_PROP_POOL_PUT(_prop_dictionary_keysym128_pool, pdk);
|
|
}
|
|
}
|
|
|
|
static void
|
|
_prop_dict_keysym_free(void *v)
|
|
{
|
|
prop_dictionary_keysym_t pdk = v;
|
|
|
|
_PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
|
|
RB_REMOVE(_prop_dict_keysym_tree, &_prop_dict_keysym_tree, pdk);
|
|
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
|
|
|
|
_prop_dict_keysym_put(pdk);
|
|
}
|
|
|
|
static boolean_t
|
|
_prop_dict_keysym_externalize(struct _prop_object_externalize_context *ctx,
|
|
void *v)
|
|
{
|
|
prop_dictionary_keysym_t pdk = v;
|
|
|
|
/* We externalize these as strings, and they're never empty. */
|
|
|
|
_PROP_ASSERT(pdk->pdk_key[0] != '\0');
|
|
|
|
if (_prop_object_externalize_start_tag(ctx, "string") == FALSE ||
|
|
_prop_object_externalize_append_encoded_cstring(ctx,
|
|
pdk->pdk_key) == FALSE ||
|
|
_prop_object_externalize_end_tag(ctx, "string") == FALSE)
|
|
return (FALSE);
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static boolean_t
|
|
_prop_dict_keysym_equals(void *v1, void *v2)
|
|
{
|
|
prop_dictionary_keysym_t pdk1 = v1;
|
|
prop_dictionary_keysym_t pdk2 = v2;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk1));
|
|
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk2));
|
|
|
|
/*
|
|
* There is only ever one copy of a keysym at any given time,
|
|
* so we can reduce this to a simple pointer equality check.
|
|
*/
|
|
return (pdk1 == pdk2);
|
|
}
|
|
|
|
static prop_dictionary_keysym_t
|
|
_prop_dict_keysym_alloc(const char *key)
|
|
{
|
|
prop_dictionary_keysym_t opdk, pdk;
|
|
size_t size;
|
|
|
|
/*
|
|
* Because of the way our RB trees work, we need to create the
|
|
* new keysym in order to check if it's already in the tree.
|
|
* Oh well.
|
|
*/
|
|
|
|
size = sizeof(*pdk) + strlen(key) /* pdk_key[1] covers the NUL */;
|
|
|
|
if (size <= PDK_SIZE_16)
|
|
pdk = _PROP_POOL_GET(_prop_dictionary_keysym16_pool);
|
|
else if (size <= PDK_SIZE_32)
|
|
pdk = _PROP_POOL_GET(_prop_dictionary_keysym32_pool);
|
|
else if (size <= PDK_SIZE_128)
|
|
pdk = _PROP_POOL_GET(_prop_dictionary_keysym128_pool);
|
|
else
|
|
pdk = NULL; /* key too long */
|
|
|
|
if (pdk == NULL)
|
|
return (NULL);
|
|
|
|
_prop_object_init(&pdk->pdk_obj, &_prop_object_type_dict_keysym);
|
|
|
|
strcpy(pdk->pdk_key, key);
|
|
pdk->pdk_size = size;
|
|
|
|
/*
|
|
* Now check to see if this already exists in the tree. If it
|
|
* does, we return a reference to the existing one and free the
|
|
* new one we just created.
|
|
*/
|
|
_PROP_MUTEX_LOCK(_prop_dict_keysym_tree_mutex);
|
|
opdk = RB_INSERT(_prop_dict_keysym_tree, &_prop_dict_keysym_tree, pdk);
|
|
if (opdk != NULL) {
|
|
prop_object_retain(opdk);
|
|
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
|
|
_prop_dict_keysym_put(pdk);
|
|
return (opdk);
|
|
}
|
|
_PROP_MUTEX_UNLOCK(_prop_dict_keysym_tree_mutex);
|
|
return (pdk);
|
|
}
|
|
|
|
static void
|
|
_prop_dictionary_free(void *v)
|
|
{
|
|
prop_dictionary_t pd = v;
|
|
prop_dictionary_keysym_t pdk;
|
|
prop_object_t po;
|
|
unsigned int idx;
|
|
|
|
_PROP_ASSERT(pd->pd_count <= pd->pd_capacity);
|
|
_PROP_ASSERT((pd->pd_capacity == 0 && pd->pd_array == NULL) ||
|
|
(pd->pd_capacity != 0 && pd->pd_array != NULL));
|
|
|
|
for (idx = 0; idx < pd->pd_count; idx++) {
|
|
pdk = pd->pd_array[idx].pde_key;
|
|
_PROP_ASSERT(pdk != NULL);
|
|
prop_object_release(pdk);
|
|
po = pd->pd_array[idx].pde_objref;
|
|
_PROP_ASSERT(po != NULL);
|
|
prop_object_release(po);
|
|
}
|
|
|
|
if (pd->pd_array != NULL)
|
|
_PROP_FREE(pd->pd_array, M_PROP_DICT);
|
|
|
|
_PROP_POOL_PUT(_prop_dictionary_pool, pd);
|
|
}
|
|
|
|
static boolean_t
|
|
_prop_dictionary_externalize(struct _prop_object_externalize_context *ctx,
|
|
void *v)
|
|
{
|
|
prop_dictionary_t pd = v;
|
|
prop_dictionary_keysym_t pdk;
|
|
struct _prop_object *po;
|
|
prop_object_iterator_t pi;
|
|
unsigned int i;
|
|
|
|
if (pd->pd_count == 0)
|
|
return (_prop_object_externalize_empty_tag(ctx, "dict"));
|
|
|
|
if (_prop_object_externalize_start_tag(ctx, "dict") == FALSE ||
|
|
_prop_object_externalize_append_char(ctx, '\n') == FALSE)
|
|
return (FALSE);
|
|
|
|
pi = prop_dictionary_iterator(pd);
|
|
if (pi == NULL)
|
|
return (FALSE);
|
|
|
|
ctx->poec_depth++;
|
|
_PROP_ASSERT(ctx->poec_depth != 0);
|
|
|
|
while ((pdk = prop_object_iterator_next(pi)) != NULL) {
|
|
po = prop_dictionary_get_keysym(pd, pdk);
|
|
if (po == NULL ||
|
|
_prop_object_externalize_start_tag(ctx, "key") == FALSE ||
|
|
_prop_object_externalize_append_encoded_cstring(ctx,
|
|
pdk->pdk_key) == FALSE ||
|
|
_prop_object_externalize_end_tag(ctx, "key") == FALSE ||
|
|
(*po->po_type->pot_extern)(ctx, po) == FALSE) {
|
|
prop_object_iterator_release(pi);
|
|
return (FALSE);
|
|
}
|
|
}
|
|
|
|
prop_object_iterator_release(pi);
|
|
|
|
ctx->poec_depth--;
|
|
for (i = 0; i < ctx->poec_depth; i++) {
|
|
if (_prop_object_externalize_append_char(ctx, '\t') == FALSE)
|
|
return (FALSE);
|
|
}
|
|
if (_prop_object_externalize_end_tag(ctx, "dict") == FALSE)
|
|
return (FALSE);
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static boolean_t
|
|
_prop_dictionary_equals(void *v1, void *v2)
|
|
{
|
|
prop_dictionary_t dict1 = v1;
|
|
prop_dictionary_t dict2 = v2;
|
|
const struct _prop_dict_entry *pde1, *pde2;
|
|
unsigned int idx;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(dict1));
|
|
_PROP_ASSERT(prop_object_is_dictionary(dict2));
|
|
if (dict1 == dict2)
|
|
return (TRUE);
|
|
if (dict1->pd_count != dict2->pd_count)
|
|
return (FALSE);
|
|
|
|
for (idx = 0; idx < dict1->pd_count; idx++) {
|
|
pde1 = &dict1->pd_array[idx];
|
|
pde2 = &dict2->pd_array[idx];
|
|
|
|
if (prop_dictionary_keysym_equals(pde1->pde_key,
|
|
pde2->pde_key) == FALSE)
|
|
return (FALSE);
|
|
if (prop_object_equals(pde1->pde_objref,
|
|
pde2->pde_objref) == FALSE)
|
|
return (FALSE);
|
|
}
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static prop_dictionary_t
|
|
_prop_dictionary_alloc(unsigned int capacity)
|
|
{
|
|
prop_dictionary_t pd;
|
|
struct _prop_dict_entry *array;
|
|
|
|
if (capacity != 0) {
|
|
array = _PROP_CALLOC(capacity * sizeof(*array), M_PROP_DICT);
|
|
if (array == NULL)
|
|
return (NULL);
|
|
} else
|
|
array = NULL;
|
|
|
|
pd = _PROP_POOL_GET(_prop_dictionary_pool);
|
|
if (pd != NULL) {
|
|
_prop_object_init(&pd->pd_obj, &_prop_object_type_dictionary);
|
|
|
|
pd->pd_array = array;
|
|
pd->pd_capacity = capacity;
|
|
pd->pd_count = 0;
|
|
pd->pd_flags = 0;
|
|
|
|
pd->pd_version = 0;
|
|
} else if (array != NULL)
|
|
_PROP_FREE(array, M_PROP_DICT);
|
|
|
|
return (pd);
|
|
}
|
|
|
|
static boolean_t
|
|
_prop_dictionary_expand(prop_dictionary_t pd, unsigned int capacity)
|
|
{
|
|
struct _prop_dict_entry *array, *oarray;
|
|
|
|
oarray = pd->pd_array;
|
|
|
|
array = _PROP_CALLOC(capacity * sizeof(*array), M_PROP_DICT);
|
|
if (array == NULL)
|
|
return (FALSE);
|
|
if (oarray != NULL)
|
|
memcpy(array, oarray, pd->pd_capacity * sizeof(*array));
|
|
pd->pd_array = array;
|
|
pd->pd_capacity = capacity;
|
|
|
|
if (oarray != NULL)
|
|
_PROP_FREE(oarray, M_PROP_DICT);
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
static prop_object_t
|
|
_prop_dictionary_iterator_next_object(void *v)
|
|
{
|
|
struct _prop_dictionary_iterator *pdi = v;
|
|
prop_dictionary_t pd = pdi->pdi_base.pi_obj;
|
|
prop_dictionary_keysym_t pdk;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
|
|
if (pd->pd_version != pdi->pdi_base.pi_version)
|
|
return (NULL); /* dictionary changed during iteration */
|
|
|
|
_PROP_ASSERT(pdi->pdi_index <= pd->pd_count);
|
|
|
|
if (pdi->pdi_index == pd->pd_count)
|
|
return (NULL); /* we've iterated all objects */
|
|
|
|
pdk = pd->pd_array[pdi->pdi_index].pde_key;
|
|
pdi->pdi_index++;
|
|
|
|
return (pdk);
|
|
}
|
|
|
|
static void
|
|
_prop_dictionary_iterator_reset(void *v)
|
|
{
|
|
struct _prop_dictionary_iterator *pdi = v;
|
|
prop_dictionary_t pd = pdi->pdi_base.pi_obj;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
|
|
pdi->pdi_index = 0;
|
|
pdi->pdi_base.pi_version = pd->pd_version;
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_create --
|
|
* Create a dictionary.
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_create(void)
|
|
{
|
|
|
|
return (_prop_dictionary_alloc(0));
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_create_with_capacity --
|
|
* Create a dictionary with the capacity to store N objects.
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_create_with_capacity(unsigned int capacity)
|
|
{
|
|
|
|
return (_prop_dictionary_alloc(capacity));
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_copy --
|
|
* Copy a dictionary. The new dictionary has an initial capacity equal
|
|
* to the number of objects stored int the original dictionary. The new
|
|
* dictionary contains refrences to the original dictionary's objects,
|
|
* not copies of those objects (i.e. a shallow copy).
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_copy(prop_dictionary_t opd)
|
|
{
|
|
prop_dictionary_t pd;
|
|
prop_dictionary_keysym_t pdk;
|
|
prop_object_t po;
|
|
unsigned int idx;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(opd));
|
|
|
|
pd = _prop_dictionary_alloc(opd->pd_count);
|
|
if (pd != NULL) {
|
|
for (idx = 0; idx < opd->pd_count; idx++) {
|
|
pdk = opd->pd_array[idx].pde_key;
|
|
po = opd->pd_array[idx].pde_objref;
|
|
|
|
prop_object_retain(pdk);
|
|
prop_object_retain(po);
|
|
|
|
pd->pd_array[idx].pde_key = pdk;
|
|
pd->pd_array[idx].pde_objref = po;
|
|
}
|
|
pd->pd_count = opd->pd_count;
|
|
pd->pd_flags = opd->pd_flags;
|
|
}
|
|
return (pd);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_copy_mutable --
|
|
* Like prop_dictionary_copy(), but the resulting dictionary is
|
|
* mutable.
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_copy_mutable(prop_dictionary_t opd)
|
|
{
|
|
prop_dictionary_t pd;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(opd));
|
|
pd = prop_dictionary_copy(opd);
|
|
if (pd != NULL)
|
|
pd->pd_flags &= ~PD_F_IMMUTABLE;
|
|
|
|
return (pd);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_count --
|
|
* Return the number of objects stored in the dictionary.
|
|
*/
|
|
unsigned int
|
|
prop_dictionary_count(prop_dictionary_t pd)
|
|
{
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
return (pd->pd_count);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_ensure_capacity --
|
|
* Ensure that the dictionary has the capacity to store the specified
|
|
* total number of objects (including the objects already stored in
|
|
* the dictionary).
|
|
*/
|
|
boolean_t
|
|
prop_dictionary_ensure_capacity(prop_dictionary_t pd, unsigned int capacity)
|
|
{
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
if (capacity > pd->pd_capacity)
|
|
return (_prop_dictionary_expand(pd, capacity));
|
|
return (TRUE);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_iterator --
|
|
* Return an iterator for the dictionary. The dictionary is retained by
|
|
* the iterator.
|
|
*/
|
|
prop_object_iterator_t
|
|
prop_dictionary_iterator(prop_dictionary_t pd)
|
|
{
|
|
struct _prop_dictionary_iterator *pdi;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
|
|
pdi = _PROP_CALLOC(sizeof(*pdi), M_TEMP);
|
|
if (pdi == NULL)
|
|
return (NULL);
|
|
pdi->pdi_base.pi_next_object = _prop_dictionary_iterator_next_object;
|
|
pdi->pdi_base.pi_reset = _prop_dictionary_iterator_reset;
|
|
prop_object_retain(pd);
|
|
pdi->pdi_base.pi_obj = pd;
|
|
pdi->pdi_base.pi_version = pd->pd_version;
|
|
|
|
_prop_dictionary_iterator_reset(pdi);
|
|
|
|
return (&pdi->pdi_base);
|
|
}
|
|
|
|
static struct _prop_dict_entry *
|
|
_prop_dict_lookup(prop_dictionary_t pd, const char *key,
|
|
unsigned int *idxp)
|
|
{
|
|
struct _prop_dict_entry *pde;
|
|
unsigned int base, idx, distance;
|
|
int res;
|
|
|
|
for (idx = 0, base = 0, distance = pd->pd_count; distance != 0;
|
|
distance >>= 1) {
|
|
idx = base + (distance >> 1);
|
|
pde = &pd->pd_array[idx];
|
|
_PROP_ASSERT(pde->pde_key != NULL);
|
|
res = strcmp(key, pde->pde_key->pdk_key);
|
|
if (res == 0) {
|
|
if (idxp != NULL)
|
|
*idxp = idx;
|
|
return (pde);
|
|
}
|
|
if (res > 0) { /* key > pdk_key: move right */
|
|
base = idx + 1;
|
|
distance--;
|
|
} /* else move left */
|
|
}
|
|
|
|
/* idx points to the slot we looked at last. */
|
|
if (idxp != NULL)
|
|
*idxp = idx;
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_get --
|
|
* Return the object stored with specified key.
|
|
*/
|
|
prop_object_t
|
|
prop_dictionary_get(prop_dictionary_t pd, const char *key)
|
|
{
|
|
const struct _prop_dict_entry *pde;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
|
|
pde = _prop_dict_lookup(pd, key, NULL);
|
|
if (pde != NULL) {
|
|
_PROP_ASSERT(pde->pde_objref != NULL);
|
|
return (pde->pde_objref);
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_get_keysym --
|
|
* Return the object stored at the location encoded by the keysym.
|
|
*/
|
|
prop_object_t
|
|
prop_dictionary_get_keysym(prop_dictionary_t pd, prop_dictionary_keysym_t pdk)
|
|
{
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk));
|
|
|
|
return (prop_dictionary_get(pd, pdk->pdk_key));
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_set --
|
|
* Store a reference to an object at with the specified key.
|
|
* If the key already exisit, the original object is released.
|
|
*/
|
|
boolean_t
|
|
prop_dictionary_set(prop_dictionary_t pd, const char *key, prop_object_t po)
|
|
{
|
|
struct _prop_dict_entry *pde;
|
|
prop_dictionary_keysym_t pdk;
|
|
unsigned int idx;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
_PROP_ASSERT(pd->pd_count <= pd->pd_capacity);
|
|
|
|
if (prop_dictionary_is_immutable(pd))
|
|
return (FALSE);
|
|
|
|
pde = _prop_dict_lookup(pd, key, &idx);
|
|
if (pde != NULL) {
|
|
prop_object_t opo = pde->pde_objref;
|
|
prop_object_retain(po);
|
|
pde->pde_objref = po;
|
|
prop_object_release(opo);
|
|
return (TRUE);
|
|
}
|
|
|
|
pdk = _prop_dict_keysym_alloc(key);
|
|
if (pdk == NULL)
|
|
return (FALSE);
|
|
|
|
if (pd->pd_count == pd->pd_capacity &&
|
|
_prop_dictionary_expand(pd,
|
|
pd->pd_capacity + EXPAND_STEP) == FALSE) {
|
|
prop_object_release(pdk);
|
|
return (FALSE);
|
|
}
|
|
|
|
/* At this point, the store will succeed. */
|
|
prop_object_retain(po);
|
|
|
|
if (pd->pd_count == 0) {
|
|
pd->pd_array[0].pde_key = pdk;
|
|
pd->pd_array[0].pde_objref = po;
|
|
pd->pd_count++;
|
|
pd->pd_version++;
|
|
return (TRUE);
|
|
}
|
|
|
|
pde = &pd->pd_array[idx];
|
|
_PROP_ASSERT(pde->pde_key != NULL);
|
|
|
|
if (strcmp(key, pde->pde_key->pdk_key) < 0) {
|
|
/*
|
|
* key < pdk_key: insert to the left. This is the same as
|
|
* inserting to the right, except we decrement the current
|
|
* index first.
|
|
*
|
|
* Because we're unsigned, we have to special case 0
|
|
* (grumble).
|
|
*/
|
|
if (idx == 0) {
|
|
memmove(&pd->pd_array[1], &pd->pd_array[0],
|
|
pd->pd_count * sizeof(*pde));
|
|
pd->pd_array[0].pde_key = pdk;
|
|
pd->pd_array[0].pde_objref = po;
|
|
pd->pd_count++;
|
|
pd->pd_version++;
|
|
return (TRUE);
|
|
}
|
|
idx--;
|
|
}
|
|
|
|
memmove(&pd->pd_array[idx + 2], &pd->pd_array[idx + 1],
|
|
(pd->pd_count - (idx + 1)) * sizeof(*pde));
|
|
pd->pd_array[idx + 1].pde_key = pdk;
|
|
pd->pd_array[idx + 1].pde_objref = po;
|
|
pd->pd_count++;
|
|
|
|
pd->pd_version++;
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_set_keysym --
|
|
* Replace the object in the dictionary at the location encoded by
|
|
* the keysym.
|
|
*/
|
|
boolean_t
|
|
prop_dictionary_set_keysym(prop_dictionary_t pd, prop_dictionary_keysym_t pdk,
|
|
prop_object_t po)
|
|
{
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk));
|
|
|
|
if (prop_dictionary_is_immutable(pd))
|
|
return (FALSE);
|
|
|
|
/*
|
|
* XXX We could optimize out the _prop_dict_keysym_alloc() call
|
|
* XXX if we re-factor the code a little.
|
|
*/
|
|
return (prop_dictionary_set(pd, pdk->pdk_key, po));
|
|
}
|
|
|
|
static void
|
|
_prop_dictionary_remove(prop_dictionary_t pd, struct _prop_dict_entry *pde,
|
|
unsigned int idx)
|
|
{
|
|
prop_dictionary_keysym_t pdk = pde->pde_key;
|
|
prop_object_t po = pde->pde_objref;
|
|
|
|
_PROP_ASSERT(pd->pd_count != 0);
|
|
_PROP_ASSERT(idx < pd->pd_count);
|
|
_PROP_ASSERT(pde == &pd->pd_array[idx]);
|
|
|
|
idx++;
|
|
memmove(&pd->pd_array[idx - 1], &pd->pd_array[idx],
|
|
(pd->pd_count - idx) * sizeof(*pde));
|
|
pd->pd_count--;
|
|
pd->pd_version++;
|
|
|
|
prop_object_release(pdk);
|
|
prop_object_release(po);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_remove --
|
|
* Remove the reference to an object with the specified key from
|
|
* the dictionary.
|
|
*/
|
|
void
|
|
prop_dictionary_remove(prop_dictionary_t pd, const char *key)
|
|
{
|
|
struct _prop_dict_entry *pde;
|
|
unsigned int idx;
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
|
|
/* XXX Should this be a _PROP_ASSERT()? */
|
|
if (prop_dictionary_is_immutable(pd))
|
|
return;
|
|
|
|
pde = _prop_dict_lookup(pd, key, &idx);
|
|
/* XXX Should this be a _PROP_ASSERT()? */
|
|
if (pde == NULL)
|
|
return;
|
|
|
|
_prop_dictionary_remove(pd, pde, idx);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_remove_keysym --
|
|
* Remove a reference to an object stored in the dictionary at the
|
|
* location encoded by the keysym.
|
|
*/
|
|
void
|
|
prop_dictionary_remove_keysym(prop_dictionary_t pd,
|
|
prop_dictionary_keysym_t pdk)
|
|
{
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary(pd));
|
|
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk));
|
|
|
|
/* XXX Should this be a _PROP_ASSERT()? */
|
|
if (prop_dictionary_is_immutable(pd))
|
|
return;
|
|
|
|
prop_dictionary_remove(pd, pdk->pdk_key);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_equals --
|
|
* Return TRUE if the two dictionaries are equivalent. Note we do a
|
|
* by-value comparison of the objects in the dictionary.
|
|
*/
|
|
boolean_t
|
|
prop_dictionary_equals(prop_dictionary_t dict1, prop_dictionary_t dict2)
|
|
{
|
|
|
|
return (_prop_dictionary_equals(dict1, dict2));
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_keysym_cstring_nocopy --
|
|
* Return an immutable reference to the keysym's value.
|
|
*/
|
|
const char *
|
|
prop_dictionary_keysym_cstring_nocopy(prop_dictionary_keysym_t pdk)
|
|
{
|
|
|
|
_PROP_ASSERT(prop_object_is_dictionary_keysym(pdk));
|
|
return (pdk->pdk_key);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_keysym_equals --
|
|
* Return TRUE if the two dictionary key symbols are equivalent.
|
|
* Note: We do not compare the object references.
|
|
*/
|
|
boolean_t
|
|
prop_dictionary_keysym_equals(prop_dictionary_keysym_t pdk1,
|
|
prop_dictionary_keysym_t pdk2)
|
|
{
|
|
|
|
return (_prop_dict_keysym_equals(pdk1, pdk2));
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_externalize --
|
|
* Externalize a dictionary, returning a NUL-terminated buffer
|
|
* containing the XML-style representation. The buffer is allocated
|
|
* with the M_TEMP memory type.
|
|
*/
|
|
char *
|
|
prop_dictionary_externalize(prop_dictionary_t pd)
|
|
{
|
|
struct _prop_object_externalize_context *ctx;
|
|
char *cp;
|
|
|
|
ctx = _prop_object_externalize_context_alloc();
|
|
if (ctx == NULL)
|
|
return (NULL);
|
|
|
|
if (_prop_object_externalize_start_tag(ctx,
|
|
"plist version=\"1.0\"") == FALSE ||
|
|
_prop_object_externalize_append_char(ctx, '\n') == FALSE ||
|
|
(*pd->pd_obj.po_type->pot_extern)(ctx, pd) == FALSE ||
|
|
_prop_object_externalize_end_tag(ctx, "plist") == FALSE ||
|
|
_prop_object_externalize_append_char(ctx, '\0') == FALSE) {
|
|
/* We are responsible for releasing the buffer. */
|
|
_PROP_FREE(ctx->poec_buf, M_TEMP);
|
|
_prop_object_externalize_context_free(ctx);
|
|
return (NULL);
|
|
}
|
|
|
|
cp = ctx->poec_buf;
|
|
_prop_object_externalize_context_free(ctx);
|
|
|
|
return (cp);
|
|
}
|
|
|
|
/*
|
|
* _prop_dictionary_internalize --
|
|
* Parse a <dict>...</dict> and return the object created from the
|
|
* external representation.
|
|
*/
|
|
prop_object_t
|
|
_prop_dictionary_internalize(struct _prop_object_internalize_context *ctx)
|
|
{
|
|
prop_dictionary_t dict;
|
|
prop_object_t val;
|
|
size_t keylen;
|
|
char *tmpkey;
|
|
|
|
/* We don't currently understand any attributes. */
|
|
if (ctx->poic_tagattr != NULL)
|
|
return (NULL);
|
|
|
|
dict = prop_dictionary_create();
|
|
if (dict == NULL)
|
|
return (NULL);
|
|
|
|
if (ctx->poic_is_empty_element)
|
|
return (dict);
|
|
|
|
tmpkey = _PROP_MALLOC(PDK_MAXKEY + 1, M_TEMP);
|
|
if (tmpkey == NULL)
|
|
goto bad;
|
|
|
|
for (;;) {
|
|
/* Fetch the next tag. */
|
|
if (_prop_object_internalize_find_tag(ctx, NULL,
|
|
_PROP_TAG_TYPE_EITHER) == FALSE)
|
|
goto bad;
|
|
|
|
/* Check to see if this is the end of the dictionary. */
|
|
if (_PROP_TAG_MATCH(ctx, "dict") &&
|
|
ctx->poic_tag_type == _PROP_TAG_TYPE_END)
|
|
break;
|
|
|
|
/* Ok, it must be a non-empty key start tag. */
|
|
if (!_PROP_TAG_MATCH(ctx, "key") ||
|
|
ctx->poic_tag_type != _PROP_TAG_TYPE_START ||
|
|
ctx->poic_is_empty_element)
|
|
goto bad;
|
|
|
|
if (_prop_object_internalize_decode_string(ctx,
|
|
tmpkey, PDK_MAXKEY, &keylen,
|
|
&ctx->poic_cp) == FALSE)
|
|
goto bad;
|
|
|
|
_PROP_ASSERT(keylen <= PDK_MAXKEY);
|
|
tmpkey[keylen] = '\0';
|
|
|
|
if (_prop_object_internalize_find_tag(ctx, "key",
|
|
_PROP_TAG_TYPE_END) == FALSE)
|
|
goto bad;
|
|
|
|
/* ..and now the beginning of the value. */
|
|
if (_prop_object_internalize_find_tag(ctx, NULL,
|
|
_PROP_TAG_TYPE_START) == FALSE)
|
|
goto bad;
|
|
|
|
val = _prop_object_internalize_by_tag(ctx);
|
|
if (val == NULL)
|
|
goto bad;
|
|
|
|
if (prop_dictionary_set(dict, tmpkey, val) == FALSE) {
|
|
prop_object_release(val);
|
|
goto bad;
|
|
}
|
|
prop_object_release(val);
|
|
}
|
|
|
|
_PROP_FREE(tmpkey, M_TEMP);
|
|
return (dict);
|
|
|
|
bad:
|
|
if (tmpkey != NULL)
|
|
_PROP_FREE(tmpkey, M_TEMP);
|
|
prop_object_release(dict);
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* prop_dictionary_internalize --
|
|
* Create a dictionary by parsing the NUL-terminated XML-style
|
|
* representation.
|
|
*/
|
|
prop_dictionary_t
|
|
prop_dictionary_internalize(const char *xml)
|
|
{
|
|
prop_dictionary_t dict = NULL;
|
|
struct _prop_object_internalize_context *ctx;
|
|
|
|
ctx = _prop_object_internalize_context_alloc(xml);
|
|
if (ctx == NULL)
|
|
return (NULL);
|
|
|
|
/* We start with a <plist> tag. */
|
|
if (_prop_object_internalize_find_tag(ctx, "plist",
|
|
_PROP_TAG_TYPE_START) == FALSE)
|
|
goto out;
|
|
|
|
/* Plist elements cannot be empty. */
|
|
if (ctx->poic_is_empty_element)
|
|
goto out;
|
|
|
|
/*
|
|
* We don't understand any plist attributes, but Apple XML
|
|
* property lists often have a "version" attibute. If we
|
|
* see that one, we simply ignore it.
|
|
*/
|
|
if (ctx->poic_tagattr != NULL &&
|
|
!_PROP_TAGATTR_MATCH(ctx, "version"))
|
|
goto out;
|
|
|
|
/* Next we expect to see <dict>. */
|
|
if (_prop_object_internalize_find_tag(ctx, "dict",
|
|
_PROP_TAG_TYPE_START) == FALSE)
|
|
goto out;
|
|
|
|
dict = _prop_dictionary_internalize(ctx);
|
|
if (dict == NULL)
|
|
goto out;
|
|
|
|
/* We've advanced past </dict>. Now we want </plist>. */
|
|
if (_prop_object_internalize_find_tag(ctx, "plist",
|
|
_PROP_TAG_TYPE_END) == FALSE) {
|
|
prop_object_release(dict);
|
|
dict = NULL;
|
|
}
|
|
|
|
out:
|
|
_prop_object_internalize_context_free(ctx);
|
|
return (dict);
|
|
}
|