NetBSD/sys/arch/i386/isa/npx.c
fvdl ae4b76c8d3 New interrupt code. The basic idea behind it is to hide the differences
in interrupt controllers in struct pic, and try to keep as much
common code as possible. At the lowest (asm) level, this is done
with CPP macros.

The main structure is now struct intrsource, describing an established
interrupt line, of any kind (soft/hard local apic/legacy apic/IO apic).
For quick masking, there may be a maximum of 32 sources per CPU.
Sources can be assigned to any CPU in the MP case, though currently they
all go to the boot CPU.
2002-11-22 15:23:35 +00:00

704 lines
18 KiB
C

/* $NetBSD: npx.c,v 1.88 2002/11/22 15:23:50 fvdl Exp $ */
/*-
* Copyright (c) 1994, 1995, 1998 Charles M. Hannum. All rights reserved.
* Copyright (c) 1990 William Jolitz.
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)npx.c 7.2 (Berkeley) 5/12/91
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: npx.c,v 1.88 2002/11/22 15:23:50 fvdl Exp $");
#if 0
#define IPRINTF(x) printf x
#else
#define IPRINTF(x)
#endif
#include "opt_cputype.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/vmmeter.h>
#include <uvm/uvm_extern.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/cpufunc.h>
#include <machine/pcb.h>
#include <machine/trap.h>
#include <machine/specialreg.h>
#include <machine/pio.h>
#include <machine/i8259.h>
#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <i386/isa/npxvar.h>
/*
* 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
*
* We do lazy initialization and switching using the TS bit in cr0 and the
* MDP_USEDFPU bit in mdproc.
*
* DNA exceptions are handled like this:
*
* 1) If there is no NPX, return and go to the emulator.
* 2) If someone else has used the NPX, save its state into that process's PCB.
* 3a) If MDP_USEDFPU is not set, set it and initialize the NPX.
* 3b) Otherwise, reload the process's previous NPX state.
*
* When a process is created or exec()s, its saved cr0 image has the TS bit
* set and the MDP_USEDFPU bit clear. The MDP_USEDFPU bit is set when the
* process first gets a DNA and the NPX is initialized. The TS bit is turned
* off when the NPX is used, and turned on again later when the process's NPX
* state is saved.
*/
#define fldcw(addr) __asm("fldcw %0" : : "m" (*addr))
#define fnclex() __asm("fnclex")
#define fninit() __asm("fninit")
#define fnsave(addr) __asm("fnsave %0" : "=m" (*addr))
#define fnstcw(addr) __asm("fnstcw %0" : "=m" (*addr))
#define fnstsw(addr) __asm("fnstsw %0" : "=m" (*addr))
#define fp_divide_by_0() __asm("fldz; fld1; fdiv %st,%st(1); fwait")
#define frstor(addr) __asm("frstor %0" : : "m" (*addr))
#define fwait() __asm("fwait")
#define clts() __asm("clts")
#define stts() lcr0(rcr0() | CR0_TS)
int npxdna(struct cpu_info *);
static int npxdna_notset(struct cpu_info *);
static int npxdna_s87(struct cpu_info *);
#ifdef I686_CPU
static int npxdna_xmm(struct cpu_info *);
#endif /* I686_CPU */
#ifdef I686_CPU
#define fxsave(addr) __asm("fxsave %0" : "=m" (*addr))
#define fxrstor(addr) __asm("fxrstor %0" : : "m" (*addr))
#endif /* I686_CPU */
static enum npx_type npx_type;
volatile u_int npx_intrs_while_probing;
volatile u_int npx_traps_while_probing;
extern int i386_fpu_present;
extern int i386_fpu_exception;
extern int i386_fpu_fdivbug;
struct npx_softc *npx_softc;
static __inline void
fpu_save(union savefpu *addr)
{
#ifdef I686_CPU
if (i386_use_fxsave)
{
fxsave(&addr->sv_xmm);
/* FXSAVE doesn't FNINIT like FNSAVE does -- so do it here. */
fninit();
} else
#endif /* I686_CPU */
fnsave(&addr->sv_87);
}
static int
npxdna_notset(struct cpu_info *ci)
{
panic("npxdna vector not initialized");
}
static int
npxdna_empty(struct cpu_info *ci)
{
/* raise a DNA TRAP, math_emulate would take over eventually */
IPRINTF(("Emul"));
return 0;
}
int (*npxdna_func)(struct cpu_info *) = npxdna_notset;
/*
* This calls i8259_* directly, but currently we can count on systems
* having a i8259 compatible setup all the time. Maybe have to change
* that in the future.
*/
enum npx_type
npxprobe1(bus_space_tag_t iot, bus_space_handle_t ioh, int irq)
{
struct gate_descriptor save_idt_npxintr;
struct gate_descriptor save_idt_npxtrap;
enum npx_type rv = NPX_NONE;
u_long save_eflags;
int control;
int status;
unsigned irqmask;
save_eflags = read_eflags();
disable_intr();
save_idt_npxintr = idt[NRSVIDT + irq].gd;
save_idt_npxtrap = idt[16].gd;
setgate(&idt[NRSVIDT + irq].gd, probeintr, 0, SDT_SYS386IGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
setgate(&idt[16].gd, probetrap, 0, SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
irqmask = i8259_setmask(~((1 << IRQ_SLAVE) | (1 << irq)));
/*
* Partially reset the coprocessor, if any. Some BIOS's don't reset
* it after a warm boot.
*/
/* full reset on some systems, NOP on others */
bus_space_write_1(iot, ioh, 1, 0);
delay(1000);
/* clear BUSY# latch */
bus_space_write_1(iot, ioh, 0, 0);
/*
* We set CR0 in locore to trap all ESC and WAIT instructions.
* We have to turn off the CR0_EM bit temporarily while probing.
*/
lcr0(rcr0() & ~(CR0_EM|CR0_TS));
enable_intr();
/*
* Finish resetting the coprocessor, if any. If there is an error
* pending, then we may get a bogus IRQ13, but probeintr() will handle
* it OK. Bogus halts have never been observed, but we enabled
* IRQ13 and cleared the BUSY# latch early to handle them anyway.
*/
fninit();
delay(1000); /* wait for any IRQ13 (fwait might hang) */
/*
* Check for a status of mostly zero.
*/
status = 0x5a5a;
fnstsw(&status);
if ((status & 0xb8ff) == 0) {
/*
* Good, now check for a proper control word.
*/
control = 0x5a5a;
fnstcw(&control);
if ((control & 0x1f3f) == 0x033f) {
/*
* We have an npx, now divide by 0 to see if exception
* 16 works.
*/
control &= ~(1 << 2); /* enable divide by 0 trap */
fldcw(&control);
npx_traps_while_probing = npx_intrs_while_probing = 0;
fp_divide_by_0();
if (npx_traps_while_probing != 0) {
/*
* Good, exception 16 works.
*/
rv = NPX_EXCEPTION;
i386_fpu_exception = 1;
} else if (npx_intrs_while_probing != 0) {
/*
* Bad, we are stuck with IRQ13.
*/
rv = NPX_INTERRUPT;
} else {
/*
* Worse, even IRQ13 is broken. Use emulator.
*/
rv = NPX_BROKEN;
}
}
}
disable_intr();
lcr0(rcr0() | (CR0_EM|CR0_TS));
irqmask = i8259_setmask(irqmask);
idt[NRSVIDT + irq].gd = save_idt_npxintr;
idt_allocmap[NRSVIDT + irq] = 1;
idt[16].gd = save_idt_npxtrap;
write_eflags(save_eflags);
if ((rv == NPX_NONE) || (rv == NPX_BROKEN)) {
/* No FPU. Handle it here, npxattach won't be called */
npxdna_func = npxdna_empty;
}
return (rv);
}
void npxinit(ci)
struct cpu_info *ci;
{
lcr0(rcr0() & ~(CR0_EM|CR0_TS));
fninit();
if (npx586bug1(4195835, 3145727) != 0) {
i386_fpu_fdivbug = 1;
printf("%s: WARNING: Pentium FDIV bug detected!\n",
ci->ci_dev->dv_xname);
}
lcr0(rcr0() | (CR0_TS));
}
/*
* Common attach routine.
*/
void
npxattach(struct npx_softc *sc)
{
npx_softc = sc;
npx_type = sc->sc_type;
npxinit(&cpu_info_primary);
i386_fpu_present = 1;
#ifdef I686_CPU
if (i386_use_fxsave)
npxdna_func = npxdna_xmm;
else
#endif /* I686_CPU */
npxdna_func = npxdna_s87;
}
/*
* Record the FPU state and reinitialize it all except for the control word.
* Then generate a SIGFPE.
*
* Reinitializing the state allows naive SIGFPE handlers to longjmp without
* doing any fixups.
*
* XXX there is currently no way to pass the full error state to signal
* handlers, and if this is a nested interrupt there is no way to pass even
* a status code! So there is no way to have a non-naive SIGFPE handler. At
* best a handler could do an fninit followed by an fldcw of a static value.
* fnclex would be of little use because it would leave junk on the FPU stack.
* Returning from the handler would be even less safe than usual because
* IRQ13 exception handling makes exceptions even less precise than usual.
*/
int
npxintr(void *arg, struct intrframe iframe)
{
struct cpu_info *ci = curcpu();
struct proc *p = ci->ci_fpcurproc;
union savefpu *addr;
struct intrframe *frame = &iframe;
struct npx_softc *sc;
int code;
sc = npx_softc;
uvmexp.traps++;
IPRINTF(("%s: fp intr\n", ci->ci_dev->dv_xname));
/*
* Clear the interrupt latch.
*/
bus_space_write_1(sc->sc_iot, sc->sc_ioh, 0, 0);
/*
* If we're saving, ignore the interrupt. The FPU will generate
* another one when we restore the state later.
*/
if (ci->ci_fpsaving)
return (1);
if (p == 0 || npx_type == NPX_NONE) {
printf("npxintr: p = %p, curproc = %p, npx_type = %d\n",
p, curproc, npx_type);
printf("npxintr: came from nowhere");
return 1;
}
#ifdef DIAGNOSTIC
/*
* At this point, fpcurproc should be curproc. If it wasn't, the TS
* bit should be set, and we should have gotten a DNA exception.
*/
if (p != curproc)
panic("npxintr: wrong process");
#endif
/*
* Find the address of fpcurproc's saved FPU state. (Given the
* invariant above, this is always the one in curpcb.)
*/
addr = &p->p_addr->u_pcb.pcb_savefpu;
/*
* Save state. This does an implied fninit. It had better not halt
* the cpu or we'll hang.
*/
fpu_save(addr);
fwait();
if (i386_use_fxsave) {
fldcw(&addr->sv_xmm.sv_env.en_cw);
/*
* FNINIT doesn't affect MXCSR or the XMM registers;
* no need to re-load MXCSR here.
*/
} else
fldcw(&addr->sv_87.sv_env.en_cw);
fwait();
/*
* Remember the exception status word and tag word. The current
* (almost fninit'ed) fpu state is in the fpu and the exception
* state just saved will soon be junk. However, the implied fninit
* doesn't change the error pointers or register contents, and we
* preserved the control word and will copy the status and tag
* words, so the complete exception state can be recovered.
*/
if (i386_use_fxsave) {
addr->sv_xmm.sv_ex_sw = addr->sv_xmm.sv_env.en_sw;
addr->sv_xmm.sv_ex_tw = addr->sv_xmm.sv_env.en_tw;
} else {
addr->sv_87.sv_ex_sw = addr->sv_87.sv_env.en_sw;
addr->sv_87.sv_ex_tw = addr->sv_87.sv_env.en_tw;
}
/*
* Pass exception to process.
*/
if (USERMODE(frame->if_cs, frame->if_eflags)) {
/*
* Interrupt is essentially a trap, so we can afford to call
* the SIGFPE handler (if any) as soon as the interrupt
* returns.
*
* XXX little or nothing is gained from this, and plenty is
* lost - the interrupt frame has to contain the trap frame
* (this is otherwise only necessary for the rescheduling trap
* in doreti, and the frame for that could easily be set up
* just before it is used).
*/
p->p_md.md_regs = (struct trapframe *)&frame->if_gs;
#ifdef notyet
/*
* Encode the appropriate code for detailed information on
* this exception.
*/
code = XXX_ENCODE(addr->sv_ex_sw);
#else
code = 0; /* XXX */
#endif
trapsignal(p, SIGFPE, code);
} else {
/*
* This is a nested interrupt. This should only happen when
* an IRQ13 occurs at the same time as a higher-priority
* interrupt.
*
* XXX
* Currently, we treat this like an asynchronous interrupt, but
* this has disadvantages.
*/
psignal(p, SIGFPE);
}
return (1);
}
/*
* Implement device not available (DNA) exception
*
* Save the previous state, if necessary, and restore our last
* saved state.
* XXX If we were the last process to use the FPU, we should be able
* to simply return.
*/
#ifdef I686_CPU
static int
npxdna_xmm(struct cpu_info *ci)
{
struct proc *p;
int s;
KDASSERT(i386_use_fxsave == 1);
if (ci->ci_fpsaving) {
printf("recursive npx trap; cr0=%x\n", rcr0());
return (0);
}
s = splipi(); /* lock out IPI's while we clean house.. */
#ifdef MULTIPROCESSOR
p = ci->ci_curproc;
#else
p = curproc;
#endif
/*
* XXX should have a fast-path here when no save/restore is necessary
*/
/*
* Initialize the FPU state to clear any exceptions. If someone else
* was using the FPU, save their state (which does an implicit
* initialization).
*/
if (ci->ci_fpcurproc != NULL) {
IPRINTF(("Save"));
npxsave_cpu(ci, 1);
} else {
clts();
IPRINTF(("Init"));
fninit();
fwait();
stts();
}
splx(s);
KDASSERT(ci->ci_fpcurproc == NULL);
#ifndef MULTIPROCESSOR
KDASSERT(p->p_addr->u_pcb.pcb_fpcpu == NULL);
#else
if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
npxsave_proc(p, 1);
#endif
p->p_addr->u_pcb.pcb_cr0 &= ~CR0_TS;
clts();
s = splipi();
ci->ci_fpcurproc = p;
p->p_addr->u_pcb.pcb_fpcpu = ci;
splx(s);
if ((p->p_md.md_flags & MDP_USEDFPU) == 0) {
fldcw(&p->p_addr->u_pcb.pcb_savefpu.sv_xmm.sv_env.en_cw);
p->p_md.md_flags |= MDP_USEDFPU;
} else {
fxrstor(&p->p_addr->u_pcb.pcb_savefpu.sv_xmm);
}
return (1);
}
#endif /* I686_CPU */
static int
npxdna_s87(struct cpu_info *ci)
{
struct proc *p;
int s;
KDASSERT(i386_use_fxsave == 0);
if (ci->ci_fpsaving) {
printf("recursive npx trap; cr0=%x\n", rcr0());
return (0);
}
s = splipi(); /* lock out IPI's while we clean house.. */
#ifdef MULTIPROCESSOR
p = ci->ci_curproc;
#else
p = curproc;
#endif
IPRINTF(("%s: dna for %p\n", ci->ci_dev->dv_xname, p));
/*
* If someone else was using our FPU, save their state (which does an
* implicit initialization); otherwise, initialize the FPU state to
* clear any exceptions.
*/
if (ci->ci_fpcurproc != NULL)
npxsave_cpu(ci, 1);
else {
clts();
IPRINTF(("%s: fp init\n", ci->ci_dev->dv_xname));
fninit();
fwait();
stts();
}
splx(s);
IPRINTF(("%s: done saving\n", ci->ci_dev->dv_xname));
KDASSERT(ci->ci_fpcurproc == NULL);
#ifndef MULTIPROCESSOR
KDASSERT(p->p_addr->u_pcb.pcb_fpcpu == NULL);
#else
if (p->p_addr->u_pcb.pcb_fpcpu != NULL)
npxsave_proc(p, 1);
#endif
p->p_addr->u_pcb.pcb_cr0 &= ~CR0_TS;
clts();
s = splipi();
ci->ci_fpcurproc = p;
p->p_addr->u_pcb.pcb_fpcpu = ci;
splx(s);
if ((p->p_md.md_flags & MDP_USEDFPU) == 0) {
fldcw(&p->p_addr->u_pcb.pcb_savefpu.sv_87.sv_env.en_cw);
p->p_md.md_flags |= MDP_USEDFPU;
} else {
/*
* The following frstor may cause an IRQ13 when the state being
* restored has a pending error. The error will appear to have
* been triggered by the current (npx) user instruction even
* when that instruction is a no-wait instruction that should
* not trigger an error (e.g., fnclex). On at least one 486
* system all of the no-wait instructions are broken the same
* as frstor, so our treatment does not amplify the breakage.
* On at least one 386/Cyrix 387 system, fnclex works correctly
* while frstor and fnsave are broken, so our treatment breaks
* fnclex if it is the first FPU instruction after a context
* switch.
*/
frstor(&p->p_addr->u_pcb.pcb_savefpu.sv_87);
}
return (1);
}
void
npxsave_cpu (struct cpu_info *ci, int save)
{
struct proc *p;
int s;
KDASSERT(ci == curcpu());
p = ci->ci_fpcurproc;
if (p == NULL)
return;
IPRINTF(("%s: fp cpu %s %p\n", ci->ci_dev->dv_xname,
save? "save" : "flush", p));
if (save) {
#ifdef DIAGNOSTIC
if (ci->ci_fpsaving != 0)
panic("npxsave_cpu: recursive save!");
#endif
/*
* Set ci->ci_fpsaving, so that any pending exception will be
* thrown away. (It will be caught again if/when the FPU
* state is restored.)
*
* XXX on i386 and earlier, this routine should always be
* called at spl0; if it might called with the NPX interrupt
* masked, it would be necessary to forcibly unmask the NPX
* interrupt so that it could succeed.
* XXX this is irrelevant on 486 and above (systems
* which report FP failures via traps rather than irq13).
* XXX punting for now..
*/
clts();
ci->ci_fpsaving = 1;
fpu_save(&p->p_addr->u_pcb.pcb_savefpu);
ci->ci_fpsaving = 0;
}
/*
* We set the TS bit in the saved CR0 for this process, so that it
* will get a DNA exception on any FPU instruction and force a reload.
*/
stts();
p->p_addr->u_pcb.pcb_cr0 |= CR0_TS;
s = splipi();
p->p_addr->u_pcb.pcb_fpcpu = NULL;
ci->ci_fpcurproc = NULL;
splx(s);
}
/*
* Save p's FPU state, which may be on this processor or another processor.
*
* The FNSAVE instruction clears the FPU state. Rather than reloading the FPU
* immediately, we clear fpcurproc and turn on CR0_TS to force a DNA and a
* reload of the FPU state the next time we try to use it. This routine
* is only called when forking, core dumping, or debugging, or swapping,
* so the lazy reload at worst forces us to trap once per fork(), and at best
* saves us a reload once per fork().
*/
void
npxsave_proc(struct proc *p, int save)
{
struct cpu_info *ci = curcpu();
struct cpu_info *oci;
KDASSERT(p->p_addr != NULL);
KDASSERT(p->p_flag & P_INMEM);
oci = p->p_addr->u_pcb.pcb_fpcpu;
if (oci == NULL)
return;
IPRINTF(("%s: fp proc %s %p\n", ci->ci_dev->dv_xname,
save? "save" : "flush", p));
#if defined(MULTIPROCESSOR)
if (oci == ci) {
int s = splipi();
npxsave_cpu(ci, save);
splx(s);
} else {
int spincount;
IPRINTF(("%s: fp ipi to %s %s %p\n",
ci->ci_dev->dv_xname,
oci->ci_dev->dv_xname,
save? "save" : "flush", p));
i386_send_ipi(oci,
save ? I386_IPI_SYNCH_FPU : I386_IPI_FLUSH_FPU);
spincount = 0;
while (p->p_addr->u_pcb.pcb_fpcpu != NULL)
{
spincount++;
delay(10); /* XXX */
if (spincount > 1000000) {
panic("fp_save ipi didn't");
}
}
}
#else
KASSERT(ci->ci_fpcurproc == p);
npxsave_cpu(ci, save);
#endif
}