1612 lines
41 KiB
C
1612 lines
41 KiB
C
/* $NetBSD: kern_time.c,v 1.109 2006/10/20 22:22:48 elad Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2000, 2004, 2005 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Christopher G. Demetriou.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_time.c 8.4 (Berkeley) 5/26/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_time.c,v 1.109 2006/10/20 22:22:48 elad Exp $");
|
|
|
|
#include "fs_nfs.h"
|
|
#include "opt_nfs.h"
|
|
#include "opt_nfsserver.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sa.h>
|
|
#include <sys/savar.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/syslog.h>
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
#include <sys/timetc.h>
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
#include <sys/timevar.h>
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
#include <sys/kauth.h>
|
|
|
|
#include <sys/mount.h>
|
|
#include <sys/syscallargs.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#if defined(NFS) || defined(NFSSERVER)
|
|
#include <nfs/rpcv2.h>
|
|
#include <nfs/nfsproto.h>
|
|
#include <nfs/nfs.h>
|
|
#include <nfs/nfs_var.h>
|
|
#endif
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
POOL_INIT(ptimer_pool, sizeof(struct ptimer), 0, 0, 0, "ptimerpl",
|
|
&pool_allocator_nointr);
|
|
POOL_INIT(ptimers_pool, sizeof(struct ptimers), 0, 0, 0, "ptimerspl",
|
|
&pool_allocator_nointr);
|
|
|
|
static void timerupcall(struct lwp *, void *);
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
static int itimespecfix(struct timespec *); /* XXX move itimerfix to timespecs */
|
|
#endif /* __HAVE_TIMECOUNTER */
|
|
|
|
/* Time of day and interval timer support.
|
|
*
|
|
* These routines provide the kernel entry points to get and set
|
|
* the time-of-day and per-process interval timers. Subroutines
|
|
* here provide support for adding and subtracting timeval structures
|
|
* and decrementing interval timers, optionally reloading the interval
|
|
* timers when they expire.
|
|
*/
|
|
|
|
/* This function is used by clock_settime and settimeofday */
|
|
int
|
|
settime(struct proc *p, struct timespec *ts)
|
|
{
|
|
struct timeval delta, tv;
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
struct timeval now;
|
|
struct timespec ts1;
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
struct cpu_info *ci;
|
|
int s;
|
|
|
|
/*
|
|
* Don't allow the time to be set forward so far it will wrap
|
|
* and become negative, thus allowing an attacker to bypass
|
|
* the next check below. The cutoff is 1 year before rollover
|
|
* occurs, so even if the attacker uses adjtime(2) to move
|
|
* the time past the cutoff, it will take a very long time
|
|
* to get to the wrap point.
|
|
*
|
|
* XXX: we check against INT_MAX since on 64-bit
|
|
* platforms, sizeof(int) != sizeof(long) and
|
|
* time_t is 32 bits even when atv.tv_sec is 64 bits.
|
|
*/
|
|
if (ts->tv_sec > INT_MAX - 365*24*60*60) {
|
|
struct proc *pp = p->p_pptr;
|
|
log(LOG_WARNING, "pid %d (%s) "
|
|
"invoked by uid %d ppid %d (%s) "
|
|
"tried to set clock forward to %ld\n",
|
|
p->p_pid, p->p_comm, kauth_cred_geteuid(pp->p_cred),
|
|
pp->p_pid, pp->p_comm, (long)ts->tv_sec);
|
|
return (EPERM);
|
|
}
|
|
TIMESPEC_TO_TIMEVAL(&tv, ts);
|
|
|
|
/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
|
|
s = splclock();
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
microtime(&now);
|
|
timersub(&tv, &now, &delta);
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
timersub(&tv, &time, &delta);
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
if ((delta.tv_sec < 0 || delta.tv_usec < 0) &&
|
|
kauth_authorize_system(p->p_cred, KAUTH_SYSTEM_TIME,
|
|
KAUTH_REQ_SYSTEM_TIME_BACKWARDS, NULL, NULL, NULL)) {
|
|
splx(s);
|
|
return (EPERM);
|
|
}
|
|
#ifdef notyet
|
|
if ((delta.tv_sec < 86400) && securelevel > 0) { /* XXX elad - notyet */
|
|
splx(s);
|
|
return (EPERM);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
TIMEVAL_TO_TIMESPEC(&tv, &ts1);
|
|
tc_setclock(&ts1);
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
time = tv;
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
|
|
(void) spllowersoftclock();
|
|
|
|
timeradd(&boottime, &delta, &boottime);
|
|
|
|
/*
|
|
* XXXSMP
|
|
* This is wrong. We should traverse a list of all
|
|
* CPUs and add the delta to the runtime of those
|
|
* CPUs which have a process on them.
|
|
*/
|
|
ci = curcpu();
|
|
timeradd(&ci->ci_schedstate.spc_runtime, &delta,
|
|
&ci->ci_schedstate.spc_runtime);
|
|
#if (defined(NFS) && !defined (NFS_V2_ONLY)) || defined(NFSSERVER)
|
|
nqnfs_lease_updatetime(delta.tv_sec);
|
|
#endif
|
|
splx(s);
|
|
resettodr();
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_clock_gettime(struct lwp *l __unused, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_clock_gettime_args /* {
|
|
syscallarg(clockid_t) clock_id;
|
|
syscallarg(struct timespec *) tp;
|
|
} */ *uap = v;
|
|
clockid_t clock_id;
|
|
struct timespec ats;
|
|
|
|
clock_id = SCARG(uap, clock_id);
|
|
switch (clock_id) {
|
|
case CLOCK_REALTIME:
|
|
nanotime(&ats);
|
|
break;
|
|
case CLOCK_MONOTONIC:
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
nanouptime(&ats);
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
{
|
|
int s;
|
|
|
|
/* XXX "hz" granularity */
|
|
s = splclock();
|
|
TIMEVAL_TO_TIMESPEC(&mono_time,&ats);
|
|
splx(s);
|
|
}
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return copyout(&ats, SCARG(uap, tp), sizeof(ats));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_clock_settime(struct lwp *l, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_clock_settime_args /* {
|
|
syscallarg(clockid_t) clock_id;
|
|
syscallarg(const struct timespec *) tp;
|
|
} */ *uap = v;
|
|
int error;
|
|
|
|
if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
|
|
KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
|
|
return (error);
|
|
|
|
return clock_settime1(l->l_proc, SCARG(uap, clock_id), SCARG(uap, tp));
|
|
}
|
|
|
|
|
|
int
|
|
clock_settime1(struct proc *p, clockid_t clock_id, const struct timespec *tp)
|
|
{
|
|
struct timespec ats;
|
|
int error;
|
|
|
|
if ((error = copyin(tp, &ats, sizeof(ats))) != 0)
|
|
return (error);
|
|
|
|
switch (clock_id) {
|
|
case CLOCK_REALTIME:
|
|
if ((error = settime(p, &ats)) != 0)
|
|
return (error);
|
|
break;
|
|
case CLOCK_MONOTONIC:
|
|
return (EINVAL); /* read-only clock */
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
sys_clock_getres(struct lwp *l __unused, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_clock_getres_args /* {
|
|
syscallarg(clockid_t) clock_id;
|
|
syscallarg(struct timespec *) tp;
|
|
} */ *uap = v;
|
|
clockid_t clock_id;
|
|
struct timespec ts;
|
|
int error = 0;
|
|
|
|
clock_id = SCARG(uap, clock_id);
|
|
switch (clock_id) {
|
|
case CLOCK_REALTIME:
|
|
case CLOCK_MONOTONIC:
|
|
ts.tv_sec = 0;
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
if (tc_getfrequency() > 1000000000)
|
|
ts.tv_nsec = 1;
|
|
else
|
|
ts.tv_nsec = 1000000000 / tc_getfrequency();
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
ts.tv_nsec = 1000000000 / hz;
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (SCARG(uap, tp))
|
|
error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
|
|
|
|
return error;
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_nanosleep(struct lwp *l __unused, void *v, register_t *retval __unused)
|
|
{
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
static int nanowait;
|
|
struct sys_nanosleep_args/* {
|
|
syscallarg(struct timespec *) rqtp;
|
|
syscallarg(struct timespec *) rmtp;
|
|
} */ *uap = v;
|
|
struct timespec rmt, rqt;
|
|
int error, timo;
|
|
|
|
error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
|
|
if (error)
|
|
return (error);
|
|
|
|
if (itimespecfix(&rqt))
|
|
return (EINVAL);
|
|
|
|
timo = tstohz(&rqt);
|
|
/*
|
|
* Avoid inadvertantly sleeping forever
|
|
*/
|
|
if (timo == 0)
|
|
timo = 1;
|
|
|
|
getnanouptime(&rmt);
|
|
|
|
error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
if (error == EWOULDBLOCK)
|
|
error = 0;
|
|
|
|
if (SCARG(uap, rmtp)) {
|
|
int error1;
|
|
struct timespec rmtend;
|
|
|
|
getnanouptime(&rmtend);
|
|
|
|
timespecsub(&rmtend, &rmt, &rmt);
|
|
timespecsub(&rqt, &rmt, &rmt);
|
|
if (rmt.tv_sec < 0)
|
|
timespecclear(&rmt);
|
|
|
|
error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
|
|
sizeof(rmt));
|
|
if (error1)
|
|
return (error1);
|
|
}
|
|
|
|
return error;
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
static int nanowait;
|
|
struct sys_nanosleep_args/* {
|
|
syscallarg(struct timespec *) rqtp;
|
|
syscallarg(struct timespec *) rmtp;
|
|
} */ *uap = v;
|
|
struct timespec rqt;
|
|
struct timespec rmt;
|
|
struct timeval atv, utv;
|
|
int error, s, timo;
|
|
|
|
error = copyin(SCARG(uap, rqtp), &rqt, sizeof(struct timespec));
|
|
if (error)
|
|
return (error);
|
|
|
|
TIMESPEC_TO_TIMEVAL(&atv,&rqt);
|
|
if (itimerfix(&atv))
|
|
return (EINVAL);
|
|
|
|
s = splclock();
|
|
timeradd(&atv,&time,&atv);
|
|
timo = hzto(&atv);
|
|
/*
|
|
* Avoid inadvertantly sleeping forever
|
|
*/
|
|
if (timo == 0)
|
|
timo = 1;
|
|
splx(s);
|
|
|
|
error = tsleep(&nanowait, PWAIT | PCATCH, "nanosleep", timo);
|
|
if (error == ERESTART)
|
|
error = EINTR;
|
|
if (error == EWOULDBLOCK)
|
|
error = 0;
|
|
|
|
if (SCARG(uap, rmtp)) {
|
|
int error1;
|
|
|
|
s = splclock();
|
|
utv = time;
|
|
splx(s);
|
|
|
|
timersub(&atv, &utv, &utv);
|
|
if (utv.tv_sec < 0)
|
|
timerclear(&utv);
|
|
|
|
TIMEVAL_TO_TIMESPEC(&utv,&rmt);
|
|
error1 = copyout((caddr_t)&rmt, (caddr_t)SCARG(uap,rmtp),
|
|
sizeof(rmt));
|
|
if (error1)
|
|
return (error1);
|
|
}
|
|
|
|
return error;
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_gettimeofday(struct lwp *l __unused, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_gettimeofday_args /* {
|
|
syscallarg(struct timeval *) tp;
|
|
syscallarg(void *) tzp; really "struct timezone *"
|
|
} */ *uap = v;
|
|
struct timeval atv;
|
|
int error = 0;
|
|
struct timezone tzfake;
|
|
|
|
if (SCARG(uap, tp)) {
|
|
microtime(&atv);
|
|
error = copyout(&atv, SCARG(uap, tp), sizeof(atv));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
if (SCARG(uap, tzp)) {
|
|
/*
|
|
* NetBSD has no kernel notion of time zone, so we just
|
|
* fake up a timezone struct and return it if demanded.
|
|
*/
|
|
tzfake.tz_minuteswest = 0;
|
|
tzfake.tz_dsttime = 0;
|
|
error = copyout(&tzfake, SCARG(uap, tzp), sizeof(tzfake));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_settimeofday(struct lwp *l, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_settimeofday_args /* {
|
|
syscallarg(const struct timeval *) tv;
|
|
syscallarg(const void *) tzp; really "const struct timezone *"
|
|
} */ *uap = v;
|
|
int error;
|
|
|
|
if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
|
|
KAUTH_REQ_SYSTEM_TIME_SYSTEM, NULL, NULL, NULL)) != 0)
|
|
return (error);
|
|
|
|
return settimeofday1(SCARG(uap, tv), SCARG(uap, tzp), l->l_proc);
|
|
}
|
|
|
|
int
|
|
settimeofday1(const struct timeval *utv, const struct timezone *utzp,
|
|
struct proc *p)
|
|
{
|
|
struct timeval atv;
|
|
struct timespec ts;
|
|
int error;
|
|
|
|
/* Verify all parameters before changing time. */
|
|
/*
|
|
* NetBSD has no kernel notion of time zone, and only an
|
|
* obsolete program would try to set it, so we log a warning.
|
|
*/
|
|
if (utzp)
|
|
log(LOG_WARNING, "pid %d attempted to set the "
|
|
"(obsolete) kernel time zone\n", p->p_pid);
|
|
|
|
if (utv == NULL)
|
|
return 0;
|
|
|
|
if ((error = copyin(utv, &atv, sizeof(atv))) != 0)
|
|
return error;
|
|
TIMEVAL_TO_TIMESPEC(&atv, &ts);
|
|
return settime(p, &ts);
|
|
}
|
|
|
|
#ifndef __HAVE_TIMECOUNTER
|
|
int tickdelta; /* current clock skew, us. per tick */
|
|
long timedelta; /* unapplied time correction, us. */
|
|
long bigadj = 1000000; /* use 10x skew above bigadj us. */
|
|
#endif
|
|
|
|
int time_adjusted; /* set if an adjustment is made */
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_adjtime(struct lwp *l, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_adjtime_args /* {
|
|
syscallarg(const struct timeval *) delta;
|
|
syscallarg(struct timeval *) olddelta;
|
|
} */ *uap = v;
|
|
int error;
|
|
|
|
if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_TIME,
|
|
KAUTH_REQ_SYSTEM_TIME_ADJTIME, NULL, NULL, NULL)) != 0)
|
|
return (error);
|
|
|
|
return adjtime1(SCARG(uap, delta), SCARG(uap, olddelta), l->l_proc);
|
|
}
|
|
|
|
int
|
|
adjtime1(const struct timeval *delta, struct timeval *olddelta,
|
|
struct proc *p __unused)
|
|
{
|
|
struct timeval atv;
|
|
int error = 0;
|
|
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
extern int64_t time_adjtime; /* in kern_ntptime.c */
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
long ndelta, ntickdelta, odelta;
|
|
int s;
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
if (olddelta) {
|
|
atv.tv_sec = time_adjtime / 1000000;
|
|
atv.tv_usec = time_adjtime % 1000000;
|
|
if (atv.tv_usec < 0) {
|
|
atv.tv_usec += 1000000;
|
|
atv.tv_sec--;
|
|
}
|
|
error = copyout(&atv, olddelta, sizeof(struct timeval));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
if (delta) {
|
|
error = copyin(delta, &atv, sizeof(struct timeval));
|
|
if (error)
|
|
return (error);
|
|
|
|
time_adjtime = (int64_t)atv.tv_sec * 1000000 +
|
|
atv.tv_usec;
|
|
|
|
if (time_adjtime)
|
|
/* We need to save the system time during shutdown */
|
|
time_adjusted |= 1;
|
|
}
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
error = copyin(delta, &atv, sizeof(struct timeval));
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* Compute the total correction and the rate at which to apply it.
|
|
* Round the adjustment down to a whole multiple of the per-tick
|
|
* delta, so that after some number of incremental changes in
|
|
* hardclock(), tickdelta will become zero, lest the correction
|
|
* overshoot and start taking us away from the desired final time.
|
|
*/
|
|
ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
|
|
if (ndelta > bigadj || ndelta < -bigadj)
|
|
ntickdelta = 10 * tickadj;
|
|
else
|
|
ntickdelta = tickadj;
|
|
if (ndelta % ntickdelta)
|
|
ndelta = ndelta / ntickdelta * ntickdelta;
|
|
|
|
/*
|
|
* To make hardclock()'s job easier, make the per-tick delta negative
|
|
* if we want time to run slower; then hardclock can simply compute
|
|
* tick + tickdelta, and subtract tickdelta from timedelta.
|
|
*/
|
|
if (ndelta < 0)
|
|
ntickdelta = -ntickdelta;
|
|
if (ndelta != 0)
|
|
/* We need to save the system clock time during shutdown */
|
|
time_adjusted |= 1;
|
|
s = splclock();
|
|
odelta = timedelta;
|
|
timedelta = ndelta;
|
|
tickdelta = ntickdelta;
|
|
splx(s);
|
|
|
|
if (olddelta) {
|
|
atv.tv_sec = odelta / 1000000;
|
|
atv.tv_usec = odelta % 1000000;
|
|
error = copyout(&atv, olddelta, sizeof(struct timeval));
|
|
}
|
|
#endif /* __HAVE_TIMECOUNTER */
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Interval timer support. Both the BSD getitimer() family and the POSIX
|
|
* timer_*() family of routines are supported.
|
|
*
|
|
* All timers are kept in an array pointed to by p_timers, which is
|
|
* allocated on demand - many processes don't use timers at all. The
|
|
* first three elements in this array are reserved for the BSD timers:
|
|
* element 0 is ITIMER_REAL, element 1 is ITIMER_VIRTUAL, and element
|
|
* 2 is ITIMER_PROF. The rest may be allocated by the timer_create()
|
|
* syscall.
|
|
*
|
|
* Realtime timers are kept in the ptimer structure as an absolute
|
|
* time; virtual time timers are kept as a linked list of deltas.
|
|
* Virtual time timers are processed in the hardclock() routine of
|
|
* kern_clock.c. The real time timer is processed by a callout
|
|
* routine, called from the softclock() routine. Since a callout may
|
|
* be delayed in real time due to interrupt processing in the system,
|
|
* it is possible for the real time timeout routine (realtimeexpire,
|
|
* given below), to be delayed in real time past when it is supposed
|
|
* to occur. It does not suffice, therefore, to reload the real timer
|
|
* .it_value from the real time timers .it_interval. Rather, we
|
|
* compute the next time in absolute time the timer should go off. */
|
|
|
|
/* Allocate a POSIX realtime timer. */
|
|
int
|
|
sys_timer_create(struct lwp *l, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_timer_create_args /* {
|
|
syscallarg(clockid_t) clock_id;
|
|
syscallarg(struct sigevent *) evp;
|
|
syscallarg(timer_t *) timerid;
|
|
} */ *uap = v;
|
|
|
|
return timer_create1(SCARG(uap, timerid), SCARG(uap, clock_id),
|
|
SCARG(uap, evp), copyin, l);
|
|
}
|
|
|
|
int
|
|
timer_create1(timer_t *tid, clockid_t id, struct sigevent *evp,
|
|
copyin_t fetch_event, struct lwp *l)
|
|
{
|
|
int error;
|
|
timer_t timerid;
|
|
struct ptimer *pt;
|
|
struct proc *p;
|
|
|
|
p = l->l_proc;
|
|
|
|
if (id < CLOCK_REALTIME ||
|
|
id > CLOCK_PROF)
|
|
return (EINVAL);
|
|
|
|
if (p->p_timers == NULL)
|
|
timers_alloc(p);
|
|
|
|
/* Find a free timer slot, skipping those reserved for setitimer(). */
|
|
for (timerid = 3; timerid < TIMER_MAX; timerid++)
|
|
if (p->p_timers->pts_timers[timerid] == NULL)
|
|
break;
|
|
|
|
if (timerid == TIMER_MAX)
|
|
return EAGAIN;
|
|
|
|
pt = pool_get(&ptimer_pool, PR_WAITOK);
|
|
if (evp) {
|
|
if (((error =
|
|
(*fetch_event)(evp, &pt->pt_ev, sizeof(pt->pt_ev))) != 0) ||
|
|
((pt->pt_ev.sigev_notify < SIGEV_NONE) ||
|
|
(pt->pt_ev.sigev_notify > SIGEV_SA))) {
|
|
pool_put(&ptimer_pool, pt);
|
|
return (error ? error : EINVAL);
|
|
}
|
|
} else {
|
|
pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
|
|
switch (id) {
|
|
case CLOCK_REALTIME:
|
|
pt->pt_ev.sigev_signo = SIGALRM;
|
|
break;
|
|
case CLOCK_VIRTUAL:
|
|
pt->pt_ev.sigev_signo = SIGVTALRM;
|
|
break;
|
|
case CLOCK_PROF:
|
|
pt->pt_ev.sigev_signo = SIGPROF;
|
|
break;
|
|
}
|
|
pt->pt_ev.sigev_value.sival_int = timerid;
|
|
}
|
|
pt->pt_info.ksi_signo = pt->pt_ev.sigev_signo;
|
|
pt->pt_info.ksi_errno = 0;
|
|
pt->pt_info.ksi_code = 0;
|
|
pt->pt_info.ksi_pid = p->p_pid;
|
|
pt->pt_info.ksi_uid = kauth_cred_getuid(l->l_cred);
|
|
pt->pt_info.ksi_sigval = pt->pt_ev.sigev_value;
|
|
|
|
pt->pt_type = id;
|
|
pt->pt_proc = p;
|
|
pt->pt_overruns = 0;
|
|
pt->pt_poverruns = 0;
|
|
pt->pt_entry = timerid;
|
|
timerclear(&pt->pt_time.it_value);
|
|
if (id == CLOCK_REALTIME)
|
|
callout_init(&pt->pt_ch);
|
|
else
|
|
pt->pt_active = 0;
|
|
|
|
p->p_timers->pts_timers[timerid] = pt;
|
|
|
|
return copyout(&timerid, tid, sizeof(timerid));
|
|
}
|
|
|
|
/* Delete a POSIX realtime timer */
|
|
int
|
|
sys_timer_delete(struct lwp *l, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_timer_delete_args /* {
|
|
syscallarg(timer_t) timerid;
|
|
} */ *uap = v;
|
|
struct proc *p = l->l_proc;
|
|
timer_t timerid;
|
|
struct ptimer *pt, *ptn;
|
|
int s;
|
|
|
|
timerid = SCARG(uap, timerid);
|
|
|
|
if ((p->p_timers == NULL) ||
|
|
(timerid < 2) || (timerid >= TIMER_MAX) ||
|
|
((pt = p->p_timers->pts_timers[timerid]) == NULL))
|
|
return (EINVAL);
|
|
|
|
if (pt->pt_type == CLOCK_REALTIME)
|
|
callout_stop(&pt->pt_ch);
|
|
else if (pt->pt_active) {
|
|
s = splclock();
|
|
ptn = LIST_NEXT(pt, pt_list);
|
|
LIST_REMOVE(pt, pt_list);
|
|
for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
|
|
timeradd(&pt->pt_time.it_value, &ptn->pt_time.it_value,
|
|
&ptn->pt_time.it_value);
|
|
splx(s);
|
|
}
|
|
|
|
p->p_timers->pts_timers[timerid] = NULL;
|
|
pool_put(&ptimer_pool, pt);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set up the given timer. The value in pt->pt_time.it_value is taken
|
|
* to be an absolute time for CLOCK_REALTIME timers and a relative
|
|
* time for virtual timers.
|
|
* Must be called at splclock().
|
|
*/
|
|
void
|
|
timer_settime(struct ptimer *pt)
|
|
{
|
|
struct ptimer *ptn, *pptn;
|
|
struct ptlist *ptl;
|
|
|
|
if (pt->pt_type == CLOCK_REALTIME) {
|
|
callout_stop(&pt->pt_ch);
|
|
if (timerisset(&pt->pt_time.it_value)) {
|
|
/*
|
|
* Don't need to check hzto() return value, here.
|
|
* callout_reset() does it for us.
|
|
*/
|
|
callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
|
|
realtimerexpire, pt);
|
|
}
|
|
} else {
|
|
if (pt->pt_active) {
|
|
ptn = LIST_NEXT(pt, pt_list);
|
|
LIST_REMOVE(pt, pt_list);
|
|
for ( ; ptn; ptn = LIST_NEXT(ptn, pt_list))
|
|
timeradd(&pt->pt_time.it_value,
|
|
&ptn->pt_time.it_value,
|
|
&ptn->pt_time.it_value);
|
|
}
|
|
if (timerisset(&pt->pt_time.it_value)) {
|
|
if (pt->pt_type == CLOCK_VIRTUAL)
|
|
ptl = &pt->pt_proc->p_timers->pts_virtual;
|
|
else
|
|
ptl = &pt->pt_proc->p_timers->pts_prof;
|
|
|
|
for (ptn = LIST_FIRST(ptl), pptn = NULL;
|
|
ptn && timercmp(&pt->pt_time.it_value,
|
|
&ptn->pt_time.it_value, >);
|
|
pptn = ptn, ptn = LIST_NEXT(ptn, pt_list))
|
|
timersub(&pt->pt_time.it_value,
|
|
&ptn->pt_time.it_value,
|
|
&pt->pt_time.it_value);
|
|
|
|
if (pptn)
|
|
LIST_INSERT_AFTER(pptn, pt, pt_list);
|
|
else
|
|
LIST_INSERT_HEAD(ptl, pt, pt_list);
|
|
|
|
for ( ; ptn ; ptn = LIST_NEXT(ptn, pt_list))
|
|
timersub(&ptn->pt_time.it_value,
|
|
&pt->pt_time.it_value,
|
|
&ptn->pt_time.it_value);
|
|
|
|
pt->pt_active = 1;
|
|
} else
|
|
pt->pt_active = 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
timer_gettime(struct ptimer *pt, struct itimerval *aitv)
|
|
{
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
struct timeval now;
|
|
#endif
|
|
struct ptimer *ptn;
|
|
|
|
*aitv = pt->pt_time;
|
|
if (pt->pt_type == CLOCK_REALTIME) {
|
|
/*
|
|
* Convert from absolute to relative time in .it_value
|
|
* part of real time timer. If time for real time
|
|
* timer has passed return 0, else return difference
|
|
* between current time and time for the timer to go
|
|
* off.
|
|
*/
|
|
if (timerisset(&aitv->it_value)) {
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
getmicrotime(&now);
|
|
if (timercmp(&aitv->it_value, &now, <))
|
|
timerclear(&aitv->it_value);
|
|
else
|
|
timersub(&aitv->it_value, &now,
|
|
&aitv->it_value);
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
if (timercmp(&aitv->it_value, &time, <))
|
|
timerclear(&aitv->it_value);
|
|
else
|
|
timersub(&aitv->it_value, &time,
|
|
&aitv->it_value);
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
}
|
|
} else if (pt->pt_active) {
|
|
if (pt->pt_type == CLOCK_VIRTUAL)
|
|
ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_virtual);
|
|
else
|
|
ptn = LIST_FIRST(&pt->pt_proc->p_timers->pts_prof);
|
|
for ( ; ptn && ptn != pt; ptn = LIST_NEXT(ptn, pt_list))
|
|
timeradd(&aitv->it_value,
|
|
&ptn->pt_time.it_value, &aitv->it_value);
|
|
KASSERT(ptn != NULL); /* pt should be findable on the list */
|
|
} else
|
|
timerclear(&aitv->it_value);
|
|
}
|
|
|
|
|
|
|
|
/* Set and arm a POSIX realtime timer */
|
|
int
|
|
sys_timer_settime(struct lwp *l, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_timer_settime_args /* {
|
|
syscallarg(timer_t) timerid;
|
|
syscallarg(int) flags;
|
|
syscallarg(const struct itimerspec *) value;
|
|
syscallarg(struct itimerspec *) ovalue;
|
|
} */ *uap = v;
|
|
int error;
|
|
struct itimerspec value, ovalue, *ovp = NULL;
|
|
|
|
if ((error = copyin(SCARG(uap, value), &value,
|
|
sizeof(struct itimerspec))) != 0)
|
|
return (error);
|
|
|
|
if (SCARG(uap, ovalue))
|
|
ovp = &ovalue;
|
|
|
|
if ((error = dotimer_settime(SCARG(uap, timerid), &value, ovp,
|
|
SCARG(uap, flags), l->l_proc)) != 0)
|
|
return error;
|
|
|
|
if (ovp)
|
|
return copyout(&ovalue, SCARG(uap, ovalue),
|
|
sizeof(struct itimerspec));
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
dotimer_settime(int timerid, struct itimerspec *value,
|
|
struct itimerspec *ovalue, int flags, struct proc *p)
|
|
{
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
struct timeval now;
|
|
#endif
|
|
struct itimerval val, oval;
|
|
struct ptimer *pt;
|
|
int s;
|
|
|
|
if ((p->p_timers == NULL) ||
|
|
(timerid < 2) || (timerid >= TIMER_MAX) ||
|
|
((pt = p->p_timers->pts_timers[timerid]) == NULL))
|
|
return (EINVAL);
|
|
|
|
TIMESPEC_TO_TIMEVAL(&val.it_value, &value->it_value);
|
|
TIMESPEC_TO_TIMEVAL(&val.it_interval, &value->it_interval);
|
|
if (itimerfix(&val.it_value) || itimerfix(&val.it_interval))
|
|
return (EINVAL);
|
|
|
|
oval = pt->pt_time;
|
|
pt->pt_time = val;
|
|
|
|
s = splclock();
|
|
/*
|
|
* If we've been passed a relative time for a realtime timer,
|
|
* convert it to absolute; if an absolute time for a virtual
|
|
* timer, convert it to relative and make sure we don't set it
|
|
* to zero, which would cancel the timer, or let it go
|
|
* negative, which would confuse the comparison tests.
|
|
*/
|
|
if (timerisset(&pt->pt_time.it_value)) {
|
|
if (pt->pt_type == CLOCK_REALTIME) {
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
if ((flags & TIMER_ABSTIME) == 0) {
|
|
getmicrotime(&now);
|
|
timeradd(&pt->pt_time.it_value, &now,
|
|
&pt->pt_time.it_value);
|
|
}
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
if ((flags & TIMER_ABSTIME) == 0)
|
|
timeradd(&pt->pt_time.it_value, &time,
|
|
&pt->pt_time.it_value);
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
} else {
|
|
if ((flags & TIMER_ABSTIME) != 0) {
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
getmicrotime(&now);
|
|
timersub(&pt->pt_time.it_value, &now,
|
|
&pt->pt_time.it_value);
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
timersub(&pt->pt_time.it_value, &time,
|
|
&pt->pt_time.it_value);
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
if (!timerisset(&pt->pt_time.it_value) ||
|
|
pt->pt_time.it_value.tv_sec < 0) {
|
|
pt->pt_time.it_value.tv_sec = 0;
|
|
pt->pt_time.it_value.tv_usec = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
timer_settime(pt);
|
|
splx(s);
|
|
|
|
if (ovalue) {
|
|
TIMEVAL_TO_TIMESPEC(&oval.it_value, &ovalue->it_value);
|
|
TIMEVAL_TO_TIMESPEC(&oval.it_interval, &ovalue->it_interval);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Return the time remaining until a POSIX timer fires. */
|
|
int
|
|
sys_timer_gettime(struct lwp *l, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_timer_gettime_args /* {
|
|
syscallarg(timer_t) timerid;
|
|
syscallarg(struct itimerspec *) value;
|
|
} */ *uap = v;
|
|
struct itimerspec its;
|
|
int error;
|
|
|
|
if ((error = dotimer_gettime(SCARG(uap, timerid), l->l_proc,
|
|
&its)) != 0)
|
|
return error;
|
|
|
|
return copyout(&its, SCARG(uap, value), sizeof(its));
|
|
}
|
|
|
|
int
|
|
dotimer_gettime(int timerid, struct proc *p, struct itimerspec *its)
|
|
{
|
|
int s;
|
|
struct ptimer *pt;
|
|
struct itimerval aitv;
|
|
|
|
if ((p->p_timers == NULL) ||
|
|
(timerid < 2) || (timerid >= TIMER_MAX) ||
|
|
((pt = p->p_timers->pts_timers[timerid]) == NULL))
|
|
return (EINVAL);
|
|
|
|
s = splclock();
|
|
timer_gettime(pt, &aitv);
|
|
splx(s);
|
|
|
|
TIMEVAL_TO_TIMESPEC(&aitv.it_interval, &its->it_interval);
|
|
TIMEVAL_TO_TIMESPEC(&aitv.it_value, &its->it_value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the count of the number of times a periodic timer expired
|
|
* while a notification was already pending. The counter is reset when
|
|
* a timer expires and a notification can be posted.
|
|
*/
|
|
int
|
|
sys_timer_getoverrun(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_timer_getoverrun_args /* {
|
|
syscallarg(timer_t) timerid;
|
|
} */ *uap = v;
|
|
struct proc *p = l->l_proc;
|
|
int timerid;
|
|
struct ptimer *pt;
|
|
|
|
timerid = SCARG(uap, timerid);
|
|
|
|
if ((p->p_timers == NULL) ||
|
|
(timerid < 2) || (timerid >= TIMER_MAX) ||
|
|
((pt = p->p_timers->pts_timers[timerid]) == NULL))
|
|
return (EINVAL);
|
|
|
|
*retval = pt->pt_poverruns;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Glue function that triggers an upcall; called from userret(). */
|
|
static void
|
|
timerupcall(struct lwp *l, void *arg)
|
|
{
|
|
struct ptimers *pt = (struct ptimers *)arg;
|
|
unsigned int i, fired, done;
|
|
|
|
KDASSERT(l->l_proc->p_sa);
|
|
/* Bail out if we do not own the virtual processor */
|
|
if (l->l_savp->savp_lwp != l)
|
|
return ;
|
|
|
|
KERNEL_PROC_LOCK(l);
|
|
|
|
fired = pt->pts_fired;
|
|
done = 0;
|
|
while ((i = ffs(fired)) != 0) {
|
|
siginfo_t *si;
|
|
int mask = 1 << --i;
|
|
int f;
|
|
|
|
f = l->l_flag & L_SA;
|
|
l->l_flag &= ~L_SA;
|
|
si = siginfo_alloc(PR_WAITOK);
|
|
si->_info = pt->pts_timers[i]->pt_info.ksi_info;
|
|
if (sa_upcall(l, SA_UPCALL_SIGEV | SA_UPCALL_DEFER, NULL, l,
|
|
sizeof(*si), si, siginfo_free) != 0) {
|
|
siginfo_free(si);
|
|
/* XXX What do we do here?? */
|
|
} else
|
|
done |= mask;
|
|
fired &= ~mask;
|
|
l->l_flag |= f;
|
|
}
|
|
pt->pts_fired &= ~done;
|
|
if (pt->pts_fired == 0)
|
|
l->l_proc->p_userret = NULL;
|
|
|
|
KERNEL_PROC_UNLOCK(l);
|
|
}
|
|
|
|
/*
|
|
* Real interval timer expired:
|
|
* send process whose timer expired an alarm signal.
|
|
* If time is not set up to reload, then just return.
|
|
* Else compute next time timer should go off which is > current time.
|
|
* This is where delay in processing this timeout causes multiple
|
|
* SIGALRM calls to be compressed into one.
|
|
*/
|
|
void
|
|
realtimerexpire(void *arg)
|
|
{
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
struct timeval now;
|
|
#endif
|
|
struct ptimer *pt;
|
|
int s;
|
|
|
|
pt = (struct ptimer *)arg;
|
|
|
|
itimerfire(pt);
|
|
|
|
if (!timerisset(&pt->pt_time.it_interval)) {
|
|
timerclear(&pt->pt_time.it_value);
|
|
return;
|
|
}
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
for (;;) {
|
|
s = splclock(); /* XXX need spl now? */
|
|
timeradd(&pt->pt_time.it_value,
|
|
&pt->pt_time.it_interval, &pt->pt_time.it_value);
|
|
getmicrotime(&now);
|
|
if (timercmp(&pt->pt_time.it_value, &now, >)) {
|
|
/*
|
|
* Don't need to check hzto() return value, here.
|
|
* callout_reset() does it for us.
|
|
*/
|
|
callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
|
|
realtimerexpire, pt);
|
|
splx(s);
|
|
return;
|
|
}
|
|
splx(s);
|
|
pt->pt_overruns++;
|
|
}
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
for (;;) {
|
|
s = splclock();
|
|
timeradd(&pt->pt_time.it_value,
|
|
&pt->pt_time.it_interval, &pt->pt_time.it_value);
|
|
if (timercmp(&pt->pt_time.it_value, &time, >)) {
|
|
/*
|
|
* Don't need to check hzto() return value, here.
|
|
* callout_reset() does it for us.
|
|
*/
|
|
callout_reset(&pt->pt_ch, hzto(&pt->pt_time.it_value),
|
|
realtimerexpire, pt);
|
|
splx(s);
|
|
return;
|
|
}
|
|
splx(s);
|
|
pt->pt_overruns++;
|
|
}
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
}
|
|
|
|
/* BSD routine to get the value of an interval timer. */
|
|
/* ARGSUSED */
|
|
int
|
|
sys_getitimer(struct lwp *l, void *v, register_t *retval __unused)
|
|
{
|
|
struct sys_getitimer_args /* {
|
|
syscallarg(int) which;
|
|
syscallarg(struct itimerval *) itv;
|
|
} */ *uap = v;
|
|
struct proc *p = l->l_proc;
|
|
struct itimerval aitv;
|
|
int error;
|
|
|
|
error = dogetitimer(p, SCARG(uap, which), &aitv);
|
|
if (error)
|
|
return error;
|
|
return (copyout(&aitv, SCARG(uap, itv), sizeof(struct itimerval)));
|
|
}
|
|
|
|
int
|
|
dogetitimer(struct proc *p, int which, struct itimerval *itvp)
|
|
{
|
|
int s;
|
|
|
|
if ((u_int)which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
|
|
if ((p->p_timers == NULL) || (p->p_timers->pts_timers[which] == NULL)){
|
|
timerclear(&itvp->it_value);
|
|
timerclear(&itvp->it_interval);
|
|
} else {
|
|
s = splclock();
|
|
timer_gettime(p->p_timers->pts_timers[which], itvp);
|
|
splx(s);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* BSD routine to set/arm an interval timer. */
|
|
/* ARGSUSED */
|
|
int
|
|
sys_setitimer(struct lwp *l, void *v, register_t *retval)
|
|
{
|
|
struct sys_setitimer_args /* {
|
|
syscallarg(int) which;
|
|
syscallarg(const struct itimerval *) itv;
|
|
syscallarg(struct itimerval *) oitv;
|
|
} */ *uap = v;
|
|
struct proc *p = l->l_proc;
|
|
int which = SCARG(uap, which);
|
|
struct sys_getitimer_args getargs;
|
|
const struct itimerval *itvp;
|
|
struct itimerval aitv;
|
|
int error;
|
|
|
|
if ((u_int)which > ITIMER_PROF)
|
|
return (EINVAL);
|
|
itvp = SCARG(uap, itv);
|
|
if (itvp &&
|
|
(error = copyin(itvp, &aitv, sizeof(struct itimerval)) != 0))
|
|
return (error);
|
|
if (SCARG(uap, oitv) != NULL) {
|
|
SCARG(&getargs, which) = which;
|
|
SCARG(&getargs, itv) = SCARG(uap, oitv);
|
|
if ((error = sys_getitimer(l, &getargs, retval)) != 0)
|
|
return (error);
|
|
}
|
|
if (itvp == 0)
|
|
return (0);
|
|
|
|
return dosetitimer(p, which, &aitv);
|
|
}
|
|
|
|
int
|
|
dosetitimer(struct proc *p, int which, struct itimerval *itvp)
|
|
{
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
struct timeval now;
|
|
#endif
|
|
struct ptimer *pt;
|
|
int s;
|
|
|
|
if (itimerfix(&itvp->it_value) || itimerfix(&itvp->it_interval))
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Don't bother allocating data structures if the process just
|
|
* wants to clear the timer.
|
|
*/
|
|
if (!timerisset(&itvp->it_value) &&
|
|
((p->p_timers == NULL) ||(p->p_timers->pts_timers[which] == NULL)))
|
|
return (0);
|
|
|
|
if (p->p_timers == NULL)
|
|
timers_alloc(p);
|
|
if (p->p_timers->pts_timers[which] == NULL) {
|
|
pt = pool_get(&ptimer_pool, PR_WAITOK);
|
|
pt->pt_ev.sigev_notify = SIGEV_SIGNAL;
|
|
pt->pt_ev.sigev_value.sival_int = which;
|
|
pt->pt_overruns = 0;
|
|
pt->pt_proc = p;
|
|
pt->pt_type = which;
|
|
pt->pt_entry = which;
|
|
switch (which) {
|
|
case ITIMER_REAL:
|
|
callout_init(&pt->pt_ch);
|
|
pt->pt_ev.sigev_signo = SIGALRM;
|
|
break;
|
|
case ITIMER_VIRTUAL:
|
|
pt->pt_active = 0;
|
|
pt->pt_ev.sigev_signo = SIGVTALRM;
|
|
break;
|
|
case ITIMER_PROF:
|
|
pt->pt_active = 0;
|
|
pt->pt_ev.sigev_signo = SIGPROF;
|
|
break;
|
|
}
|
|
} else
|
|
pt = p->p_timers->pts_timers[which];
|
|
|
|
pt->pt_time = *itvp;
|
|
p->p_timers->pts_timers[which] = pt;
|
|
|
|
s = splclock();
|
|
if ((which == ITIMER_REAL) && timerisset(&pt->pt_time.it_value)) {
|
|
/* Convert to absolute time */
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
/* XXX need to wrap in splclock for timecounters case? */
|
|
getmicrotime(&now);
|
|
timeradd(&pt->pt_time.it_value, &now, &pt->pt_time.it_value);
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
timeradd(&pt->pt_time.it_value, &time, &pt->pt_time.it_value);
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
}
|
|
timer_settime(pt);
|
|
splx(s);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* Utility routines to manage the array of pointers to timers. */
|
|
void
|
|
timers_alloc(struct proc *p)
|
|
{
|
|
int i;
|
|
struct ptimers *pts;
|
|
|
|
pts = pool_get(&ptimers_pool, PR_WAITOK);
|
|
LIST_INIT(&pts->pts_virtual);
|
|
LIST_INIT(&pts->pts_prof);
|
|
for (i = 0; i < TIMER_MAX; i++)
|
|
pts->pts_timers[i] = NULL;
|
|
pts->pts_fired = 0;
|
|
p->p_timers = pts;
|
|
}
|
|
|
|
/*
|
|
* Clean up the per-process timers. If "which" is set to TIMERS_ALL,
|
|
* then clean up all timers and free all the data structures. If
|
|
* "which" is set to TIMERS_POSIX, only clean up the timers allocated
|
|
* by timer_create(), not the BSD setitimer() timers, and only free the
|
|
* structure if none of those remain.
|
|
*/
|
|
void
|
|
timers_free(struct proc *p, int which)
|
|
{
|
|
int i, s;
|
|
struct ptimers *pts;
|
|
struct ptimer *pt, *ptn;
|
|
struct timeval tv;
|
|
|
|
if (p->p_timers) {
|
|
pts = p->p_timers;
|
|
if (which == TIMERS_ALL)
|
|
i = 0;
|
|
else {
|
|
s = splclock();
|
|
timerclear(&tv);
|
|
for (ptn = LIST_FIRST(&p->p_timers->pts_virtual);
|
|
ptn && ptn != pts->pts_timers[ITIMER_VIRTUAL];
|
|
ptn = LIST_NEXT(ptn, pt_list))
|
|
timeradd(&tv, &ptn->pt_time.it_value, &tv);
|
|
LIST_FIRST(&p->p_timers->pts_virtual) = NULL;
|
|
if (ptn) {
|
|
timeradd(&tv, &ptn->pt_time.it_value,
|
|
&ptn->pt_time.it_value);
|
|
LIST_INSERT_HEAD(&p->p_timers->pts_virtual,
|
|
ptn, pt_list);
|
|
}
|
|
|
|
timerclear(&tv);
|
|
for (ptn = LIST_FIRST(&p->p_timers->pts_prof);
|
|
ptn && ptn != pts->pts_timers[ITIMER_PROF];
|
|
ptn = LIST_NEXT(ptn, pt_list))
|
|
timeradd(&tv, &ptn->pt_time.it_value, &tv);
|
|
LIST_FIRST(&p->p_timers->pts_prof) = NULL;
|
|
if (ptn) {
|
|
timeradd(&tv, &ptn->pt_time.it_value,
|
|
&ptn->pt_time.it_value);
|
|
LIST_INSERT_HEAD(&p->p_timers->pts_prof, ptn,
|
|
pt_list);
|
|
}
|
|
splx(s);
|
|
i = 3;
|
|
}
|
|
for ( ; i < TIMER_MAX; i++)
|
|
if ((pt = pts->pts_timers[i]) != NULL) {
|
|
if (pt->pt_type == CLOCK_REALTIME)
|
|
callout_stop(&pt->pt_ch);
|
|
pts->pts_timers[i] = NULL;
|
|
pool_put(&ptimer_pool, pt);
|
|
}
|
|
if ((pts->pts_timers[0] == NULL) &&
|
|
(pts->pts_timers[1] == NULL) &&
|
|
(pts->pts_timers[2] == NULL)) {
|
|
p->p_timers = NULL;
|
|
pool_put(&ptimers_pool, pts);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed value to load into the .it_value or
|
|
* .it_interval part of an interval timer is acceptable, and
|
|
* fix it to have at least minimal value (i.e. if it is less
|
|
* than the resolution of the clock, round it up.)
|
|
*/
|
|
int
|
|
itimerfix(struct timeval *tv)
|
|
{
|
|
|
|
if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
|
|
return (EINVAL);
|
|
if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
|
|
tv->tv_usec = tick;
|
|
return (0);
|
|
}
|
|
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
int
|
|
itimespecfix(struct timespec *ts)
|
|
{
|
|
|
|
if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
|
|
return (EINVAL);
|
|
if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
|
|
ts->tv_nsec = tick * 1000;
|
|
return (0);
|
|
}
|
|
#endif /* __HAVE_TIMECOUNTER */
|
|
|
|
/*
|
|
* Decrement an interval timer by a specified number
|
|
* of microseconds, which must be less than a second,
|
|
* i.e. < 1000000. If the timer expires, then reload
|
|
* it. In this case, carry over (usec - old value) to
|
|
* reduce the value reloaded into the timer so that
|
|
* the timer does not drift. This routine assumes
|
|
* that it is called in a context where the timers
|
|
* on which it is operating cannot change in value.
|
|
*/
|
|
int
|
|
itimerdecr(struct ptimer *pt, int usec)
|
|
{
|
|
struct itimerval *itp;
|
|
|
|
itp = &pt->pt_time;
|
|
if (itp->it_value.tv_usec < usec) {
|
|
if (itp->it_value.tv_sec == 0) {
|
|
/* expired, and already in next interval */
|
|
usec -= itp->it_value.tv_usec;
|
|
goto expire;
|
|
}
|
|
itp->it_value.tv_usec += 1000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
itp->it_value.tv_usec -= usec;
|
|
usec = 0;
|
|
if (timerisset(&itp->it_value))
|
|
return (1);
|
|
/* expired, exactly at end of interval */
|
|
expire:
|
|
if (timerisset(&itp->it_interval)) {
|
|
itp->it_value = itp->it_interval;
|
|
itp->it_value.tv_usec -= usec;
|
|
if (itp->it_value.tv_usec < 0) {
|
|
itp->it_value.tv_usec += 1000000;
|
|
itp->it_value.tv_sec--;
|
|
}
|
|
timer_settime(pt);
|
|
} else
|
|
itp->it_value.tv_usec = 0; /* sec is already 0 */
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
itimerfire(struct ptimer *pt)
|
|
{
|
|
struct proc *p = pt->pt_proc;
|
|
struct sadata_vp *vp;
|
|
int s;
|
|
unsigned int i;
|
|
|
|
if (pt->pt_ev.sigev_notify == SIGEV_SIGNAL) {
|
|
/*
|
|
* No RT signal infrastructure exists at this time;
|
|
* just post the signal number and throw away the
|
|
* value.
|
|
*/
|
|
if (sigismember(&p->p_sigctx.ps_siglist, pt->pt_ev.sigev_signo))
|
|
pt->pt_overruns++;
|
|
else {
|
|
ksiginfo_t ksi;
|
|
(void)memset(&ksi, 0, sizeof(ksi));
|
|
ksi.ksi_signo = pt->pt_ev.sigev_signo;
|
|
ksi.ksi_code = SI_TIMER;
|
|
ksi.ksi_sigval = pt->pt_ev.sigev_value;
|
|
pt->pt_poverruns = pt->pt_overruns;
|
|
pt->pt_overruns = 0;
|
|
kpsignal(p, &ksi, NULL);
|
|
}
|
|
} else if (pt->pt_ev.sigev_notify == SIGEV_SA && (p->p_flag & P_SA)) {
|
|
/* Cause the process to generate an upcall when it returns. */
|
|
signotify(p);
|
|
if (p->p_userret == NULL) {
|
|
/*
|
|
* XXX stop signals can be processed inside tsleep,
|
|
* which can be inside sa_yield's inner loop, which
|
|
* makes testing for sa_idle alone insuffucent to
|
|
* determine if we really should call setrunnable.
|
|
*/
|
|
pt->pt_poverruns = pt->pt_overruns;
|
|
pt->pt_overruns = 0;
|
|
i = 1 << pt->pt_entry;
|
|
p->p_timers->pts_fired = i;
|
|
p->p_userret = timerupcall;
|
|
p->p_userret_arg = p->p_timers;
|
|
|
|
SCHED_LOCK(s);
|
|
SLIST_FOREACH(vp, &p->p_sa->sa_vps, savp_next) {
|
|
if (vp->savp_lwp->l_flag & L_SA_IDLE) {
|
|
vp->savp_lwp->l_flag &= ~L_SA_IDLE;
|
|
sched_wakeup(vp->savp_lwp);
|
|
break;
|
|
}
|
|
}
|
|
SCHED_UNLOCK(s);
|
|
} else if (p->p_userret == timerupcall) {
|
|
i = 1 << pt->pt_entry;
|
|
if ((p->p_timers->pts_fired & i) == 0) {
|
|
pt->pt_poverruns = pt->pt_overruns;
|
|
pt->pt_overruns = 0;
|
|
p->p_timers->pts_fired |= i;
|
|
} else
|
|
pt->pt_overruns++;
|
|
} else {
|
|
pt->pt_overruns++;
|
|
if ((p->p_flag & P_WEXIT) == 0)
|
|
printf("itimerfire(%d): overrun %d on timer %x (userret is %p)\n",
|
|
p->p_pid, pt->pt_overruns,
|
|
pt->pt_ev.sigev_value.sival_int,
|
|
p->p_userret);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* ratecheck(): simple time-based rate-limit checking. see ratecheck(9)
|
|
* for usage and rationale.
|
|
*/
|
|
int
|
|
ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
|
|
{
|
|
struct timeval tv, delta;
|
|
int rv = 0;
|
|
#ifndef __HAVE_TIMECOUNTER
|
|
int s;
|
|
#endif
|
|
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
getmicrouptime(&tv);
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
s = splclock();
|
|
tv = mono_time;
|
|
splx(s);
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
timersub(&tv, lasttime, &delta);
|
|
|
|
/*
|
|
* check for 0,0 is so that the message will be seen at least once,
|
|
* even if interval is huge.
|
|
*/
|
|
if (timercmp(&delta, mininterval, >=) ||
|
|
(lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
|
|
*lasttime = tv;
|
|
rv = 1;
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* ppsratecheck(): packets (or events) per second limitation.
|
|
*/
|
|
int
|
|
ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
|
|
{
|
|
struct timeval tv, delta;
|
|
int rv;
|
|
#ifndef __HAVE_TIMECOUNTER
|
|
int s;
|
|
#endif
|
|
|
|
#ifdef __HAVE_TIMECOUNTER
|
|
getmicrouptime(&tv);
|
|
#else /* !__HAVE_TIMECOUNTER */
|
|
s = splclock();
|
|
tv = mono_time;
|
|
splx(s);
|
|
#endif /* !__HAVE_TIMECOUNTER */
|
|
timersub(&tv, lasttime, &delta);
|
|
|
|
/*
|
|
* check for 0,0 is so that the message will be seen at least once.
|
|
* if more than one second have passed since the last update of
|
|
* lasttime, reset the counter.
|
|
*
|
|
* we do increment *curpps even in *curpps < maxpps case, as some may
|
|
* try to use *curpps for stat purposes as well.
|
|
*/
|
|
if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
|
|
delta.tv_sec >= 1) {
|
|
*lasttime = tv;
|
|
*curpps = 0;
|
|
}
|
|
if (maxpps < 0)
|
|
rv = 1;
|
|
else if (*curpps < maxpps)
|
|
rv = 1;
|
|
else
|
|
rv = 0;
|
|
|
|
#if 1 /*DIAGNOSTIC?*/
|
|
/* be careful about wrap-around */
|
|
if (*curpps + 1 > *curpps)
|
|
*curpps = *curpps + 1;
|
|
#else
|
|
/*
|
|
* assume that there's not too many calls to this function.
|
|
* not sure if the assumption holds, as it depends on *caller's*
|
|
* behavior, not the behavior of this function.
|
|
* IMHO it is wrong to make assumption on the caller's behavior,
|
|
* so the above #if is #if 1, not #ifdef DIAGNOSTIC.
|
|
*/
|
|
*curpps = *curpps + 1;
|
|
#endif
|
|
|
|
return (rv);
|
|
}
|