1281 lines
30 KiB
C
1281 lines
30 KiB
C
/* $NetBSD: if_le.c,v 1.4 1995/04/22 12:34:15 cgd Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Ralph Campbell and Rick Macklem.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)if_le.c 8.2 (Berkeley) 11/16/93
|
|
*/
|
|
|
|
#include "le.h"
|
|
#if NLE > 0
|
|
|
|
#include <bpfilter.h>
|
|
|
|
/*
|
|
* AMD 7990 LANCE
|
|
*/
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/errno.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/netisr.h>
|
|
#include <net/route.h>
|
|
#if NBPFILTER > 0
|
|
#include <sys/select.h>
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
#endif
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/if_ether.h>
|
|
#endif
|
|
|
|
#ifdef NS
|
|
#include <netns/ns.h>
|
|
#include <netns/ns_if.h>
|
|
#endif
|
|
|
|
#ifdef APPLETALK
|
|
#include <netddp/atalk.h>
|
|
#endif
|
|
|
|
#if defined (CCITT) && defined (LLC)
|
|
#include <sys/socketvar.h>
|
|
#include <netccitt/x25.h>
|
|
extern llc_ctlinput(), cons_rtrequest();
|
|
#endif
|
|
|
|
#include <machine/autoconf.h>
|
|
#include <machine/rpb.h>
|
|
|
|
#include <alpha/tc/tc.h>
|
|
#include <alpha/tc/asic.h>
|
|
#include <alpha/tc/if_lereg.h>
|
|
|
|
int ledebug = 1; /* console error messages */
|
|
|
|
#ifdef PACKETSTATS
|
|
long lexpacketsizes[LEMTU+1];
|
|
long lerpacketsizes[LEMTU+1];
|
|
#endif
|
|
|
|
/* Per interface statistics */
|
|
/* XXX this should go in something like if_levar.h */
|
|
struct lestats {
|
|
long lexints; /* transmitter interrupts */
|
|
long lerints; /* receiver interrupts */
|
|
long lerbufs; /* total buffers received during interrupts */
|
|
long lerhits; /* times current rbuf was full */
|
|
long lerscans; /* rbufs scanned before finding first full */
|
|
};
|
|
|
|
/*
|
|
* Ethernet software status per interface.
|
|
*
|
|
* Each interface is referenced by a network interface structure,
|
|
* le_if, which the routing code uses to locate the interface.
|
|
* This structure contains the output queue for the interface, its address, ...
|
|
*/
|
|
struct le_softc {
|
|
struct device sc_dev; /* base structure */
|
|
struct evcnt sc_intrcnt; /* # of interrupts, per le */
|
|
struct evcnt sc_errcnt; /* # of errors, per le */
|
|
|
|
struct arpcom sc_ac; /* common Ethernet structures */
|
|
#define sc_if sc_ac.ac_if /* network-visible interface */
|
|
#define sc_addr sc_ac.ac_enaddr /* hardware Ethernet address */
|
|
struct lereg1 *sc_r1; /* LANCE registers */
|
|
void *sc_r2; /* dual-port RAM */
|
|
int sc_ler2pad; /* Do ring descriptors require pads? */
|
|
void (*sc_copytobuf)(); /* Copy to buffer */
|
|
void (*sc_copyfrombuf)(); /* Copy from buffer */
|
|
void (*sc_zerobuf)(); /* and Zero bytes in buffer */
|
|
u_char *sc_etheraddr; /* location of ether address PROM */
|
|
int sc_rmd; /* predicted next rmd to process */
|
|
int sc_tmd; /* last tmd processed */
|
|
int sc_tmdnext; /* next tmd to transmit with */
|
|
int sc_runt;
|
|
int sc_jab;
|
|
int sc_merr;
|
|
int sc_babl;
|
|
int sc_cerr;
|
|
int sc_miss;
|
|
int sc_xint;
|
|
int sc_xown;
|
|
int sc_uflo;
|
|
int sc_rxlen;
|
|
int sc_rxoff;
|
|
int sc_txoff;
|
|
int sc_busy;
|
|
short sc_iflags;
|
|
struct lestats sc_lestats; /* per interface statistics */
|
|
};
|
|
|
|
/* access LANCE registers */
|
|
void lewritereg();
|
|
#define LERDWR(cntl, src, dst) { (dst) = (src); MB(); }
|
|
#define LEWREG(src, dst) lewritereg(&(dst), (src))
|
|
|
|
#define CPU_TO_CHIP_ADDR(cpu) \
|
|
((unsigned long)(&(((struct lereg2 *)0)->cpu)))
|
|
|
|
#define LE_OFFSET_RAM 0x0
|
|
#define LE_OFFSET_LANCE 0x100000
|
|
#define LE_OFFSET_ROM 0x1c0000
|
|
|
|
void copytobuf_contig(), copyfrombuf_contig(), bzerobuf_contig();
|
|
void copytobuf_gap16(), copyfrombuf_gap16(), bzerobuf_gap16();
|
|
|
|
extern caddr_t le_iomem;
|
|
|
|
/* autoconfiguration driver */
|
|
int lematch(struct device *, void *, void *);
|
|
void leattach(struct device *, struct device *, void *);
|
|
struct cfdriver lecd =
|
|
{ NULL, "le", lematch, leattach, DV_IFNET, sizeof (struct le_softc) };
|
|
|
|
/* Forwards */
|
|
int le_setup __P((int, void *, struct le_softc *)); /* XXX */
|
|
void ledrinit(struct le_softc *);
|
|
void leerror(struct le_softc *, int);
|
|
struct mbuf *leget(struct le_softc *, char *, int, int, struct ifnet *);
|
|
int leinit(int);
|
|
int leintr(void *);
|
|
int leioctl(struct ifnet *, u_long, caddr_t);
|
|
int leput(struct le_softc *, char *, struct mbuf *);
|
|
void lererror(struct le_softc *, char *);
|
|
void leread(struct le_softc *, char *, int);
|
|
void lereset(struct device *);
|
|
void lerint(struct le_softc *);
|
|
void lestart(struct ifnet *);
|
|
void lexerror(struct le_softc *);
|
|
void lexint(struct le_softc *);
|
|
|
|
/* FROM HERE ON DOWN: XXX */
|
|
|
|
int
|
|
lematch(parent, cfdata, aux)
|
|
struct device *parent;
|
|
void *cfdata;
|
|
void *aux;
|
|
{
|
|
struct cfdata *cf = cfdata;
|
|
struct confargs *ca = aux;
|
|
#ifdef notdef /* XXX */
|
|
struct tc_cfloc *tc_locp;
|
|
struct asic_cfloc *asic_locp;
|
|
#endif
|
|
|
|
#ifdef notdef /* XXX */
|
|
tclocp = (struct tc_cfloc *)cf->cf_loc;
|
|
#endif
|
|
|
|
/* XXX CHECK BUS */
|
|
/* make sure that we're looking for this type of device. */
|
|
#ifdef notdef
|
|
if (!BUS_MATCHNAME(ca, "PMAD-BA "))
|
|
#endif
|
|
if (!BUS_MATCHNAME(ca, "lance"))
|
|
return (0);
|
|
|
|
#ifdef notdef /* XXX */
|
|
/* make sure the unit matches the cfdata */
|
|
if ((cf->cf_unit != tap->ta_unit &&
|
|
tap->ta_unit != TA_ANYUNIT) ||
|
|
(tclocp->cf_slot != tap->ta_slot &&
|
|
tclocp->cf_slot != TC_SLOT_WILD) ||
|
|
(tclocp->cf_offset != tap->ta_offset &&
|
|
tclocp->cf_offset != TC_OFFSET_WILD))
|
|
return (0);
|
|
#endif
|
|
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
leattach(parent, self, aux)
|
|
struct device *parent;
|
|
struct device *self;
|
|
void *aux;
|
|
{
|
|
register struct le_softc *sc = (struct le_softc *)self;
|
|
struct confargs *ca = aux;
|
|
struct lereg1 *ler1;
|
|
struct ifnet *ifp = &sc->sc_if;
|
|
u_char *cp;
|
|
int i;
|
|
|
|
le_setup(self->dv_unit, aux, sc);
|
|
ler1 = sc->sc_r1;
|
|
|
|
/*
|
|
* Get the ethernet address out of rom
|
|
*/
|
|
for (i = 0, cp = sc->sc_etheraddr; i < sizeof(sc->sc_addr); i++) {
|
|
sc->sc_addr[i] = *cp;
|
|
cp += 4;
|
|
}
|
|
printf(": address %s\n", ether_sprintf(sc->sc_addr));
|
|
|
|
/* make sure the chip is stopped */
|
|
LEWREG(LE_CSR0, ler1->ler1_rap);
|
|
LEWREG(LE_C0_STOP, ler1->ler1_rdp);
|
|
|
|
/*
|
|
* Set up event counters.
|
|
*/
|
|
evcnt_attach(&sc->sc_dev, "intr", &sc->sc_intrcnt);
|
|
evcnt_attach(&sc->sc_dev, "errs", &sc->sc_errcnt);
|
|
|
|
BUS_INTR_ESTABLISH(ca, leintr, sc);
|
|
|
|
ifp->if_unit = sc->sc_dev.dv_unit;
|
|
ifp->if_name = "le";
|
|
ifp->if_ioctl = leioctl;
|
|
ifp->if_start = lestart;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
#ifdef IFF_NOTRAILERS
|
|
/* XXX still compile when the blasted things are gone... */
|
|
ifp->if_flags |= IFF_NOTRAILERS;
|
|
#endif
|
|
#if NBPFILTER > 0
|
|
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
|
|
#endif
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp);
|
|
}
|
|
|
|
int
|
|
le_setup(unit, aux, sc)
|
|
int unit;
|
|
void *aux;
|
|
struct le_softc *sc;
|
|
{
|
|
struct confargs *ca = aux;
|
|
|
|
if (unit == 0 && (hwrpb->rpb_type == ST_DEC_3000_300 ||
|
|
hwrpb->rpb_type == ST_DEC_3000_500)) {
|
|
/* It's on the system ASIC */
|
|
volatile u_int *ldp;
|
|
|
|
sc->sc_r1 = (struct lereg1 *)BUS_CVTADDR(ca);
|
|
#ifdef SPARSE
|
|
sc->sc_r1 = TC_DENSE_TO_SPARSE(sc->sc_r1);
|
|
#endif
|
|
sc->sc_r2 = (void *)le_iomem;
|
|
sc->sc_ler2pad = 1;
|
|
/* XXX */ sc->sc_etheraddr = (u_char *)ASIC_SYS_ETHER_ADDRESS(asic_base);
|
|
sc->sc_copytobuf = copytobuf_gap16;
|
|
sc->sc_copyfrombuf = copyfrombuf_gap16;
|
|
sc->sc_zerobuf = bzerobuf_gap16;
|
|
|
|
/*
|
|
* And enable Lance dma through the asic.
|
|
*/
|
|
ldp = (volatile u_int *)ASIC_REG_LANCE_DMAPTR(asic_base);
|
|
*ldp = (((u_int64_t)le_iomem << 3) & ~(u_int64_t)0x1f) |
|
|
(((u_int64_t)le_iomem >> 29) & 0x1f);
|
|
*(volatile u_int *)ASIC_REG_CSR(asic_base) |=
|
|
ASIC_CSR_DMAEN_LANCE;
|
|
MB();
|
|
} else {
|
|
/* It's on the turbochannel proper */
|
|
sc->sc_r1 = (struct lereg1 *)
|
|
(BUS_CVTADDR(ca) + LE_OFFSET_LANCE);
|
|
sc->sc_r2 = (void *)
|
|
(BUS_CVTADDR(ca) + LE_OFFSET_RAM);
|
|
sc->sc_ler2pad = 0;
|
|
sc->sc_etheraddr = (u_char *)
|
|
(BUS_CVTADDR(ca) + LE_OFFSET_ROM + 2);
|
|
sc->sc_copytobuf = copytobuf_contig;
|
|
sc->sc_copyfrombuf = copyfrombuf_contig;
|
|
sc->sc_zerobuf = bzerobuf_contig;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Setup the logical address filter
|
|
*/
|
|
void
|
|
lesetladrf(sc)
|
|
register struct le_softc *sc;
|
|
{
|
|
register volatile struct lereg2 *ler2 = sc->sc_r2;
|
|
register struct ifnet *ifp = &sc->sc_if;
|
|
register struct ether_multi *enm;
|
|
register u_char *cp, c;
|
|
register u_long crc;
|
|
register int i, len;
|
|
struct ether_multistep step;
|
|
|
|
/*
|
|
* Set up multicast address filter by passing all multicast
|
|
* addresses through a crc generator, and then using the high
|
|
* order 6 bits as an index into the 64 bit logical address
|
|
* filter. The high order bit selects the word, while the
|
|
* rest of the bits select the bit within the word.
|
|
*/
|
|
|
|
LER2_ladrf0(ler2, 0);
|
|
LER2_ladrf1(ler2, 0);
|
|
LER2_ladrf2(ler2, 0);
|
|
LER2_ladrf3(ler2, 0);
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
ETHER_FIRST_MULTI(step, &sc->sc_ac, enm);
|
|
while (enm != NULL) {
|
|
if (bcmp((caddr_t)enm->enm_addrlo,
|
|
(caddr_t)enm->enm_addrhi, sizeof(enm->enm_addrlo)) == 0) {
|
|
/*
|
|
* We must listen to a range of multicast
|
|
* addresses. For now, just accept all
|
|
* multicasts, rather than trying to set only
|
|
* those filter bits needed to match the range.
|
|
* (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for
|
|
* which the range is big enough to require all
|
|
* bits set.)
|
|
*/
|
|
LER2_ladrf0(ler2, 0xff);
|
|
LER2_ladrf1(ler2, 0xff);
|
|
LER2_ladrf2(ler2, 0xff);
|
|
LER2_ladrf3(ler2, 0xff);
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* One would think, given the AM7990 document's polynomial
|
|
* of 0x04c11db6, that this should be 0x6db88320 (the bit
|
|
* reversal of the AMD value), but that is not right. See
|
|
* the BASIC listing: bit 0 (our bit 31) must then be set.
|
|
*/
|
|
cp = (unsigned char *)enm->enm_addrlo;
|
|
crc = 0xffffffff;
|
|
for (len = 6; --len >= 0;) {
|
|
c = *cp++;
|
|
for (i = 0; i < 8; i++) {
|
|
if ((crc & 0x01) ^ (c & 0x01)) {
|
|
crc >>= 1;
|
|
crc ^= 0xedb88320;
|
|
} else
|
|
crc >>= 1;
|
|
c >>= 1;
|
|
}
|
|
}
|
|
/* Just want the 6 most significant bits. */
|
|
crc = crc >> 26;
|
|
|
|
/* Turn on the corresponding bit in the filter. */
|
|
switch (crc >> 5) { /* XXX VS SPARC */
|
|
case 0:
|
|
LER2_ladrf0(ler2,
|
|
LER2V_ladrf0(ler2) | 1 << (crc & 0x1f));
|
|
break;
|
|
case 1:
|
|
LER2_ladrf1(ler2,
|
|
LER2V_ladrf1(ler2) | 1 << (crc & 0x1f));
|
|
break;
|
|
case 2:
|
|
LER2_ladrf2(ler2,
|
|
LER2V_ladrf2(ler2) | 1 << (crc & 0x1f));
|
|
break;
|
|
case 3:
|
|
LER2_ladrf3(ler2,
|
|
LER2V_ladrf3(ler2) | 1 << (crc & 0x1f));
|
|
break;
|
|
}
|
|
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
}
|
|
|
|
void
|
|
ledrinit(sc)
|
|
struct le_softc *sc;
|
|
{
|
|
register void *rp;
|
|
register int i;
|
|
|
|
for (i = 0; i < LERBUF; i++) {
|
|
rp = LER2_RMDADDR(sc->sc_r2, i);
|
|
LER2_rmd0(rp, CPU_TO_CHIP_ADDR(ler2_rbuf[i][0])); /*XXX*/
|
|
LER2_rmd1_bits(rp, LE_T1_OWN);
|
|
LER2_rmd1_hadr(rp, 0); /*XXX*/
|
|
LER2_rmd2(rp, -LEMTU | LE_XMD2_ONES);
|
|
LER2_rmd3(rp, 0);
|
|
}
|
|
for (i = 0; i < LETBUF; i++) {
|
|
rp = LER2_TMDADDR(sc->sc_r2, i);
|
|
LER2_tmd0(rp, CPU_TO_CHIP_ADDR(ler2_tbuf[i][0])); /*XXX*/
|
|
LER2_tmd1_bits(rp, 0);
|
|
LER2_tmd1_hadr(rp, 0); /*XXX*/
|
|
LER2_tmd2(rp, LE_XMD2_ONES);
|
|
LER2_tmd3(rp, 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
lereset(dev)
|
|
struct device *dev;
|
|
{
|
|
register struct le_softc *sc = (struct le_softc *)dev;
|
|
register volatile struct lereg1 *ler1 = sc->sc_r1;
|
|
register volatile void *ler2 = sc->sc_r2;
|
|
register int timo, stat;
|
|
|
|
/* XXX YEECH!!! */
|
|
*(volatile u_int *)ASIC_REG_IMSK(asic_base) |= ASIC_INTR_LANCE;
|
|
MB();
|
|
|
|
#if NBPFILTER > 0
|
|
if (sc->sc_if.if_flags & IFF_PROMISC)
|
|
LER2_mode(ler2, LE_MODE_NORMAL | LE_MODE_PROM);
|
|
else
|
|
#endif
|
|
LER2_mode(ler2, LE_MODE_NORMAL);
|
|
LEWREG(LE_CSR0, ler1->ler1_rap);
|
|
LEWREG(LE_C0_STOP, ler1->ler1_rdp);
|
|
|
|
/* Setup the logical address filter */
|
|
lesetladrf(sc);
|
|
|
|
/* init receive and transmit rings */
|
|
ledrinit(sc);
|
|
sc->sc_rmd = 0; /* XXX ??? */
|
|
sc->sc_tmd = LETBUF - 1; /* XXX ??? */
|
|
sc->sc_tmdnext = 0; /* XXX ??? */
|
|
|
|
/*
|
|
* Setup for transmit/receive
|
|
* XXX ???
|
|
*/
|
|
LER2_padr0(ler2, (sc->sc_addr[1] << 8) | sc->sc_addr[0]);
|
|
LER2_padr1(ler2, (sc->sc_addr[3] << 8) | sc->sc_addr[2]);
|
|
LER2_padr2(ler2, (sc->sc_addr[5] << 8) | sc->sc_addr[4]);
|
|
LER2_rlen(ler2, LE_RLEN);
|
|
LER2_rdra(ler2, CPU_TO_CHIP_ADDR(ler2_rmd[0]));
|
|
LER2_tlen(ler2, LE_TLEN);
|
|
LER2_tdra(ler2, CPU_TO_CHIP_ADDR(ler2_tmd[0]));
|
|
|
|
/* tell the chip where to find the initialization block */
|
|
LEWREG(LE_CSR1, ler1->ler1_rap);
|
|
LEWREG(CPU_TO_CHIP_ADDR(ler2_mode), ler1->ler1_rdp);
|
|
LEWREG(LE_CSR2, ler1->ler1_rap);
|
|
LEWREG(0, ler1->ler1_rdp);
|
|
LEWREG(LE_CSR3, ler1->ler1_rap);
|
|
LEWREG(0, ler1->ler1_rdp);
|
|
LEWREG(LE_CSR0, ler1->ler1_rap);
|
|
LERDWR(ler0, LE_C0_INIT, ler1->ler1_rdp);
|
|
timo = 100000;
|
|
while (((stat = ler1->ler1_rdp) & (LE_C0_ERR | LE_C0_IDON)) == 0) {
|
|
if (--timo == 0) {
|
|
printf("%s: init timeout, stat=%b\n",
|
|
sc->sc_dev.dv_xname, stat, LE_C0_BITS);
|
|
break;
|
|
}
|
|
}
|
|
if (stat & LE_C0_ERR)
|
|
printf("%s: init failed, stat=%b\n",
|
|
sc->sc_dev.dv_xname, stat, LE_C0_BITS);
|
|
else
|
|
LERDWR(ler0, LE_C0_IDON, ler1->ler1_rdp); /* clear IDON */
|
|
LERDWR(ler0, LE_C0_STRT | LE_C0_INEA, ler1->ler1_rdp);
|
|
sc->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
/*
|
|
* Initialization of interface
|
|
*/
|
|
int
|
|
leinit(unit)
|
|
int unit;
|
|
{
|
|
register struct le_softc *sc = lecd.cd_devs[unit];
|
|
register struct ifnet *ifp = &sc->sc_if;
|
|
register int s;
|
|
|
|
/* not yet, if address still unknown */
|
|
if (ifp->if_addrlist == (struct ifaddr *)0)
|
|
return (0);
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0) {
|
|
s = splimp();
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
lereset(&sc->sc_dev);
|
|
lestart(ifp);
|
|
splx(s);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
#define LENEXTTMP \
|
|
if (++bix == LETBUF) \
|
|
bix = 0; \
|
|
tmd = LER2_TMDADDR(sc->sc_r2, bix)
|
|
|
|
/*
|
|
* Start output on interface. Get another datagram to send
|
|
* off of the interface queue, and copy it to the interface
|
|
* before starting the output.
|
|
*/
|
|
void
|
|
lestart(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
register struct le_softc *sc = lecd.cd_devs[ifp->if_unit];
|
|
register volatile void *tmd;
|
|
register struct mbuf *m;
|
|
register int bix, len;
|
|
|
|
if ((sc->sc_if.if_flags & IFF_RUNNING) == 0)
|
|
return;
|
|
|
|
bix = sc->sc_tmdnext;
|
|
len = 0;
|
|
tmd = LER2_TMDADDR(sc->sc_r2, bix);
|
|
while (bix != sc->sc_tmd) {
|
|
if (LER2V_tmd1_bits(tmd) & LE_T1_OWN)
|
|
panic("lestart");
|
|
IF_DEQUEUE(&sc->sc_if.if_snd, m);
|
|
if (m == 0)
|
|
break;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* If bpf is listening on this interface, let it
|
|
* see the packet before we commit it to the wire.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif
|
|
|
|
len = leput(sc, LER2_TBUFADDR(sc->sc_r2, bix), m);
|
|
#ifdef PACKETSTATS
|
|
if (len <= LEMTU)
|
|
lexpacketsizes[len]++;
|
|
#endif
|
|
LER2_tmd3(tmd, 0);
|
|
LER2_tmd2(tmd, -len | LE_XMD2_ONES);
|
|
LER2_tmd1_bits(tmd, LE_T1_OWN | LE_T1_STP | LE_T1_ENP);
|
|
LENEXTTMP;
|
|
}
|
|
if (len != 0) {
|
|
sc->sc_if.if_flags |= IFF_OACTIVE;
|
|
LERDWR(ler0, LE_C0_TDMD | LE_C0_INEA, sc->sc_r1->ler1_rdp);
|
|
}
|
|
sc->sc_tmdnext = bix;
|
|
return;
|
|
}
|
|
|
|
int
|
|
leintr(dev)
|
|
register void *dev;
|
|
{
|
|
register struct le_softc *sc = dev;
|
|
register volatile struct lereg1 *ler1 = sc->sc_r1;
|
|
register int csr0;
|
|
|
|
csr0 = ler1->ler1_rdp;
|
|
if ((csr0 & LE_C0_INTR) == 0)
|
|
return (0);
|
|
sc->sc_intrcnt.ev_count++;
|
|
|
|
if (csr0 & LE_C0_ERR) {
|
|
sc->sc_errcnt.ev_count++;
|
|
leerror(sc, csr0);
|
|
if (csr0 & LE_C0_MERR) {
|
|
sc->sc_merr++;
|
|
lereset(&sc->sc_dev);
|
|
return (1);
|
|
}
|
|
if (csr0 & LE_C0_BABL)
|
|
sc->sc_babl++;
|
|
if (csr0 & LE_C0_CERR)
|
|
sc->sc_cerr++;
|
|
if (csr0 & LE_C0_MISS)
|
|
sc->sc_miss++;
|
|
LERDWR(ler0, LE_C0_BABL|LE_C0_CERR|LE_C0_MISS|LE_C0_INEA,
|
|
ler1->ler1_rdp);
|
|
}
|
|
if ((csr0 & LE_C0_RXON) == 0) {
|
|
sc->sc_rxoff++;
|
|
lereset(&sc->sc_dev);
|
|
return (1);
|
|
}
|
|
if ((csr0 & LE_C0_TXON) == 0) {
|
|
sc->sc_txoff++;
|
|
lereset(&sc->sc_dev);
|
|
return (1);
|
|
}
|
|
if (csr0 & LE_C0_RINT) {
|
|
/* interrupt is cleared in lerint */
|
|
lerint(sc);
|
|
}
|
|
if (csr0 & LE_C0_TINT) {
|
|
LERDWR(ler0, LE_C0_TINT|LE_C0_INEA, ler1->ler1_rdp);
|
|
lexint(sc);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Ethernet interface transmitter interrupt.
|
|
* Start another output if more data to send.
|
|
*/
|
|
void
|
|
lexint(sc)
|
|
register struct le_softc *sc;
|
|
{
|
|
register int bix = sc->sc_tmd;
|
|
register volatile void *tmd;
|
|
|
|
sc->sc_lestats.lexints++;
|
|
if ((sc->sc_if.if_flags & IFF_OACTIVE) == 0) {
|
|
sc->sc_xint++;
|
|
return;
|
|
}
|
|
LENEXTTMP;
|
|
while (bix != sc->sc_tmdnext &&
|
|
(LER2V_tmd1_bits(tmd) & LE_T1_OWN) == 0) {
|
|
sc->sc_tmd = bix;
|
|
if (LER2V_tmd1_bits(tmd) & LE_T1_ERR) {
|
|
err:
|
|
lexerror(sc);
|
|
sc->sc_if.if_oerrors++;
|
|
if (LER2V_tmd3(tmd) & (LE_T3_BUFF|LE_T3_UFLO)) {
|
|
sc->sc_uflo++;
|
|
lereset(&sc->sc_dev);
|
|
break;
|
|
}
|
|
else if (LER2V_tmd3(tmd) & LE_T3_LCOL)
|
|
sc->sc_if.if_collisions++;
|
|
else if (LER2V_tmd3(tmd) & LE_T3_RTRY)
|
|
sc->sc_if.if_collisions += 16;
|
|
}
|
|
else if (LER2V_tmd1_bits(tmd) & LE_T3_BUFF)
|
|
/* XXX documentation says BUFF not included in ERR */
|
|
goto err;
|
|
else if (LER2V_tmd1_bits(tmd) & LE_T1_ONE)
|
|
sc->sc_if.if_collisions++;
|
|
else if (LER2V_tmd1_bits(tmd) & LE_T1_MORE)
|
|
/* what is the real number? */
|
|
sc->sc_if.if_collisions += 2;
|
|
else
|
|
sc->sc_if.if_opackets++;
|
|
LENEXTTMP;
|
|
}
|
|
if (bix == sc->sc_tmdnext)
|
|
sc->sc_if.if_flags &= ~IFF_OACTIVE;
|
|
lestart(&sc->sc_if);
|
|
}
|
|
|
|
#define LENEXTRMP \
|
|
if (++bix == LERBUF) \
|
|
bix = 0; \
|
|
rmd = LER2_RMDADDR(sc->sc_r2, bix)
|
|
|
|
/*
|
|
* Ethernet interface receiver interrupt.
|
|
* If input error just drop packet.
|
|
* Decapsulate packet based on type and pass to type specific
|
|
* higher-level input routine.
|
|
*/
|
|
void
|
|
lerint(sc)
|
|
struct le_softc *sc;
|
|
{
|
|
register int bix = sc->sc_rmd;
|
|
register volatile void *rmd = LER2_RMDADDR(sc->sc_r2, bix);
|
|
|
|
sc->sc_lestats.lerints++;
|
|
/*
|
|
* Out of sync with hardware, should never happen?
|
|
*/
|
|
if (LER2V_rmd1_bits(rmd) & LE_R1_OWN) {
|
|
do {
|
|
sc->sc_lestats.lerscans++;
|
|
LENEXTRMP;
|
|
} while ((LER2V_rmd1_bits(rmd) & LE_R1_OWN) && bix != sc->sc_rmd);
|
|
if (bix == sc->sc_rmd)
|
|
printf("%s: RINT with no buffer\n",
|
|
sc->sc_dev.dv_xname);
|
|
} else
|
|
sc->sc_lestats.lerhits++;
|
|
|
|
/*
|
|
* Process all buffers with valid data
|
|
*/
|
|
while ((LER2V_rmd1_bits(rmd) & LE_R1_OWN) == 0) {
|
|
int len = LER2V_rmd3(rmd);
|
|
|
|
/* Clear interrupt to avoid race condition */
|
|
LERDWR(sc->sc_r0, LE_C0_RINT|LE_C0_INEA, sc->sc_r1->ler1_rdp);
|
|
|
|
if (LER2V_rmd1_bits(rmd) & LE_R1_ERR) {
|
|
sc->sc_rmd = bix;
|
|
lererror(sc, "bad packet");
|
|
sc->sc_if.if_ierrors++;
|
|
} else if ((LER2V_rmd1_bits(rmd) & (LE_R1_STP|LE_R1_ENP)) !=
|
|
(LE_R1_STP|LE_R1_ENP)) {
|
|
/* XXX make a define for LE_R1_STP|LE_R1_ENP? */
|
|
/*
|
|
* Find the end of the packet so we can see how long
|
|
* it was. We still throw it away.
|
|
*/
|
|
do {
|
|
LERDWR(sc->sc_r0, LE_C0_RINT|LE_C0_INEA,
|
|
sc->sc_r1->ler1_rdp);
|
|
LER2_rmd3(rmd, 0);
|
|
LER2_rmd1_bits(rmd, LE_R1_OWN);
|
|
LENEXTRMP;
|
|
} while (!(LER2V_rmd1_bits(rmd) &
|
|
(LE_R1_OWN|LE_R1_ERR|LE_R1_STP|LE_R1_ENP)));
|
|
sc->sc_rmd = bix;
|
|
lererror(sc, "chained buffer");
|
|
sc->sc_rxlen++;
|
|
/*
|
|
* If search terminated without successful completion
|
|
* we reset the hardware (conservative).
|
|
*/
|
|
if ((LER2V_rmd1_bits(rmd) &
|
|
(LE_R1_OWN|LE_R1_ERR|LE_R1_STP|LE_R1_ENP)) !=
|
|
LE_R1_ENP) {
|
|
lereset(&sc->sc_dev);
|
|
return;
|
|
}
|
|
} else {
|
|
leread(sc, LER2_RBUFADDR(sc->sc_r2, bix), len);
|
|
#ifdef PACKETSTATS
|
|
lerpacketsizes[len]++;
|
|
#endif
|
|
sc->sc_lestats.lerbufs++;
|
|
}
|
|
LER2_rmd3(rmd, 0);
|
|
LER2_rmd1_bits(rmd, LE_R1_OWN);
|
|
LENEXTRMP;
|
|
}
|
|
sc->sc_rmd = bix;
|
|
}
|
|
|
|
/*
|
|
* Look at the packet in network buffer memory so we can be smart about how
|
|
* we copy the data into mbufs.
|
|
* This needs work since we can't just read network buffer memory like
|
|
* regular memory.
|
|
*/
|
|
void
|
|
leread(sc, buf, len)
|
|
register struct le_softc *sc;
|
|
char *buf;
|
|
int len;
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
struct ether_header eh;
|
|
|
|
/* get the header */
|
|
(*sc->sc_copyfrombuf)(buf, 0, (char *)&eh, sizeof (eh));
|
|
|
|
/* adjust input length to account for header and CRC */
|
|
len -= sizeof(struct ether_header) + 4;
|
|
if (len <= 0)
|
|
return;
|
|
|
|
/* Pull packet off interface. */
|
|
ifp = &sc->sc_ac.ac_if;
|
|
m = leget(sc, buf, len, 0, ifp);
|
|
if (m == 0)
|
|
return;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Check if there's a BPF listener on this interface.
|
|
* If so, hand off the raw packet to BPF.
|
|
*/
|
|
if (ifp->if_bpf) {
|
|
M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
|
|
if (m == 0)
|
|
return;
|
|
bcopy(&eh, mtod(m, void *), sizeof(struct ether_header));
|
|
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
|
|
m_adj(m, sizeof(struct ether_header));
|
|
|
|
/*
|
|
* Note that the interface cannot be in promiscuous mode if
|
|
* there are no BPF listeners. And if we are in promiscuous
|
|
* mode, we have to check if this packet is really ours.
|
|
*/
|
|
if ((ifp->if_flags & IFF_PROMISC) &&
|
|
(eh.ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
|
|
bcmp(eh.ether_dhost, sc->sc_ac.ac_enaddr,
|
|
sizeof(eh.ether_dhost)) != 0) {
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
ether_input(ifp, &eh, m);
|
|
}
|
|
|
|
/*
|
|
* Routine to copy from mbuf chain to transmit buffer in
|
|
* network buffer memory.
|
|
*/
|
|
int
|
|
leput(sc, lebuf, m)
|
|
struct le_softc *sc;
|
|
char *lebuf;
|
|
register struct mbuf *m;
|
|
{
|
|
register struct mbuf *mp;
|
|
register int len, tlen = 0;
|
|
register int boff = 0;
|
|
|
|
for (mp = m; mp; mp = mp->m_next) {
|
|
len = mp->m_len;
|
|
if (len == 0)
|
|
continue;
|
|
tlen += len;
|
|
(*sc->sc_copytobuf)(mtod(mp, char *), lebuf, boff, len);
|
|
boff += len;
|
|
}
|
|
m_freem(m);
|
|
if (tlen < LEMINSIZE) {
|
|
(*sc->sc_zerobuf)(lebuf, boff, LEMINSIZE - tlen);
|
|
tlen = LEMINSIZE;
|
|
}
|
|
return(tlen);
|
|
}
|
|
|
|
/*
|
|
* Routine to copy from network buffer memory into mbufs.
|
|
*/
|
|
struct mbuf *
|
|
leget(sc, lebuf, totlen, off, ifp)
|
|
struct le_softc *sc;
|
|
char *lebuf;
|
|
int totlen, off;
|
|
struct ifnet *ifp;
|
|
{
|
|
register struct mbuf *m;
|
|
struct mbuf *top = 0, **mp = ⊤
|
|
register int len, resid, boff;
|
|
|
|
boff = sizeof(struct ether_header);
|
|
resid = totlen;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0)
|
|
return (0);
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = totlen;
|
|
m->m_len = MHLEN;
|
|
|
|
while (totlen > 0) {
|
|
if (top) {
|
|
MGET(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0) {
|
|
m_freem(top);
|
|
return (0);
|
|
}
|
|
m->m_len = MLEN;
|
|
}
|
|
|
|
if (resid >= MINCLSIZE)
|
|
MCLGET(m, M_DONTWAIT);
|
|
if (m->m_flags & M_EXT)
|
|
m->m_len = min(resid, MCLBYTES);
|
|
else if (resid < m->m_len) {
|
|
/*
|
|
* Place initial small packet/header at end of mbuf.
|
|
*/
|
|
if (top == 0 && resid + max_linkhdr <= m->m_len)
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = resid;
|
|
}
|
|
len = m->m_len;
|
|
(*sc->sc_copyfrombuf)(lebuf, boff, mtod(m, char *), len);
|
|
boff += len;
|
|
*mp = m;
|
|
mp = &m->m_next;
|
|
totlen -= len;
|
|
resid -= len;
|
|
if (resid == 0) {
|
|
boff = sizeof (struct ether_header);
|
|
resid = totlen;
|
|
}
|
|
}
|
|
return (top);
|
|
}
|
|
|
|
/*
|
|
* Process an ioctl request.
|
|
*/
|
|
int
|
|
leioctl(ifp, cmd, data)
|
|
register struct ifnet *ifp;
|
|
u_long cmd;
|
|
caddr_t data;
|
|
{
|
|
register struct ifaddr *ifa;
|
|
struct le_softc *sc = lecd.cd_devs[ifp->if_unit];
|
|
register struct lereg1 *ler1;
|
|
int s = splimp(), error = 0;
|
|
|
|
switch (cmd) {
|
|
|
|
case SIOCSIFADDR:
|
|
ifa = (struct ifaddr *)data;
|
|
ifp->if_flags |= IFF_UP;
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
(void)leinit(ifp->if_unit);
|
|
arp_ifinit(&sc->sc_ac, ifa);
|
|
break;
|
|
#endif
|
|
#ifdef NS
|
|
case AF_NS:
|
|
{
|
|
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
|
|
|
|
if (ns_nullhost(*ina))
|
|
ina->x_host = *(union ns_host *)(sc->sc_addr);
|
|
else {
|
|
/*
|
|
* The manual says we can't change the address
|
|
* while the receiver is armed,
|
|
* so reset everything
|
|
*/
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
LEWREG(LE_C0_STOP, ler1->ler1_rdp);
|
|
bcopy((caddr_t)ina->x_host.c_host,
|
|
(caddr_t)sc->sc_addr, sizeof(sc->sc_addr));
|
|
}
|
|
(void)leinit(ifp->if_unit); /* does le_setaddr() */
|
|
break;
|
|
}
|
|
#endif
|
|
default:
|
|
leinit(ifp->if_unit);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
#if defined (CCITT) && defined (LLC)
|
|
case SIOCSIFCONF_X25:
|
|
ifp->if_flags |= IFF_UP;
|
|
ifa->ifa_rtrequest = (void (*)())cons_rtrequest; /* XXX */
|
|
error = x25_llcglue(PRC_IFUP, ifa->ifa_addr);
|
|
if (error == 0)
|
|
leinit(ifp->if_unit);
|
|
break;
|
|
#endif /* CCITT && LLC */
|
|
|
|
case SIOCSIFFLAGS:
|
|
ler1 = sc->sc_r1;
|
|
if ((ifp->if_flags & IFF_UP) == 0 &&
|
|
ifp->if_flags & IFF_RUNNING) {
|
|
LEWREG(LE_C0_STOP, ler1->ler1_rdp);
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
} else if (ifp->if_flags & IFF_UP &&
|
|
(ifp->if_flags & IFF_RUNNING) == 0)
|
|
leinit(ifp->if_unit);
|
|
/*
|
|
* If the state of the promiscuous bit changes, the interface
|
|
* must be reset to effect the change.
|
|
*/
|
|
if (((ifp->if_flags ^ sc->sc_iflags) & IFF_PROMISC) &&
|
|
(ifp->if_flags & IFF_RUNNING)) {
|
|
sc->sc_iflags = ifp->if_flags;
|
|
lereset(&sc->sc_dev);
|
|
lestart(ifp);
|
|
}
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
error = ether_addmulti((struct ifreq *)data, &sc->sc_ac);
|
|
goto update_multicast;
|
|
|
|
case SIOCDELMULTI:
|
|
error = ether_delmulti((struct ifreq *)data, &sc->sc_ac);
|
|
update_multicast:
|
|
if (error == ENETRESET) {
|
|
/*
|
|
* Multicast list has changed; set the hardware
|
|
* filter accordingly.
|
|
*/
|
|
lereset(&sc->sc_dev);
|
|
error = 0;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
error = EINVAL;
|
|
}
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
leerror(sc, stat)
|
|
register struct le_softc *sc;
|
|
int stat;
|
|
{
|
|
if (!ledebug)
|
|
return;
|
|
|
|
/*
|
|
* Not all transceivers implement heartbeat
|
|
* so we only log CERR once.
|
|
*/
|
|
if ((stat & LE_C0_CERR) && sc->sc_cerr)
|
|
return;
|
|
log(LOG_WARNING, "%s: error: stat=%b\n",
|
|
sc->sc_dev.dv_xname, stat, LE_C0_BITS);
|
|
}
|
|
|
|
void
|
|
lererror(sc, msg)
|
|
register struct le_softc *sc;
|
|
char *msg;
|
|
{
|
|
register void *rmd;
|
|
u_char eaddr[6];
|
|
int len;
|
|
|
|
if (!ledebug)
|
|
return;
|
|
|
|
rmd = LER2_RMDADDR(sc->sc_r2, sc->sc_rmd);
|
|
len = LER2V_rmd3(rmd);
|
|
if (len > 11)
|
|
(*sc->sc_copyfrombuf)(LER2_RBUFADDR(sc->sc_r2, sc->sc_rmd),
|
|
6, eaddr, 6);
|
|
log(LOG_WARNING,
|
|
"%s: ierror(%s): from %s: buf=%d, len=%d, rmd1_bits=%b\n",
|
|
sc->sc_dev.dv_xname,
|
|
msg, len > 11 ? ether_sprintf(eaddr) : "unknown",
|
|
sc->sc_rmd, len, LER2V_rmd1_bits(rmd), LE_R1_BITS);
|
|
}
|
|
|
|
void
|
|
lexerror(sc)
|
|
register struct le_softc *sc;
|
|
{
|
|
register void *tmd;
|
|
u_char eaddr[6];
|
|
int len;
|
|
|
|
if (!ledebug)
|
|
return;
|
|
|
|
tmd = LER2_TMDADDR(sc->sc_r2, 0);
|
|
len = -LER2V_tmd2(tmd);
|
|
if (len > 5)
|
|
(*sc->sc_copyfrombuf)(LER2_TBUFADDR(sc->sc_r2, 0), 0, eaddr, 6);
|
|
log(LOG_WARNING,
|
|
"%s: oerror: to %s: buf=%d, len=%d, tmd1_bits=%b, tmd3=%b\n",
|
|
sc->sc_dev.dv_xname,
|
|
len > 5 ? ether_sprintf(eaddr) : "unknown", 0, len,
|
|
LER2V_tmd1_bits(tmd), LE_T1_BITS,
|
|
LER2V_tmd3(tmd), LE_T3_BITS);
|
|
}
|
|
|
|
/*
|
|
* Write a lance register port, reading it back to ensure success. This seems
|
|
* to be necessary during initialization, since the chip appears to be a bit
|
|
* pokey sometimes.
|
|
*/
|
|
void
|
|
lewritereg(regptr, val)
|
|
register volatile u_short *regptr;
|
|
register u_short val;
|
|
{
|
|
register int i = 0;
|
|
|
|
while (*regptr != val) {
|
|
*regptr = val;
|
|
MB();
|
|
if (++i > 10000) {
|
|
printf("le: Reg did not settle (to x%x): x%x\n", val,
|
|
*regptr);
|
|
return;
|
|
}
|
|
DELAY(100);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Routines for accessing the transmit and receive buffers. Unfortunately,
|
|
* CPU addressing of these buffers is done in one of 3 ways:
|
|
* - contiguous (for the 3max and turbochannel option card)
|
|
* - gap2, which means shorts (2 bytes) interspersed with short (2 byte)
|
|
* spaces (for the pmax)
|
|
* - gap16, which means 16bytes interspersed with 16byte spaces
|
|
* for buffers which must begin on a 32byte boundary (for 3min and maxine)
|
|
* The buffer offset is the logical byte offset, assuming contiguous storage.
|
|
*/
|
|
void
|
|
copytobuf_contig(from, lebuf, boff, len)
|
|
char *from;
|
|
void *lebuf;
|
|
int boff;
|
|
int len;
|
|
{
|
|
|
|
/*
|
|
* Just call bcopy() to do the work.
|
|
*/
|
|
bcopy(from, ((char *)lebuf) + boff, len);
|
|
}
|
|
|
|
void
|
|
copyfrombuf_contig(lebuf, boff, to, len)
|
|
void *lebuf;
|
|
int boff;
|
|
char *to;
|
|
int len;
|
|
{
|
|
|
|
/*
|
|
* Just call bcopy() to do the work.
|
|
*/
|
|
bcopy(((char *)lebuf) + boff, to, len);
|
|
}
|
|
|
|
void
|
|
bzerobuf_contig(lebuf, boff, len)
|
|
void *lebuf;
|
|
int boff;
|
|
int len;
|
|
{
|
|
|
|
/*
|
|
* Just let bzero() do the work
|
|
*/
|
|
bzero(((char *)lebuf) + boff, len);
|
|
}
|
|
|
|
/*
|
|
* For the 3min and maxine, the buffers are in main memory filled in with
|
|
* 16byte blocks interspersed with 16byte spaces.
|
|
*/
|
|
void
|
|
copytobuf_gap16(from, lebuf, boff, len)
|
|
register char *from;
|
|
void *lebuf;
|
|
int boff;
|
|
register int len;
|
|
{
|
|
register char *bptr;
|
|
register int xfer;
|
|
|
|
bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f);
|
|
boff &= 0xf;
|
|
xfer = min(len, 16 - boff);
|
|
while (len > 0) {
|
|
bcopy(from, ((char *)bptr) + boff, xfer);
|
|
from += xfer;
|
|
bptr += 32;
|
|
boff = 0;
|
|
len -= xfer;
|
|
xfer = min(len, 16);
|
|
}
|
|
}
|
|
|
|
void
|
|
copyfrombuf_gap16(lebuf, boff, to, len)
|
|
void *lebuf;
|
|
int boff;
|
|
register char *to;
|
|
register int len;
|
|
{
|
|
register char *bptr;
|
|
register int xfer;
|
|
|
|
bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f);
|
|
boff &= 0xf;
|
|
xfer = min(len, 16 - boff);
|
|
while (len > 0) {
|
|
bcopy(((char *)bptr) + boff, to, xfer);
|
|
to += xfer;
|
|
bptr += 32;
|
|
boff = 0;
|
|
len -= xfer;
|
|
xfer = min(len, 16);
|
|
}
|
|
}
|
|
|
|
void
|
|
bzerobuf_gap16(lebuf, boff, len)
|
|
void *lebuf;
|
|
int boff;
|
|
register int len;
|
|
{
|
|
register char *bptr;
|
|
register int xfer;
|
|
|
|
bptr = ((char *)lebuf) + ((boff << 1) & ~0x1f);
|
|
boff &= 0xf;
|
|
xfer = min(len, 16 - boff);
|
|
while (len > 0) {
|
|
bzero(((char *)bptr) + boff, xfer);
|
|
bptr += 32;
|
|
boff = 0;
|
|
len -= xfer;
|
|
xfer = min(len, 16);
|
|
}
|
|
}
|
|
#endif /* NLE */
|