NetBSD/sys/arch/arm32/ofw/ofwgencfg_clock.c
1998-07-07 00:48:11 +00:00

212 lines
4.8 KiB
C

/* $NetBSD: ofwgencfg_clock.c,v 1.6 1998/07/07 00:48:13 mark Exp $ */
/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
* and retain this copyright notice and list of conditions as
* they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Digital Equipment Corporation. Neither the "Digital Equipment
* Corporation" name nor any trademark or logo of Digital Equipment
* Corporation may be used to endorse or promote products derived
* from this software without the prior written permission of
* Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
* warranties, including but not limited to, any implied warranties
* of merchantability, fitness for a particular purpose, or
* non-infringement are disclaimed. In no event shall DIGITAL be
* liable for any damages whatsoever, and in particular, DIGITAL
* shall not be liable for special, indirect, consequential, or
* incidental damages or damages for lost profits, loss of
* revenue or loss of use, whether such damages arise in contract,
* negligence, tort, under statute, in equity, at law or otherwise,
* even if advised of the possibility of such damage.
*/
/* Include header files */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <machine/irqhandler.h>
#include <machine/cpufunc.h>
#include <machine/cpu.h>
#include <machine/ofw.h>
static void *clockirq;
/*
* int clockhandler(struct clockframe *frame)
*
* Function called by timer 0 interrupts. This just calls
* hardclock(). Eventually the irqhandler can call hardclock() directly
* but for now we use this function so that we can debug IRQ's
*/
int
clockhandler(frame)
struct clockframe *frame;
{
hardclock(frame);
return(0); /* Pass the interrupt on down the chain */
}
/*
* int statclockhandler(struct clockframe *frame)
*
* Function called by timer 1 interrupts. This just calls
* statclock(). Eventually the irqhandler can call statclock() directly
* but for now we use this function so that we can debug IRQ's
*/
int
statclockhandler(frame)
struct clockframe *frame;
{
statclock(frame);
return(0); /* Pass the interrupt on down the chain */
}
/*
* void setstatclockrate(int hz)
*
* Set the stat clock rate. The stat clock uses timer1
*/
void
setstatclockrate(hz)
int hz;
{
#ifdef OFWGENCFG
printf("Not setting statclock: OFW generic has only one clock.\n");
#endif
}
/*
* void cpu_initclocks(void)
*
* Initialise the clocks.
* This sets up the two timers in the IOMD and installs the IRQ handlers
*
* NOTE: Currently only timer 0 is setup and the IRQ handler is not installed
*/
void
cpu_initclocks()
{
/*
* Load timer 0 with count down value
* This timer generates 100Hz interrupts for the system clock
*/
printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
clockirq = intr_claim(IRQ_TIMER0, IPL_CLOCK, "tmr0 hard clk",
clockhandler, 0);
if (clockirq == NULL)
panic("Cannot installer timer 0 IRQ handler\n");
/* Notify callback handler that it can start processing ticks. */
ofw_handleticks = 1;
if (stathz) {
printf("Not installing statclock: OFW generic has only one clock.\n");
}
}
/*
* void microtime(struct timeval *tvp)
*
* Fill in the specified timeval struct with the current time
* accurate to the microsecond.
*/
void
microtime(tvp)
struct timeval *tvp;
{
int s;
static struct timeval oldtv;
s = splhigh();
/* Fill in the timeval struct */
*tvp = time;
/* Make sure the micro seconds don't overflow. */
while (tvp->tv_usec > 1000000) {
tvp->tv_usec -= 1000000;
++tvp->tv_sec;
}
/* Make sure the time has advanced. */
if (tvp->tv_sec == oldtv.tv_sec &&
tvp->tv_usec <= oldtv.tv_usec) {
tvp->tv_usec = oldtv.tv_usec + 1;
if (tvp->tv_usec > 1000000) {
tvp->tv_usec -= 1000000;
++tvp->tv_sec;
}
}
oldtv = *tvp;
(void)splx(s);
}
void
need_proftick(p)
struct proc *p;
{
}
/*
* Estimated loop for n microseconds
*/
/* Need to re-write this to use the timers */
/* One day soon I will actually do this */
int delaycount = 50;
void
delay(n)
u_int n;
{
u_int i;
if (n == 0) return;
while (--n > 0) {
if (cputype == ID_SA110) /* XXX - Seriously gross hack */
for (i = delaycount; --i;);
else
for (i = 8; --i;);
}
}