NetBSD/sys/arch/xen/x86/x86_xpmap.c
cegger 7f5c40b741 - use POSIX integer types
- ansify functions
2008-04-14 13:38:03 +00:00

1007 lines
28 KiB
C

/* $NetBSD: x86_xpmap.c,v 1.8 2008/04/14 13:38:03 cegger Exp $ */
/*
* Copyright (c) 2006 Mathieu Ropert <mro@adviseo.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Copyright (c) 2006, 2007 Manuel Bouyer.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Manuel Bouyer.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
*
* Copyright (c) 2004 Christian Limpach.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christian Limpach.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: x86_xpmap.c,v 1.8 2008/04/14 13:38:03 cegger Exp $");
#include "opt_xen.h"
#include "opt_ddb.h"
#include "ksyms.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <uvm/uvm.h>
#include <machine/pmap.h>
#include <machine/gdt.h>
#include <xen/xenfunc.h>
#include <dev/isa/isareg.h>
#include <machine/isa_machdep.h>
#undef XENDEBUG
/* #define XENDEBUG_SYNC */
/* #define XENDEBUG_LOW */
#ifdef XENDEBUG
#define XENPRINTF(x) printf x
#define XENPRINTK(x) printk x
#define XENPRINTK2(x) /* printk x */
static char XBUF[256];
#else
#define XENPRINTF(x)
#define XENPRINTK(x)
#define XENPRINTK2(x)
#endif
#define PRINTF(x) printf x
#define PRINTK(x) printk x
/* on x86_64 kernel runs in ring 3 */
#ifdef __x86_64__
#define PG_k PG_u
#else
#define PG_k 0
#endif
volatile shared_info_t *HYPERVISOR_shared_info;
union start_info_union start_info_union;
unsigned long *xpmap_phys_to_machine_mapping;
void xen_failsafe_handler(void);
#ifdef XEN3
#define HYPERVISOR_mmu_update_self(req, count, success_count) \
HYPERVISOR_mmu_update((req), (count), (success_count), DOMID_SELF)
#else
#define HYPERVISOR_mmu_update_self(req, count, success_count) \
HYPERVISOR_mmu_update((req), (count), (success_count))
#endif
void
xen_failsafe_handler(void)
{
panic("xen_failsafe_handler called!\n");
}
void
xen_set_ldt(vaddr_t base, uint32_t entries)
{
vaddr_t va;
vaddr_t end;
pt_entry_t *ptp;
int s;
#ifdef __x86_64__
end = base + (entries << 3);
#else
end = base + entries * sizeof(union descriptor);
#endif
for (va = base; va < end; va += PAGE_SIZE) {
KASSERT(va >= VM_MIN_KERNEL_ADDRESS);
ptp = kvtopte(va);
XENPRINTF(("xen_set_ldt %p %d %p\n", (void *)base,
entries, ptp));
pmap_pte_clearbits(ptp, PG_RW);
}
s = splvm();
xpq_queue_set_ldt(base, entries);
xpq_flush_queue();
splx(s);
}
#ifdef XENDEBUG
void xpq_debug_dump(void);
#endif
#define XPQUEUE_SIZE 2048
static mmu_update_t xpq_queue[XPQUEUE_SIZE];
static int xpq_idx = 0;
void
xpq_flush_queue(void)
{
int i, ok;
XENPRINTK2(("flush queue %p entries %d\n", xpq_queue, xpq_idx));
for (i = 0; i < xpq_idx; i++)
XENPRINTK2(("%d: %p %08" PRIx64 "\n", i,
(uint64_t)xpq_queue[i].ptr, (uint64_t)xpq_queue[i].val));
if (xpq_idx != 0 &&
HYPERVISOR_mmu_update_self(xpq_queue, xpq_idx, &ok) < 0) {
printf("xpq_flush_queue: %d entries \n", xpq_idx);
for (i = 0; i < xpq_idx; i++)
printf("0x%016" PRIx64 ": 0x%016" PRIx64 "\n",
(uint64_t)xpq_queue[i].ptr,
(uint64_t)xpq_queue[i].val);
panic("HYPERVISOR_mmu_update failed\n");
}
xpq_idx = 0;
}
static inline void
xpq_increment_idx(void)
{
xpq_idx++;
if (__predict_false(xpq_idx == XPQUEUE_SIZE))
xpq_flush_queue();
}
void
xpq_queue_machphys_update(paddr_t ma, paddr_t pa)
{
XENPRINTK2(("xpq_queue_machphys_update ma=0x%" PRIx64 " pa=0x%" PRIx64
"\n", (int64_t)ma, (int64_t)pa));
xpq_queue[xpq_idx].ptr = ma | MMU_MACHPHYS_UPDATE;
xpq_queue[xpq_idx].val = (pa - XPMAP_OFFSET) >> PAGE_SHIFT;
xpq_increment_idx();
#ifdef XENDEBUG_SYNC
xpq_flush_queue();
#endif
}
void
xpq_queue_pte_update(paddr_t ptr, pt_entry_t val)
{
KASSERT((ptr & 3) == 0);
xpq_queue[xpq_idx].ptr = (paddr_t)ptr | MMU_NORMAL_PT_UPDATE;
xpq_queue[xpq_idx].val = val;
xpq_increment_idx();
#ifdef XENDEBUG_SYNC
xpq_flush_queue();
#endif
}
#ifdef XEN3
void
xpq_queue_pt_switch(paddr_t pa)
{
struct mmuext_op op;
xpq_flush_queue();
XENPRINTK2(("xpq_queue_pt_switch: 0x%" PRIx64 " 0x%" PRIx64 "\n",
(int64_t)pa, (int64_t)pa));
op.cmd = MMUEXT_NEW_BASEPTR;
op.arg1.mfn = pa >> PAGE_SHIFT;
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
panic("xpq_queue_pt_switch");
}
void
xpq_queue_pin_table(paddr_t pa)
{
struct mmuext_op op;
xpq_flush_queue();
XENPRINTK2(("xpq_queue_pin_table: 0x%" PRIx64 " 0x%" PRIx64 "\n",
(int64_t)pa, (int64_t)pa));
op.arg1.mfn = pa >> PAGE_SHIFT;
#if defined(__x86_64__)
op.cmd = MMUEXT_PIN_L4_TABLE;
#else
op.cmd = MMUEXT_PIN_L2_TABLE;
#endif
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
panic("xpq_queue_pin_table");
}
#ifdef PAE
static void
xpq_queue_pin_l3_table(paddr_t pa)
{
struct mmuext_op op;
xpq_flush_queue();
XENPRINTK2(("xpq_queue_pin_l2_table: 0x%" PRIx64 " 0x%" PRIx64 "\n",
(int64_t)pa, (int64_t)pa));
op.arg1.mfn = pa >> PAGE_SHIFT;
op.cmd = MMUEXT_PIN_L3_TABLE;
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
panic("xpq_queue_pin_table");
}
#endif
void
xpq_queue_unpin_table(paddr_t pa)
{
struct mmuext_op op;
xpq_flush_queue();
XENPRINTK2(("xpq_queue_unpin_table: 0x%" PRIx64 " 0x%" PRIx64 "\n",
(int64_t)pa, (int64_t)pa));
op.arg1.mfn = pa >> PAGE_SHIFT;
op.cmd = MMUEXT_UNPIN_TABLE;
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
panic("xpq_queue_unpin_table");
}
void
xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
{
struct mmuext_op op;
xpq_flush_queue();
XENPRINTK2(("xpq_queue_set_ldt\n"));
KASSERT(va == (va & ~PAGE_MASK));
op.cmd = MMUEXT_SET_LDT;
op.arg1.linear_addr = va;
op.arg2.nr_ents = entries;
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
panic("xpq_queue_set_ldt");
}
void
xpq_queue_tlb_flush(void)
{
struct mmuext_op op;
xpq_flush_queue();
XENPRINTK2(("xpq_queue_tlb_flush\n"));
op.cmd = MMUEXT_TLB_FLUSH_LOCAL;
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
panic("xpq_queue_tlb_flush");
}
void
xpq_flush_cache(void)
{
struct mmuext_op op;
int s = splvm();
xpq_flush_queue();
XENPRINTK2(("xpq_queue_flush_cache\n"));
op.cmd = MMUEXT_FLUSH_CACHE;
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
panic("xpq_flush_cache");
splx(s);
}
void
xpq_queue_invlpg(vaddr_t va)
{
struct mmuext_op op;
xpq_flush_queue();
XENPRINTK2(("xpq_queue_invlpg %p\n", (void *)va));
op.cmd = MMUEXT_INVLPG_LOCAL;
op.arg1.linear_addr = (va & ~PAGE_MASK);
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
panic("xpq_queue_invlpg");
}
int
xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
{
mmu_update_t op;
int ok;
xpq_flush_queue();
op.ptr = ptr;
op.val = val;
if (HYPERVISOR_mmu_update(&op, 1, &ok, dom) < 0)
return EFAULT;
return (0);
}
#else /* XEN3 */
void
xpq_queue_pt_switch(paddr_t pa)
{
XENPRINTK2(("xpq_queue_pt_switch: %p %p\n", (void *)pa, (void *)pa));
xpq_queue[xpq_idx].ptr = pa | MMU_EXTENDED_COMMAND;
xpq_queue[xpq_idx].val = MMUEXT_NEW_BASEPTR;
xpq_increment_idx();
}
void
xpq_queue_pin_table(paddr_t pa)
{
XENPRINTK2(("xpq_queue_pin_table: %p %p\n", (void *)pa, (void *)pa));
xpq_queue[xpq_idx].ptr = pa | MMU_EXTENDED_COMMAND;
xpq_queue[xpq_idx].val = MMUEXT_PIN_L2_TABLE;
xpq_increment_idx();
}
void
xpq_queue_unpin_table(paddr_t pa)
{
XENPRINTK2(("xpq_queue_unpin_table: %p %p\n", (void *)pa, (void *)pa));
xpq_queue[xpq_idx].ptr = pa | MMU_EXTENDED_COMMAND;
xpq_queue[xpq_idx].val = MMUEXT_UNPIN_TABLE;
xpq_increment_idx();
}
void
xpq_queue_set_ldt(vaddr_t va, uint32_t entries)
{
XENPRINTK2(("xpq_queue_set_ldt\n"));
KASSERT(va == (va & ~PAGE_MASK));
xpq_queue[xpq_idx].ptr = MMU_EXTENDED_COMMAND | va;
xpq_queue[xpq_idx].val = MMUEXT_SET_LDT | (entries << MMUEXT_CMD_SHIFT);
xpq_increment_idx();
}
void
xpq_queue_tlb_flush(void)
{
XENPRINTK2(("xpq_queue_tlb_flush\n"));
xpq_queue[xpq_idx].ptr = MMU_EXTENDED_COMMAND;
xpq_queue[xpq_idx].val = MMUEXT_TLB_FLUSH;
xpq_increment_idx();
}
void
xpq_flush_cache(void)
{
int s = splvm();
XENPRINTK2(("xpq_queue_flush_cache\n"));
xpq_queue[xpq_idx].ptr = MMU_EXTENDED_COMMAND;
xpq_queue[xpq_idx].val = MMUEXT_FLUSH_CACHE;
xpq_increment_idx();
xpq_flush_queue();
splx(s);
}
void
xpq_queue_invlpg(vaddr_t va)
{
XENPRINTK2(("xpq_queue_invlpg %p\n", (void *)va));
xpq_queue[xpq_idx].ptr = (va & ~PAGE_MASK) | MMU_EXTENDED_COMMAND;
xpq_queue[xpq_idx].val = MMUEXT_INVLPG;
xpq_increment_idx();
}
int
xpq_update_foreign(paddr_t ptr, pt_entry_t val, int dom)
{
mmu_update_t xpq_up[3];
xpq_up[0].ptr = MMU_EXTENDED_COMMAND;
xpq_up[0].val = MMUEXT_SET_FOREIGNDOM | (dom << 16);
xpq_up[1].ptr = ptr;
xpq_up[1].val = val;
if (HYPERVISOR_mmu_update_self(xpq_up, 2, NULL) < 0)
return EFAULT;
return (0);
}
#endif /* XEN3 */
#ifdef XENDEBUG
void
xpq_debug_dump(void)
{
int i;
XENPRINTK2(("idx: %d\n", xpq_idx));
for (i = 0; i < xpq_idx; i++) {
sprintf(XBUF, "%" PRIx64 " %08" PRIx64,
(uint64_t)xpq_queue[i].ptr, (uint64_t)xpq_queue[i].val);
if (++i < xpq_idx)
sprintf(XBUF + strlen(XBUF), "%" PRIx64 " %08" PRIx64,
(uint64_t)xpq_queue[i].ptr, (uint64_t)xpq_queue[i].val);
if (++i < xpq_idx)
sprintf(XBUF + strlen(XBUF), "%" PRIx64 " %08" PRIx64,
(uint64_t)xpq_queue[i].ptr, (uint64_t)xpq_queue[i].val);
if (++i < xpq_idx)
sprintf(XBUF + strlen(XBUF), "%" PRIx64 " %08" PRIx64,
(uint64_t)xpq_queue[i].ptr, (uint64_t)xpq_queue[i].val);
XENPRINTK2(("%d: %s\n", xpq_idx, XBUF));
}
}
#endif
extern volatile struct xencons_interface *xencons_interface; /* XXX */
extern struct xenstore_domain_interface *xenstore_interface; /* XXX */
static void xen_bt_set_readonly (vaddr_t);
static void xen_bootstrap_tables (vaddr_t, vaddr_t, int, int, int);
/* How many PDEs ? */
#if L2_SLOT_KERNBASE > 0
#define TABLE_L2_ENTRIES (2 * (NKL2_KIMG_ENTRIES + 1))
#else
#define TABLE_L2_ENTRIES (NKL2_KIMG_ENTRIES + 1)
#endif
/*
* Construct and switch to new pagetables
* first_avail is the first vaddr we can use after
* we get rid of Xen pagetables
*/
vaddr_t xen_pmap_bootstrap (void);
/*
* Function to get rid of Xen bootstrap tables
*/
/* How many PDP do we need: */
#ifdef PAE
/*
* For PAE, we consider a single contigous L2 "superpage" of 4 pages,
* all of them mapped by the L3 page. We also need a shadow page
* for L3[3].
*/
static const int l2_4_count = 6;
#else
static const int l2_4_count = PTP_LEVELS - 1;
#endif
vaddr_t
xen_pmap_bootstrap(void)
{
int count, oldcount;
long mapsize;
vaddr_t bootstrap_tables, init_tables;
xpmap_phys_to_machine_mapping =
(unsigned long *)xen_start_info.mfn_list;
init_tables = xen_start_info.pt_base;
__PRINTK(("xen_arch_pmap_bootstrap init_tables=0x%lx\n", init_tables));
/* Space after Xen boostrap tables should be free */
bootstrap_tables = xen_start_info.pt_base +
(xen_start_info.nr_pt_frames * PAGE_SIZE);
/*
* Calculate how many space we need
* first everything mapped before the Xen bootstrap tables
*/
mapsize = init_tables - KERNTEXTOFF;
/* after the tables we'll have:
* - UAREA
* - dummy user PGD (x86_64)
* - HYPERVISOR_shared_info
* - ISA I/O mem (if needed)
*/
mapsize += UPAGES * NBPG;
#ifdef __x86_64__
mapsize += NBPG;
#endif
mapsize += NBPG;
#ifdef DOM0OPS
if (xen_start_info.flags & SIF_INITDOMAIN) {
/* space for ISA I/O mem */
mapsize += IOM_SIZE;
}
#endif
/* at this point mapsize doens't include the table size */
#ifdef __x86_64__
count = TABLE_L2_ENTRIES;
#else
count = (mapsize + (NBPD_L2 -1)) >> L2_SHIFT;
#endif /* __x86_64__ */
/* now compute how many L2 pages we need exactly */
XENPRINTK(("bootstrap_final mapsize 0x%lx count %d\n", mapsize, count));
while (mapsize + (count + l2_4_count) * PAGE_SIZE + KERNTEXTOFF >
((long)count << L2_SHIFT) + KERNBASE) {
count++;
}
#ifndef __x86_64__
/*
* one more L2 page: we'll alocate several pages after kva_start
* in pmap_bootstrap() before pmap_growkernel(), which have not been
* counted here. It's not a big issue to allocate one more L2 as
* pmap_growkernel() will be called anyway.
*/
count++;
nkptp[1] = count;
#endif
/*
* install bootstrap pages. We may need more L2 pages than will
* have the final table here, as it's installed after the final table
*/
oldcount = count;
bootstrap_again:
XENPRINTK(("bootstrap_again oldcount %d\n", oldcount));
/*
* Xen space we'll reclaim may not be enough for our new page tables,
* move bootstrap tables if necessary
*/
if (bootstrap_tables < init_tables + ((count + l2_4_count) * PAGE_SIZE))
bootstrap_tables = init_tables +
((count + l2_4_count) * PAGE_SIZE);
/* make sure we have enough to map the bootstrap_tables */
if (bootstrap_tables + ((oldcount + l2_4_count) * PAGE_SIZE) >
((long)oldcount << L2_SHIFT) + KERNBASE) {
oldcount++;
goto bootstrap_again;
}
/* Create temporary tables */
xen_bootstrap_tables(xen_start_info.pt_base, bootstrap_tables,
xen_start_info.nr_pt_frames, oldcount, 0);
/* Create final tables */
xen_bootstrap_tables(bootstrap_tables, init_tables,
oldcount + l2_4_count, count, 1);
/* zero out free space after tables */
memset((void *)(init_tables + ((count + l2_4_count) * PAGE_SIZE)), 0,
(UPAGES + 1) * NBPG);
return (init_tables + ((count + l2_4_count) * PAGE_SIZE));
}
/*
* Build a new table and switch to it
* old_count is # of old tables (including PGD, PDTPE and PDE)
* new_count is # of new tables (PTE only)
* we assume areas don't overlap
*/
static void
xen_bootstrap_tables (vaddr_t old_pgd, vaddr_t new_pgd,
int old_count, int new_count, int final)
{
pd_entry_t *pdtpe, *pde, *pte;
pd_entry_t *cur_pgd, *bt_pgd;
paddr_t addr;
vaddr_t page, avail, text_end, map_end;
int i;
extern char __data_start;
__PRINTK(("xen_bootstrap_tables(0x%lx, 0x%lx, %d, %d)\n",
old_pgd, new_pgd, old_count, new_count));
text_end = ((vaddr_t)&__data_start) & ~PAGE_MASK;
/*
* size of R/W area after kernel text:
* xencons_interface (if present)
* xenstore_interface (if present)
* table pages (new_count + l2_4_count entries)
* extra mappings (only when final is true):
* UAREA
* dummy user PGD (x86_64 only)/gdt page (i386 only)
* HYPERVISOR_shared_info
* ISA I/O mem (if needed)
*/
map_end = new_pgd + ((new_count + l2_4_count) * NBPG);
if (final) {
map_end += (UPAGES + 1) * NBPG;
HYPERVISOR_shared_info = (shared_info_t *)map_end;
map_end += NBPG;
}
/*
* we always set atdevbase, as it's used by init386 to find the first
* available VA. map_end is updated only if we are dom0, so
* atdevbase -> atdevbase + IOM_SIZE will be mapped only in
* this case.
*/
if (final)
atdevbase = map_end;
#ifdef DOM0OPS
if (final && (xen_start_info.flags & SIF_INITDOMAIN)) {
/* ISA I/O mem */
map_end += IOM_SIZE;
}
#endif /* DOM0OPS */
__PRINTK(("xen_bootstrap_tables text_end 0x%lx map_end 0x%lx\n",
text_end, map_end));
__PRINTK(("console 0x%lx ", xen_start_info.console_mfn));
__PRINTK(("xenstore 0x%lx\n", xen_start_info.store_mfn));
/*
* Create bootstrap page tables
* What we need:
* - a PGD (level 4)
* - a PDTPE (level 3)
* - a PDE (level2)
* - some PTEs (level 1)
*/
cur_pgd = (pd_entry_t *) old_pgd;
bt_pgd = (pd_entry_t *) new_pgd;
memset (bt_pgd, 0, PAGE_SIZE);
avail = new_pgd + PAGE_SIZE;
#if PTP_LEVELS > 3
/* Install level 3 */
pdtpe = (pd_entry_t *) avail;
memset (pdtpe, 0, PAGE_SIZE);
avail += PAGE_SIZE;
addr = ((u_long) pdtpe) - KERNBASE;
bt_pgd[pl4_pi(KERNTEXTOFF)] =
xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
__PRINTK(("L3 va 0x%lx pa 0x%" PRIx64 " entry 0x%" PRIx64 " -> L4[0x%x]\n",
pdtpe, (uint64_t)addr, (uint64_t)bt_pgd[pl4_pi(KERNTEXTOFF)],
pl4_pi(KERNTEXTOFF)));
#else
pdtpe = bt_pgd;
#endif /* PTP_LEVELS > 3 */
#if PTP_LEVELS > 2
/* Level 2 */
pde = (pd_entry_t *) avail;
memset(pde, 0, PAGE_SIZE);
avail += PAGE_SIZE;
addr = ((u_long) pde) - KERNBASE;
pdtpe[pl3_pi(KERNTEXTOFF)] =
xpmap_ptom_masked(addr) | PG_k | PG_V | PG_RW;
__PRINTK(("L2 va 0x%lx pa 0x%" PRIx64 " entry 0x%" PRIx64 " -> L3[0x%x]\n",
pde, (int64_t)addr, (int64_t)pdtpe[pl3_pi(KERNTEXTOFF)],
pl3_pi(KERNTEXTOFF)));
#elif defined(PAE)
/* our PAE-style level 2: 5 contigous pages (4 L2 + 1 shadow) */
pde = (pd_entry_t *) avail;
memset(pde, 0, PAGE_SIZE * 5);
avail += PAGE_SIZE * 5;
addr = ((u_long) pde) - KERNBASE;
/*
* enter L2 pages in the L3.
* The real L2 kernel PD will be the last one (so that
* pde[L2_SLOT_KERN] always point to the shadow).
*/
for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
/*
* Xen doens't want R/W mappings in L3 entries, it'll add it
* itself.
*/
pdtpe[i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
__PRINTK(("L2 va 0x%lx pa 0x%" PRIx64 " entry 0x%" PRIx64
" -> L3[0x%x]\n", (vaddr_t)pde + PAGE_SIZE * i,
(int64_t)addr, (int64_t)pdtpe[i], i));
}
addr += PAGE_SIZE;
pdtpe[3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
__PRINTK(("L2 va 0x%lx pa 0x%" PRIx64 " entry 0x%" PRIx64
" -> L3[0x%x]\n", (vaddr_t)pde + PAGE_SIZE * 4,
(int64_t)addr, (int64_t)pdtpe[3], 3));
#else /* PAE */
pde = bt_pgd;
#endif /* PTP_LEVELS > 2 */
/* Level 1 */
page = KERNTEXTOFF;
for (i = 0; i < new_count; i ++) {
vaddr_t cur_page = page;
pte = (pd_entry_t *) avail;
avail += PAGE_SIZE;
memset(pte, 0, PAGE_SIZE);
while (pl2_pi(page) == pl2_pi (cur_page)) {
if (page >= map_end) {
/* not mapped at all */
pte[pl1_pi(page)] = 0;
page += PAGE_SIZE;
continue;
}
pte[pl1_pi(page)] = xpmap_ptom_masked(page - KERNBASE);
if (page == (vaddr_t)HYPERVISOR_shared_info) {
pte[pl1_pi(page)] = xen_start_info.shared_info;
__PRINTK(("HYPERVISOR_shared_info "
"va 0x%lx pte 0x%" PRIx64 "\n",
HYPERVISOR_shared_info, (int64_t)pte[pl1_pi(page)]));
}
#ifdef XEN3
if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
== xen_start_info.console_mfn) {
xencons_interface = (void *)page;
pte[pl1_pi(page)] = xen_start_info.console_mfn;
pte[pl1_pi(page)] <<= PAGE_SHIFT;
__PRINTK(("xencons_interface "
"va 0x%lx pte 0x%" PRIx64 "\n",
xencons_interface, (int64_t)pte[pl1_pi(page)]));
}
if ((xpmap_ptom_masked(page - KERNBASE) >> PAGE_SHIFT)
== xen_start_info.store_mfn) {
xenstore_interface = (void *)page;
pte[pl1_pi(page)] = xen_start_info.store_mfn;
pte[pl1_pi(page)] <<= PAGE_SHIFT;
__PRINTK(("xenstore_interface "
"va 0x%lx pte 0x%" PRIx64 "\n",
xenstore_interface, (int64_t)pte[pl1_pi(page)]));
}
#endif /* XEN3 */
#ifdef DOM0OPS
if (page >= (vaddr_t)atdevbase &&
page < (vaddr_t)atdevbase + IOM_SIZE) {
pte[pl1_pi(page)] =
IOM_BEGIN + (page - (vaddr_t)atdevbase);
}
#endif
pte[pl1_pi(page)] |= PG_k | PG_V;
if (page < text_end) {
/* map kernel text RO */
pte[pl1_pi(page)] |= 0;
} else if (page >= old_pgd
&& page < old_pgd + (old_count * PAGE_SIZE)) {
/* map old page tables RO */
pte[pl1_pi(page)] |= 0;
} else if (page >= new_pgd &&
page < new_pgd + ((new_count + l2_4_count) * PAGE_SIZE)) {
/* map new page tables RO */
pte[pl1_pi(page)] |= 0;
} else {
/* map page RW */
pte[pl1_pi(page)] |= PG_RW;
}
if ((page >= old_pgd && page < old_pgd + (old_count * PAGE_SIZE)) || page >= new_pgd)
__PRINTK(("va 0x%lx pa 0x%lx "
"entry 0x%" PRIx64 " -> L1[0x%x]\n",
page, page - KERNBASE,
(int64_t)pte[pl1_pi(page)], pl1_pi(page)));
page += PAGE_SIZE;
}
addr = ((u_long) pte) - KERNBASE;
pde[pl2_pi(cur_page)] =
xpmap_ptom_masked(addr) | PG_k | PG_RW | PG_V;
__PRINTK(("L1 va 0x%lx pa 0x%" PRIx64 " entry 0x%" PRIx64
" -> L2[0x%x]\n", pte, (int64_t)addr,
(int64_t)pde[pl2_pi(cur_page)], pl2_pi(cur_page)));
/* Mark readonly */
xen_bt_set_readonly((vaddr_t) pte);
}
/* Install recursive page tables mapping */
#ifdef PAE
/*
* we need a shadow page for the kernel's L2 page
* The real L2 kernel PD will be the last one (so that
* pde[L2_SLOT_KERN] always point to the shadow.
*/
memcpy(&pde[L2_SLOT_KERN + NPDPG], &pde[L2_SLOT_KERN], PAGE_SIZE);
pmap_kl2pd = &pde[L2_SLOT_KERN + NPDPG];
pmap_kl2paddr = (u_long)pmap_kl2pd - KERNBASE;
/*
* We don't enter a recursive entry from the L3 PD. Instead,
* we enter the first 4 L2 pages, which includes the kernel's L2
* shadow. But we have to entrer the shadow after switching
* %cr3, or Xen will refcount some PTE with the wrong type.
*/
addr = (u_long)pde - KERNBASE;
for (i = 0; i < 3; i++, addr += PAGE_SIZE) {
pde[PDIR_SLOT_PTE + i] = xpmap_ptom_masked(addr) | PG_k | PG_V;
__PRINTK(("pde[%d] va 0x%lx pa 0x%lx entry 0x%" PRIx64 "\n",
(int)(PDIR_SLOT_PTE + i), pde + PAGE_SIZE * i, (long)addr,
(int64_t)pde[PDIR_SLOT_PTE + i]));
}
#if 0
addr += PAGE_SIZE; /* point to shadow L2 */
pde[PDIR_SLOT_PTE + 3] = xpmap_ptom_masked(addr) | PG_k | PG_V;
__PRINTK(("pde[%d] va 0x%lx pa 0x%lx entry 0x%" PRIx64 "\n",
(int)(PDIR_SLOT_PTE + 3), pde + PAGE_SIZE * 4, (long)addr,
(int64_t)pde[PDIR_SLOT_PTE + 3]));
#endif
/* Mark tables RO, and pin the kenrel's shadow as L2 */
addr = (u_long)pde - KERNBASE;
for (i = 0; i < 5; i++, addr += PAGE_SIZE) {
xen_bt_set_readonly(((vaddr_t)pde) + PAGE_SIZE * i);
if (i == 2 || i == 3)
continue;
#if 0
__PRINTK(("pin L2 %d addr 0x%" PRIx64 "\n", i, (int64_t)addr));
xpq_queue_pin_table(xpmap_ptom_masked(addr));
#endif
}
if (final) {
addr = (u_long)pde - KERNBASE + 3 * PAGE_SIZE;
__PRINTK(("pin L2 %d addr 0x%" PRIx64 "\n", 2, (int64_t)addr));
xpq_queue_pin_table(xpmap_ptom_masked(addr));
}
#if 0
addr = (u_long)pde - KERNBASE + 2 * PAGE_SIZE;
__PRINTK(("pin L2 %d addr 0x%" PRIx64 "\n", 2, (int64_t)addr));
xpq_queue_pin_table(xpmap_ptom_masked(addr));
#endif
#else /* PAE */
/* recursive entry in higher-level PD */
bt_pgd[PDIR_SLOT_PTE] =
xpmap_ptom_masked(new_pgd - KERNBASE) | PG_k | PG_V;
__PRINTK(("bt_pgd[PDIR_SLOT_PTE] va 0x%lx pa 0x%" PRIx64
" entry 0x%" PRIx64 "\n", new_pgd, (int64_t)new_pgd - KERNBASE,
(int64_t)bt_pgd[PDIR_SLOT_PTE]));
/* Mark tables RO */
xen_bt_set_readonly((vaddr_t) pde);
#endif
#if PTP_LEVELS > 2 || defined(PAE)
xen_bt_set_readonly((vaddr_t) pdtpe);
#endif
#if PTP_LEVELS > 3
xen_bt_set_readonly(new_pgd);
#endif
/* Pin the PGD */
__PRINTK(("pin PDG\n"));
#ifdef PAE
xpq_queue_pin_l3_table(xpmap_ptom_masked(new_pgd - KERNBASE));
#else
xpq_queue_pin_table(xpmap_ptom_masked(new_pgd - KERNBASE));
#endif
#ifdef __i386__
/* Save phys. addr of PDP, for libkvm. */
PDPpaddr = (long)pde;
#ifdef PAE
/* also save the address of the L3 page */
pmap_l3pd = pdtpe;
pmap_l3paddr = (new_pgd - KERNBASE);
#endif /* PAE */
#endif /* i386 */
/* Switch to new tables */
__PRINTK(("switch to PDG\n"));
xpq_queue_pt_switch(xpmap_ptom_masked(new_pgd - KERNBASE));
__PRINTK(("bt_pgd[PDIR_SLOT_PTE] now entry 0x%" PRIx64 "\n",
(int64_t)bt_pgd[PDIR_SLOT_PTE]));
#ifdef PAE
if (final) {
/* now enter kernel's PTE mappings */
addr = (u_long)pde - KERNBASE + PAGE_SIZE * 3;
xpq_queue_pte_update(
xpmap_ptom(((vaddr_t)&pde[PDIR_SLOT_PTE + 3]) - KERNBASE),
xpmap_ptom_masked(addr) | PG_k | PG_V);
xpq_flush_queue();
}
#endif
/* Now we can safely reclaim space taken by old tables */
__PRINTK(("unpin old PDG\n"));
/* Unpin old PGD */
xpq_queue_unpin_table(xpmap_ptom_masked(old_pgd - KERNBASE));
/* Mark old tables RW */
page = old_pgd;
addr = (paddr_t) pde[pl2_pi(page)] & PG_FRAME;
addr = xpmap_mtop(addr);
pte = (pd_entry_t *) ((u_long)addr + KERNBASE);
pte += pl1_pi(page);
__PRINTK(("*pde 0x%" PRIx64 " addr 0x%" PRIx64 " pte 0x%lx\n",
(int64_t)pde[pl2_pi(page)], (int64_t)addr, (long)pte));
while (page < old_pgd + (old_count * PAGE_SIZE) && page < map_end) {
addr = xpmap_ptom(((u_long) pte) - KERNBASE);
XENPRINTK(("addr 0x%" PRIx64 " pte 0x%lx *pte 0x%" PRIx64 "\n",
(int64_t)addr, (long)pte, (int64_t)*pte));
xpq_queue_pte_update(addr, *pte | PG_RW);
page += PAGE_SIZE;
/*
* Our ptes are contiguous
* so it's safe to just "++" here
*/
pte++;
}
xpq_flush_queue();
}
/*
* Bootstrap helper functions
*/
/*
* Mark a page readonly
* XXX: assuming vaddr = paddr + KERNBASE
*/
static void
xen_bt_set_readonly (vaddr_t page)
{
pt_entry_t entry;
entry = xpmap_ptom_masked(page - KERNBASE);
entry |= PG_k | PG_V;
HYPERVISOR_update_va_mapping (page, entry, UVMF_INVLPG);
}
#ifdef __x86_64__
void
xen_set_user_pgd(paddr_t page)
{
struct mmuext_op op;
int s = splvm();
xpq_flush_queue();
op.cmd = MMUEXT_NEW_USER_BASEPTR;
op.arg1.mfn = xpmap_phys_to_machine_mapping[page >> PAGE_SHIFT];
if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF) < 0)
panic("xen_set_user_pgd: failed to install new user page"
" directory %lx", page);
splx(s);
}
#endif /* __x86_64__ */