NetBSD/sys/dev/pci/if_wm.c

4630 lines
122 KiB
C

/* $NetBSD: if_wm.c,v 1.135 2007/03/04 06:02:23 christos Exp $ */
/*
* Copyright (c) 2001, 2002, 2003, 2004 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the Intel i8254x family of Gigabit Ethernet chips.
*
* TODO (in order of importance):
*
* - Rework how parameters are loaded from the EEPROM.
* - Figure out what to do with the i82545GM and i82546GB
* SERDES controllers.
* - Fix hw VLAN assist.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_wm.c,v 1.135 2007/03/04 06:02:23 christos Exp $");
#include "bpfilter.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/syslog.h>
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <netinet/in.h> /* XXX for struct ip */
#include <netinet/in_systm.h> /* XXX for struct ip */
#include <netinet/ip.h> /* XXX for struct ip */
#include <netinet/ip6.h> /* XXX for struct ip6_hdr */
#include <netinet/tcp.h> /* XXX for struct tcphdr */
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/endian.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/mii/ikphyreg.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_wmreg.h>
#ifdef WM_DEBUG
#define WM_DEBUG_LINK 0x01
#define WM_DEBUG_TX 0x02
#define WM_DEBUG_RX 0x04
#define WM_DEBUG_GMII 0x08
int wm_debug = WM_DEBUG_TX|WM_DEBUG_RX|WM_DEBUG_LINK|WM_DEBUG_GMII;
#define DPRINTF(x, y) if (wm_debug & (x)) printf y
#else
#define DPRINTF(x, y) /* nothing */
#endif /* WM_DEBUG */
/*
* Transmit descriptor list size. Due to errata, we can only have
* 256 hardware descriptors in the ring on < 82544, but we use 4096
* on >= 82544. We tell the upper layers that they can queue a lot
* of packets, and we go ahead and manage up to 64 (16 for the i82547)
* of them at a time.
*
* We allow up to 256 (!) DMA segments per packet. Pathological packet
* chains containing many small mbufs have been observed in zero-copy
* situations with jumbo frames.
*/
#define WM_NTXSEGS 256
#define WM_IFQUEUELEN 256
#define WM_TXQUEUELEN_MAX 64
#define WM_TXQUEUELEN_MAX_82547 16
#define WM_TXQUEUELEN(sc) ((sc)->sc_txnum)
#define WM_TXQUEUELEN_MASK(sc) (WM_TXQUEUELEN(sc) - 1)
#define WM_TXQUEUE_GC(sc) (WM_TXQUEUELEN(sc) / 8)
#define WM_NTXDESC_82542 256
#define WM_NTXDESC_82544 4096
#define WM_NTXDESC(sc) ((sc)->sc_ntxdesc)
#define WM_NTXDESC_MASK(sc) (WM_NTXDESC(sc) - 1)
#define WM_TXDESCSIZE(sc) (WM_NTXDESC(sc) * sizeof(wiseman_txdesc_t))
#define WM_NEXTTX(sc, x) (((x) + 1) & WM_NTXDESC_MASK(sc))
#define WM_NEXTTXS(sc, x) (((x) + 1) & WM_TXQUEUELEN_MASK(sc))
#define WM_MAXTXDMA round_page(IP_MAXPACKET) /* for TSO */
/*
* Receive descriptor list size. We have one Rx buffer for normal
* sized packets. Jumbo packets consume 5 Rx buffers for a full-sized
* packet. We allocate 256 receive descriptors, each with a 2k
* buffer (MCLBYTES), which gives us room for 50 jumbo packets.
*/
#define WM_NRXDESC 256
#define WM_NRXDESC_MASK (WM_NRXDESC - 1)
#define WM_NEXTRX(x) (((x) + 1) & WM_NRXDESC_MASK)
#define WM_PREVRX(x) (((x) - 1) & WM_NRXDESC_MASK)
/*
* Control structures are DMA'd to the i82542 chip. We allocate them in
* a single clump that maps to a single DMA segment to make several things
* easier.
*/
struct wm_control_data_82544 {
/*
* The receive descriptors.
*/
wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
/*
* The transmit descriptors. Put these at the end, because
* we might use a smaller number of them.
*/
wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82544];
};
struct wm_control_data_82542 {
wiseman_rxdesc_t wcd_rxdescs[WM_NRXDESC];
wiseman_txdesc_t wcd_txdescs[WM_NTXDESC_82542];
};
#define WM_CDOFF(x) offsetof(struct wm_control_data_82544, x)
#define WM_CDTXOFF(x) WM_CDOFF(wcd_txdescs[(x)])
#define WM_CDRXOFF(x) WM_CDOFF(wcd_rxdescs[(x)])
/*
* Software state for transmit jobs.
*/
struct wm_txsoft {
struct mbuf *txs_mbuf; /* head of our mbuf chain */
bus_dmamap_t txs_dmamap; /* our DMA map */
int txs_firstdesc; /* first descriptor in packet */
int txs_lastdesc; /* last descriptor in packet */
int txs_ndesc; /* # of descriptors used */
};
/*
* Software state for receive buffers. Each descriptor gets a
* 2k (MCLBYTES) buffer and a DMA map. For packets which fill
* more than one buffer, we chain them together.
*/
struct wm_rxsoft {
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
bus_dmamap_t rxs_dmamap; /* our DMA map */
};
typedef enum {
WM_T_unknown = 0,
WM_T_82542_2_0, /* i82542 2.0 (really old) */
WM_T_82542_2_1, /* i82542 2.1+ (old) */
WM_T_82543, /* i82543 */
WM_T_82544, /* i82544 */
WM_T_82540, /* i82540 */
WM_T_82545, /* i82545 */
WM_T_82545_3, /* i82545 3.0+ */
WM_T_82546, /* i82546 */
WM_T_82546_3, /* i82546 3.0+ */
WM_T_82541, /* i82541 */
WM_T_82541_2, /* i82541 2.0+ */
WM_T_82547, /* i82547 */
WM_T_82547_2, /* i82547 2.0+ */
WM_T_82571, /* i82571 */
WM_T_82572, /* i82572 */
WM_T_82573, /* i82573 */
WM_T_80003, /* i80003 */
} wm_chip_type;
/*
* Software state per device.
*/
struct wm_softc {
struct device sc_dev; /* generic device information */
bus_space_tag_t sc_st; /* bus space tag */
bus_space_handle_t sc_sh; /* bus space handle */
bus_space_tag_t sc_iot; /* I/O space tag */
bus_space_handle_t sc_ioh; /* I/O space handle */
bus_dma_tag_t sc_dmat; /* bus DMA tag */
struct ethercom sc_ethercom; /* ethernet common data */
void *sc_sdhook; /* shutdown hook */
void *sc_powerhook; /* power hook */
pci_chipset_tag_t sc_pc;
pcitag_t sc_pcitag;
struct pci_conf_state sc_pciconf;
wm_chip_type sc_type; /* chip type */
int sc_flags; /* flags; see below */
int sc_bus_speed; /* PCI/PCIX bus speed */
int sc_pcix_offset; /* PCIX capability register offset */
int sc_flowflags; /* 802.3x flow control flags */
void *sc_ih; /* interrupt cookie */
int sc_ee_addrbits; /* EEPROM address bits */
struct mii_data sc_mii; /* MII/media information */
struct callout sc_tick_ch; /* tick callout */
bus_dmamap_t sc_cddmamap; /* control data DMA map */
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
int sc_align_tweak;
/*
* Software state for the transmit and receive descriptors.
*/
int sc_txnum; /* must be a power of two */
struct wm_txsoft sc_txsoft[WM_TXQUEUELEN_MAX];
struct wm_rxsoft sc_rxsoft[WM_NRXDESC];
/*
* Control data structures.
*/
int sc_ntxdesc; /* must be a power of two */
struct wm_control_data_82544 *sc_control_data;
#define sc_txdescs sc_control_data->wcd_txdescs
#define sc_rxdescs sc_control_data->wcd_rxdescs
#ifdef WM_EVENT_COUNTERS
/* Event counters. */
struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
struct evcnt sc_ev_txfifo_stall;/* Tx FIFO stalls (82547) */
struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
struct evcnt sc_ev_rxintr; /* Rx interrupts */
struct evcnt sc_ev_linkintr; /* Link interrupts */
struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
struct evcnt sc_ev_txtusum6; /* TCP/UDP v6 cksums comp. out-bound */
struct evcnt sc_ev_txtso; /* TCP seg offload out-bound (IPv4) */
struct evcnt sc_ev_txtso6; /* TCP seg offload out-bound (IPv6) */
struct evcnt sc_ev_txtsopain; /* painful header manip. for TSO */
struct evcnt sc_ev_txseg[WM_NTXSEGS]; /* Tx packets w/ N segments */
struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
struct evcnt sc_ev_tu; /* Tx underrun */
struct evcnt sc_ev_tx_xoff; /* Tx PAUSE(!0) frames */
struct evcnt sc_ev_tx_xon; /* Tx PAUSE(0) frames */
struct evcnt sc_ev_rx_xoff; /* Rx PAUSE(!0) frames */
struct evcnt sc_ev_rx_xon; /* Rx PAUSE(0) frames */
struct evcnt sc_ev_rx_macctl; /* Rx Unsupported */
#endif /* WM_EVENT_COUNTERS */
bus_addr_t sc_tdt_reg; /* offset of TDT register */
int sc_txfree; /* number of free Tx descriptors */
int sc_txnext; /* next ready Tx descriptor */
int sc_txsfree; /* number of free Tx jobs */
int sc_txsnext; /* next free Tx job */
int sc_txsdirty; /* dirty Tx jobs */
/* These 5 variables are used only on the 82547. */
int sc_txfifo_size; /* Tx FIFO size */
int sc_txfifo_head; /* current head of FIFO */
uint32_t sc_txfifo_addr; /* internal address of start of FIFO */
int sc_txfifo_stall; /* Tx FIFO is stalled */
struct callout sc_txfifo_ch; /* Tx FIFO stall work-around timer */
bus_addr_t sc_rdt_reg; /* offset of RDT register */
int sc_rxptr; /* next ready Rx descriptor/queue ent */
int sc_rxdiscard;
int sc_rxlen;
struct mbuf *sc_rxhead;
struct mbuf *sc_rxtail;
struct mbuf **sc_rxtailp;
uint32_t sc_ctrl; /* prototype CTRL register */
#if 0
uint32_t sc_ctrl_ext; /* prototype CTRL_EXT register */
#endif
uint32_t sc_icr; /* prototype interrupt bits */
uint32_t sc_itr; /* prototype intr throttling reg */
uint32_t sc_tctl; /* prototype TCTL register */
uint32_t sc_rctl; /* prototype RCTL register */
uint32_t sc_txcw; /* prototype TXCW register */
uint32_t sc_tipg; /* prototype TIPG register */
uint32_t sc_fcrtl; /* prototype FCRTL register */
uint32_t sc_pba; /* prototype PBA register */
int sc_tbi_linkup; /* TBI link status */
int sc_tbi_anstate; /* autonegotiation state */
int sc_mchash_type; /* multicast filter offset */
#if NRND > 0
rndsource_element_t rnd_source; /* random source */
#endif
};
#define WM_RXCHAIN_RESET(sc) \
do { \
(sc)->sc_rxtailp = &(sc)->sc_rxhead; \
*(sc)->sc_rxtailp = NULL; \
(sc)->sc_rxlen = 0; \
} while (/*CONSTCOND*/0)
#define WM_RXCHAIN_LINK(sc, m) \
do { \
*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
(sc)->sc_rxtailp = &(m)->m_next; \
} while (/*CONSTCOND*/0)
/* sc_flags */
#define WM_F_HAS_MII 0x0001 /* has MII */
#define WM_F_EEPROM_HANDSHAKE 0x0002 /* requires EEPROM handshake */
#define WM_F_EEPROM_SEMAPHORE 0x0004 /* EEPROM with semaphore */
#define WM_F_EEPROM_EERDEEWR 0x0008 /* EEPROM access via EERD/EEWR */
#define WM_F_EEPROM_SPI 0x0010 /* EEPROM is SPI */
#define WM_F_EEPROM_FLASH 0x0020 /* EEPROM is FLASH */
#define WM_F_EEPROM_INVALID 0x0040 /* EEPROM not present (bad checksum) */
#define WM_F_IOH_VALID 0x0080 /* I/O handle is valid */
#define WM_F_BUS64 0x0100 /* bus is 64-bit */
#define WM_F_PCIX 0x0200 /* bus is PCI-X */
#define WM_F_CSA 0x0400 /* bus is CSA */
#define WM_F_PCIE 0x0800 /* bus is PCI-Express */
#define WM_F_SWFW_SYNC 0x1000 /* Software-Firmware synchronisation */
#ifdef WM_EVENT_COUNTERS
#define WM_EVCNT_INCR(ev) (ev)->ev_count++
#define WM_EVCNT_ADD(ev, val) (ev)->ev_count += (val)
#else
#define WM_EVCNT_INCR(ev) /* nothing */
#define WM_EVCNT_ADD(ev, val) /* nothing */
#endif
#define CSR_READ(sc, reg) \
bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
#define CSR_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
#define CSR_WRITE_FLUSH(sc) \
(void) CSR_READ((sc), WMREG_STATUS)
#define WM_CDTXADDR(sc, x) ((sc)->sc_cddma + WM_CDTXOFF((x)))
#define WM_CDRXADDR(sc, x) ((sc)->sc_cddma + WM_CDRXOFF((x)))
#define WM_CDTXADDR_LO(sc, x) (WM_CDTXADDR((sc), (x)) & 0xffffffffU)
#define WM_CDTXADDR_HI(sc, x) \
(sizeof(bus_addr_t) == 8 ? \
(uint64_t)WM_CDTXADDR((sc), (x)) >> 32 : 0)
#define WM_CDRXADDR_LO(sc, x) (WM_CDRXADDR((sc), (x)) & 0xffffffffU)
#define WM_CDRXADDR_HI(sc, x) \
(sizeof(bus_addr_t) == 8 ? \
(uint64_t)WM_CDRXADDR((sc), (x)) >> 32 : 0)
#define WM_CDTXSYNC(sc, x, n, ops) \
do { \
int __x, __n; \
\
__x = (x); \
__n = (n); \
\
/* If it will wrap around, sync to the end of the ring. */ \
if ((__x + __n) > WM_NTXDESC(sc)) { \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * \
(WM_NTXDESC(sc) - __x), (ops)); \
__n -= (WM_NTXDESC(sc) - __x); \
__x = 0; \
} \
\
/* Now sync whatever is left. */ \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
WM_CDTXOFF(__x), sizeof(wiseman_txdesc_t) * __n, (ops)); \
} while (/*CONSTCOND*/0)
#define WM_CDRXSYNC(sc, x, ops) \
do { \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
WM_CDRXOFF((x)), sizeof(wiseman_rxdesc_t), (ops)); \
} while (/*CONSTCOND*/0)
#define WM_INIT_RXDESC(sc, x) \
do { \
struct wm_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
wiseman_rxdesc_t *__rxd = &(sc)->sc_rxdescs[(x)]; \
struct mbuf *__m = __rxs->rxs_mbuf; \
\
/* \
* Note: We scoot the packet forward 2 bytes in the buffer \
* so that the payload after the Ethernet header is aligned \
* to a 4-byte boundary. \
* \
* XXX BRAINDAMAGE ALERT! \
* The stupid chip uses the same size for every buffer, which \
* is set in the Receive Control register. We are using the 2K \
* size option, but what we REALLY want is (2K - 2)! For this \
* reason, we can't "scoot" packets longer than the standard \
* Ethernet MTU. On strict-alignment platforms, if the total \
* size exceeds (2K - 2) we set align_tweak to 0 and let \
* the upper layer copy the headers. \
*/ \
__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
\
wm_set_dma_addr(&__rxd->wrx_addr, \
__rxs->rxs_dmamap->dm_segs[0].ds_addr + (sc)->sc_align_tweak); \
__rxd->wrx_len = 0; \
__rxd->wrx_cksum = 0; \
__rxd->wrx_status = 0; \
__rxd->wrx_errors = 0; \
__rxd->wrx_special = 0; \
WM_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
\
CSR_WRITE((sc), (sc)->sc_rdt_reg, (x)); \
} while (/*CONSTCOND*/0)
static void wm_start(struct ifnet *);
static void wm_watchdog(struct ifnet *);
static int wm_ioctl(struct ifnet *, u_long, void *);
static int wm_init(struct ifnet *);
static void wm_stop(struct ifnet *, int);
static void wm_shutdown(void *);
static void wm_powerhook(int, void *);
static void wm_reset(struct wm_softc *);
static void wm_rxdrain(struct wm_softc *);
static int wm_add_rxbuf(struct wm_softc *, int);
static int wm_read_eeprom(struct wm_softc *, int, int, u_int16_t *);
static int wm_read_eeprom_eerd(struct wm_softc *, int, int, u_int16_t *);
static int wm_validate_eeprom_checksum(struct wm_softc *);
static void wm_tick(void *);
static void wm_set_filter(struct wm_softc *);
static int wm_intr(void *);
static void wm_txintr(struct wm_softc *);
static void wm_rxintr(struct wm_softc *);
static void wm_linkintr(struct wm_softc *, uint32_t);
static void wm_tbi_mediainit(struct wm_softc *);
static int wm_tbi_mediachange(struct ifnet *);
static void wm_tbi_mediastatus(struct ifnet *, struct ifmediareq *);
static void wm_tbi_set_linkled(struct wm_softc *);
static void wm_tbi_check_link(struct wm_softc *);
static void wm_gmii_reset(struct wm_softc *);
static int wm_gmii_i82543_readreg(struct device *, int, int);
static void wm_gmii_i82543_writereg(struct device *, int, int, int);
static int wm_gmii_i82544_readreg(struct device *, int, int);
static void wm_gmii_i82544_writereg(struct device *, int, int, int);
static int wm_gmii_i80003_readreg(struct device *, int, int);
static void wm_gmii_i80003_writereg(struct device *, int, int, int);
static void wm_gmii_statchg(struct device *);
static void wm_gmii_mediainit(struct wm_softc *);
static int wm_gmii_mediachange(struct ifnet *);
static void wm_gmii_mediastatus(struct ifnet *, struct ifmediareq *);
static int wm_kmrn_i80003_readreg(struct wm_softc *, int);
static void wm_kmrn_i80003_writereg(struct wm_softc *, int, int);
static int wm_match(struct device *, struct cfdata *, void *);
static void wm_attach(struct device *, struct device *, void *);
static int wm_is_onboard_nvm_eeprom(struct wm_softc *);
static int wm_get_swsm_semaphore(struct wm_softc *);
static void wm_put_swsm_semaphore(struct wm_softc *);
static int wm_poll_eerd_eewr_done(struct wm_softc *, int);
static int wm_get_swfw_semaphore(struct wm_softc *, uint16_t);
static void wm_put_swfw_semaphore(struct wm_softc *, uint16_t);
CFATTACH_DECL(wm, sizeof(struct wm_softc),
wm_match, wm_attach, NULL, NULL);
static void wm_82547_txfifo_stall(void *);
/*
* Devices supported by this driver.
*/
static const struct wm_product {
pci_vendor_id_t wmp_vendor;
pci_product_id_t wmp_product;
const char *wmp_name;
wm_chip_type wmp_type;
int wmp_flags;
#define WMP_F_1000X 0x01
#define WMP_F_1000T 0x02
} wm_products[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542,
"Intel i82542 1000BASE-X Ethernet",
WM_T_82542_2_1, WMP_F_1000X },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_FIBER,
"Intel i82543GC 1000BASE-X Ethernet",
WM_T_82543, WMP_F_1000X },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_COPPER,
"Intel i82543GC 1000BASE-T Ethernet",
WM_T_82543, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_COPPER,
"Intel i82544EI 1000BASE-T Ethernet",
WM_T_82544, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_FIBER,
"Intel i82544EI 1000BASE-X Ethernet",
WM_T_82544, WMP_F_1000X },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_COPPER,
"Intel i82544GC 1000BASE-T Ethernet",
WM_T_82544, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LOM,
"Intel i82544GC (LOM) 1000BASE-T Ethernet",
WM_T_82544, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM,
"Intel i82540EM 1000BASE-T Ethernet",
WM_T_82540, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM_LOM,
"Intel i82540EM (LOM) 1000BASE-T Ethernet",
WM_T_82540, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LOM,
"Intel i82540EP 1000BASE-T Ethernet",
WM_T_82540, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP,
"Intel i82540EP 1000BASE-T Ethernet",
WM_T_82540, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EP_LP,
"Intel i82540EP 1000BASE-T Ethernet",
WM_T_82540, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_COPPER,
"Intel i82545EM 1000BASE-T Ethernet",
WM_T_82545, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_COPPER,
"Intel i82545GM 1000BASE-T Ethernet",
WM_T_82545_3, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_FIBER,
"Intel i82545GM 1000BASE-X Ethernet",
WM_T_82545_3, WMP_F_1000X },
#if 0
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545GM_SERDES,
"Intel i82545GM Gigabit Ethernet (SERDES)",
WM_T_82545_3, WMP_F_SERDES },
#endif
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_COPPER,
"Intel i82546EB 1000BASE-T Ethernet",
WM_T_82546, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_QUAD,
"Intel i82546EB 1000BASE-T Ethernet",
WM_T_82546, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_FIBER,
"Intel i82545EM 1000BASE-X Ethernet",
WM_T_82545, WMP_F_1000X },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_FIBER,
"Intel i82546EB 1000BASE-X Ethernet",
WM_T_82546, WMP_F_1000X },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_COPPER,
"Intel i82546GB 1000BASE-T Ethernet",
WM_T_82546_3, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_FIBER,
"Intel i82546GB 1000BASE-X Ethernet",
WM_T_82546_3, WMP_F_1000X },
#if 0
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_SERDES,
"Intel i82546GB Gigabit Ethernet (SERDES)",
WM_T_82546_3, WMP_F_SERDES },
#endif
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER,
"i82546GB quad-port Gigabit Ethernet",
WM_T_82546_3, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_QUAD_COPPER_KSP3,
"i82546GB quad-port Gigabit Ethernet (KSP3)",
WM_T_82546_3, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546GB_PCIE,
"Intel PRO/1000MT (82546GB)",
WM_T_82546_3, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI,
"Intel i82541EI 1000BASE-T Ethernet",
WM_T_82541, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER_LOM,
"Intel i82541ER (LOM) 1000BASE-T Ethernet",
WM_T_82541, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541EI_MOBILE,
"Intel i82541EI Mobile 1000BASE-T Ethernet",
WM_T_82541, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541ER,
"Intel i82541ER 1000BASE-T Ethernet",
WM_T_82541_2, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI,
"Intel i82541GI 1000BASE-T Ethernet",
WM_T_82541_2, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541GI_MOBILE,
"Intel i82541GI Mobile 1000BASE-T Ethernet",
WM_T_82541_2, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82541PI,
"Intel i82541PI 1000BASE-T Ethernet",
WM_T_82541_2, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI,
"Intel i82547EI 1000BASE-T Ethernet",
WM_T_82547, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547EI_MOBILE,
"Intel i82547EI Moblie 1000BASE-T Ethernet",
WM_T_82547, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82547GI,
"Intel i82547GI 1000BASE-T Ethernet",
WM_T_82547_2, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_COPPER,
"Intel PRO/1000 PT (82571EB)",
WM_T_82571, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_FIBER,
"Intel PRO/1000 PF (82571EB)",
WM_T_82571, WMP_F_1000X },
#if 0
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_SERDES,
"Intel PRO/1000 PB (82571EB)",
WM_T_82571, WMP_F_SERDES },
#endif
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82571EB_QUAD_COPPER,
"Intel PRO/1000 QT (82571EB)",
WM_T_82571, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_COPPER,
"Intel i82572EI 1000baseT Ethernet",
WM_T_82572, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_FIBER,
"Intel i82572EI 1000baseX Ethernet",
WM_T_82572, WMP_F_1000X },
#if 0
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI_SERDES,
"Intel i82572EI Gigabit Ethernet (SERDES)",
WM_T_82572, WMP_F_SERDES },
#endif
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82572EI,
"Intel i82572EI 1000baseT Ethernet",
WM_T_82572, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E,
"Intel i82573E",
WM_T_82573, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573E_IAMT,
"Intel i82573E IAMT",
WM_T_82573, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82573L,
"Intel i82573L Gigabit Ethernet",
WM_T_82573, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_DPT,
"i80003 dual 1000baseT Ethernet",
WM_T_80003, WMP_F_1000T },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_FIB_DPT,
"i80003 dual 1000baseX Ethernet",
WM_T_80003, WMP_F_1000T },
#if 0
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_DPT,
"Intel i80003ES2 dual Gigabit Ethernet (SERDES)",
WM_T_80003, WMP_F_SERDES },
#endif
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_CPR_SPT,
"Intel i80003 1000baseT Ethernet",
WM_T_80003, WMP_F_1000T },
#if 0
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_80K3LAN_SDS_SPT,
"Intel i80003 Gigabit Ethernet (SERDES)",
WM_T_80003, WMP_F_SERDES },
#endif
{ 0, 0,
NULL,
0, 0 },
};
#ifdef WM_EVENT_COUNTERS
static char wm_txseg_evcnt_names[WM_NTXSEGS][sizeof("txsegXXX")];
#endif /* WM_EVENT_COUNTERS */
#if 0 /* Not currently used */
static inline uint32_t
wm_io_read(struct wm_softc *sc, int reg)
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, 4));
}
#endif
static inline void
wm_io_write(struct wm_softc *sc, int reg, uint32_t val)
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0, reg);
bus_space_write_4(sc->sc_iot, sc->sc_ioh, 4, val);
}
static inline void
wm_set_dma_addr(volatile wiseman_addr_t *wa, bus_addr_t v)
{
wa->wa_low = htole32(v & 0xffffffffU);
if (sizeof(bus_addr_t) == 8)
wa->wa_high = htole32((uint64_t) v >> 32);
else
wa->wa_high = 0;
}
static const struct wm_product *
wm_lookup(const struct pci_attach_args *pa)
{
const struct wm_product *wmp;
for (wmp = wm_products; wmp->wmp_name != NULL; wmp++) {
if (PCI_VENDOR(pa->pa_id) == wmp->wmp_vendor &&
PCI_PRODUCT(pa->pa_id) == wmp->wmp_product)
return (wmp);
}
return (NULL);
}
static int
wm_match(struct device *parent, struct cfdata *cf, void *aux)
{
struct pci_attach_args *pa = aux;
if (wm_lookup(pa) != NULL)
return (1);
return (0);
}
static void
wm_attach(struct device *parent, struct device *self, void *aux)
{
struct wm_softc *sc = (void *) self;
struct pci_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
size_t cdata_size;
const char *intrstr = NULL;
const char *eetype;
bus_space_tag_t memt;
bus_space_handle_t memh;
bus_dma_segment_t seg;
int memh_valid;
int i, rseg, error;
const struct wm_product *wmp;
prop_data_t ea;
prop_number_t pn;
uint8_t enaddr[ETHER_ADDR_LEN];
uint16_t myea[ETHER_ADDR_LEN / 2], cfg1, cfg2, swdpin;
pcireg_t preg, memtype;
uint32_t reg;
callout_init(&sc->sc_tick_ch);
wmp = wm_lookup(pa);
if (wmp == NULL) {
printf("\n");
panic("wm_attach: impossible");
}
sc->sc_pc = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
if (pci_dma64_available(pa))
sc->sc_dmat = pa->pa_dmat64;
else
sc->sc_dmat = pa->pa_dmat;
preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
aprint_naive(": Ethernet controller\n");
aprint_normal(": %s, rev. %d\n", wmp->wmp_name, preg);
sc->sc_type = wmp->wmp_type;
if (sc->sc_type < WM_T_82543) {
if (preg < 2) {
aprint_error("%s: i82542 must be at least rev. 2\n",
sc->sc_dev.dv_xname);
return;
}
if (preg < 3)
sc->sc_type = WM_T_82542_2_0;
}
/*
* Map the device. All devices support memory-mapped acccess,
* and it is really required for normal operation.
*/
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, WM_PCI_MMBA);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
memh_valid = (pci_mapreg_map(pa, WM_PCI_MMBA,
memtype, 0, &memt, &memh, NULL, NULL) == 0);
break;
default:
memh_valid = 0;
}
if (memh_valid) {
sc->sc_st = memt;
sc->sc_sh = memh;
} else {
aprint_error("%s: unable to map device registers\n",
sc->sc_dev.dv_xname);
return;
}
/*
* In addition, i82544 and later support I/O mapped indirect
* register access. It is not desirable (nor supported in
* this driver) to use it for normal operation, though it is
* required to work around bugs in some chip versions.
*/
if (sc->sc_type >= WM_T_82544) {
/* First we have to find the I/O BAR. */
for (i = PCI_MAPREG_START; i < PCI_MAPREG_END; i += 4) {
if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, i) ==
PCI_MAPREG_TYPE_IO)
break;
}
if (i == PCI_MAPREG_END)
aprint_error("%s: WARNING: unable to find I/O BAR\n",
sc->sc_dev.dv_xname);
else {
/*
* The i8254x doesn't apparently respond when the
* I/O BAR is 0, which looks somewhat like it's not
* been configured.
*/
preg = pci_conf_read(pc, pa->pa_tag, i);
if (PCI_MAPREG_MEM_ADDR(preg) == 0) {
aprint_error("%s: WARNING: I/O BAR at zero.\n",
sc->sc_dev.dv_xname);
} else if (pci_mapreg_map(pa, i, PCI_MAPREG_TYPE_IO,
0, &sc->sc_iot, &sc->sc_ioh,
NULL, NULL) == 0) {
sc->sc_flags |= WM_F_IOH_VALID;
} else {
aprint_error("%s: WARNING: unable to map "
"I/O space\n", sc->sc_dev.dv_xname);
}
}
}
/* Enable bus mastering. Disable MWI on the i82542 2.0. */
preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
preg |= PCI_COMMAND_MASTER_ENABLE;
if (sc->sc_type < WM_T_82542_2_1)
preg &= ~PCI_COMMAND_INVALIDATE_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
/* power up chip */
if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
NULL)) && error != EOPNOTSUPP) {
aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
error);
return;
}
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
aprint_error("%s: unable to map interrupt\n",
sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wm_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error("%s: unable to establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
aprint_normal(" at %s", intrstr);
aprint_normal("\n");
return;
}
aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
/*
* Determine a few things about the bus we're connected to.
*/
if (sc->sc_type < WM_T_82543) {
/* We don't really know the bus characteristics here. */
sc->sc_bus_speed = 33;
} else if (sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) {
/*
* CSA (Communication Streaming Architecture) is about as fast
* a 32-bit 66MHz PCI Bus.
*/
sc->sc_flags |= WM_F_CSA;
sc->sc_bus_speed = 66;
aprint_verbose("%s: Communication Streaming Architecture\n",
sc->sc_dev.dv_xname);
if (sc->sc_type == WM_T_82547) {
callout_init(&sc->sc_txfifo_ch);
callout_setfunc(&sc->sc_txfifo_ch,
wm_82547_txfifo_stall, sc);
aprint_verbose("%s: using 82547 Tx FIFO stall "
"work-around\n", sc->sc_dev.dv_xname);
}
} else if (sc->sc_type >= WM_T_82571) {
sc->sc_flags |= WM_F_PCIE | WM_F_EEPROM_SEMAPHORE;
aprint_verbose("%s: PCI-Express bus\n", sc->sc_dev.dv_xname);
} else {
reg = CSR_READ(sc, WMREG_STATUS);
if (reg & STATUS_BUS64)
sc->sc_flags |= WM_F_BUS64;
if (sc->sc_type >= WM_T_82544 &&
(reg & STATUS_PCIX_MODE) != 0) {
pcireg_t pcix_cmd, pcix_sts, bytecnt, maxb;
sc->sc_flags |= WM_F_PCIX;
if (pci_get_capability(pa->pa_pc, pa->pa_tag,
PCI_CAP_PCIX,
&sc->sc_pcix_offset, NULL) == 0)
aprint_error("%s: unable to find PCIX "
"capability\n", sc->sc_dev.dv_xname);
else if (sc->sc_type != WM_T_82545_3 &&
sc->sc_type != WM_T_82546_3) {
/*
* Work around a problem caused by the BIOS
* setting the max memory read byte count
* incorrectly.
*/
pcix_cmd = pci_conf_read(pa->pa_pc, pa->pa_tag,
sc->sc_pcix_offset + PCI_PCIX_CMD);
pcix_sts = pci_conf_read(pa->pa_pc, pa->pa_tag,
sc->sc_pcix_offset + PCI_PCIX_STATUS);
bytecnt =
(pcix_cmd & PCI_PCIX_CMD_BYTECNT_MASK) >>
PCI_PCIX_CMD_BYTECNT_SHIFT;
maxb =
(pcix_sts & PCI_PCIX_STATUS_MAXB_MASK) >>
PCI_PCIX_STATUS_MAXB_SHIFT;
if (bytecnt > maxb) {
aprint_verbose("%s: resetting PCI-X "
"MMRBC: %d -> %d\n",
sc->sc_dev.dv_xname,
512 << bytecnt, 512 << maxb);
pcix_cmd = (pcix_cmd &
~PCI_PCIX_CMD_BYTECNT_MASK) |
(maxb << PCI_PCIX_CMD_BYTECNT_SHIFT);
pci_conf_write(pa->pa_pc, pa->pa_tag,
sc->sc_pcix_offset + PCI_PCIX_CMD,
pcix_cmd);
}
}
}
/*
* The quad port adapter is special; it has a PCIX-PCIX
* bridge on the board, and can run the secondary bus at
* a higher speed.
*/
if (wmp->wmp_product == PCI_PRODUCT_INTEL_82546EB_QUAD) {
sc->sc_bus_speed = (sc->sc_flags & WM_F_PCIX) ? 120
: 66;
} else if (sc->sc_flags & WM_F_PCIX) {
switch (reg & STATUS_PCIXSPD_MASK) {
case STATUS_PCIXSPD_50_66:
sc->sc_bus_speed = 66;
break;
case STATUS_PCIXSPD_66_100:
sc->sc_bus_speed = 100;
break;
case STATUS_PCIXSPD_100_133:
sc->sc_bus_speed = 133;
break;
default:
aprint_error(
"%s: unknown PCIXSPD %d; assuming 66MHz\n",
sc->sc_dev.dv_xname,
reg & STATUS_PCIXSPD_MASK);
sc->sc_bus_speed = 66;
}
} else
sc->sc_bus_speed = (reg & STATUS_PCI66) ? 66 : 33;
aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
(sc->sc_flags & WM_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
(sc->sc_flags & WM_F_PCIX) ? "PCIX" : "PCI");
}
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*
* NOTE: All Tx descriptors must be in the same 4G segment of
* memory. So must Rx descriptors. We simplify by allocating
* both sets within the same 4G segment.
*/
WM_NTXDESC(sc) = sc->sc_type < WM_T_82544 ?
WM_NTXDESC_82542 : WM_NTXDESC_82544;
cdata_size = sc->sc_type < WM_T_82544 ?
sizeof(struct wm_control_data_82542) :
sizeof(struct wm_control_data_82544);
if ((error = bus_dmamem_alloc(sc->sc_dmat, cdata_size, PAGE_SIZE,
(bus_size_t) 0x100000000ULL,
&seg, 1, &rseg, 0)) != 0) {
aprint_error(
"%s: unable to allocate control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, cdata_size,
(void **)&sc->sc_control_data, 0)) != 0) {
aprint_error("%s: unable to map control data, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat, cdata_size, 1, cdata_size,
0, 0, &sc->sc_cddmamap)) != 0) {
aprint_error("%s: unable to create control data DMA map, "
"error = %d\n", sc->sc_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, cdata_size, NULL,
0)) != 0) {
aprint_error(
"%s: unable to load control data DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps.
*/
WM_TXQUEUELEN(sc) =
(sc->sc_type == WM_T_82547 || sc->sc_type == WM_T_82547_2) ?
WM_TXQUEUELEN_MAX_82547 : WM_TXQUEUELEN_MAX;
for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, WM_MAXTXDMA,
WM_NTXSEGS, WTX_MAX_LEN, 0, 0,
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
aprint_error("%s: unable to create Tx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < WM_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0,
&sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
aprint_error("%s: unable to create Rx DMA map %d, "
"error = %d\n", sc->sc_dev.dv_xname, i, error);
goto fail_5;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/* clear interesting stat counters */
CSR_READ(sc, WMREG_COLC);
CSR_READ(sc, WMREG_RXERRC);
/*
* Reset the chip to a known state.
*/
wm_reset(sc);
/*
* Get some information about the EEPROM.
*/
if (sc->sc_type == WM_T_80003)
sc->sc_flags |= WM_F_EEPROM_EERDEEWR | WM_F_SWFW_SYNC;
else if (sc->sc_type == WM_T_82573)
sc->sc_flags |= WM_F_EEPROM_EERDEEWR;
else if (sc->sc_type > WM_T_82544)
sc->sc_flags |= WM_F_EEPROM_HANDSHAKE;
if (sc->sc_type <= WM_T_82544)
sc->sc_ee_addrbits = 6;
else if (sc->sc_type <= WM_T_82546_3) {
reg = CSR_READ(sc, WMREG_EECD);
if (reg & EECD_EE_SIZE)
sc->sc_ee_addrbits = 8;
else
sc->sc_ee_addrbits = 6;
} else if (sc->sc_type <= WM_T_82547_2) {
reg = CSR_READ(sc, WMREG_EECD);
if (reg & EECD_EE_TYPE) {
sc->sc_flags |= WM_F_EEPROM_SPI;
sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
} else
sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 8 : 6;
} else if ((sc->sc_type == WM_T_82573) &&
(wm_is_onboard_nvm_eeprom(sc) == 0)) {
sc->sc_flags |= WM_F_EEPROM_FLASH;
} else {
/* Assume everything else is SPI. */
reg = CSR_READ(sc, WMREG_EECD);
sc->sc_flags |= WM_F_EEPROM_SPI;
sc->sc_ee_addrbits = (reg & EECD_EE_ABITS) ? 16 : 8;
}
/*
* Defer printing the EEPROM type until after verifying the checksum
* This allows the EEPROM type to be printed correctly in the case
* that no EEPROM is attached.
*/
/*
* Validate the EEPROM checksum. If the checksum fails, flag this for
* later, so we can fail future reads from the EEPROM.
*/
if (wm_validate_eeprom_checksum(sc))
sc->sc_flags |= WM_F_EEPROM_INVALID;
if (sc->sc_flags & WM_F_EEPROM_INVALID)
aprint_verbose("%s: No EEPROM\n", sc->sc_dev.dv_xname);
else if (sc->sc_flags & WM_F_EEPROM_FLASH) {
aprint_verbose("%s: FLASH\n", sc->sc_dev.dv_xname);
} else {
if (sc->sc_flags & WM_F_EEPROM_SPI)
eetype = "SPI";
else
eetype = "MicroWire";
aprint_verbose("%s: %u word (%d address bits) %s EEPROM\n",
sc->sc_dev.dv_xname, 1U << sc->sc_ee_addrbits,
sc->sc_ee_addrbits, eetype);
}
/*
* Read the Ethernet address from the EEPROM, if not first found
* in device properties.
*/
ea = prop_dictionary_get(device_properties(&sc->sc_dev), "mac-addr");
if (ea != NULL) {
KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
} else {
if (wm_read_eeprom(sc, EEPROM_OFF_MACADDR,
sizeof(myea) / sizeof(myea[0]), myea)) {
aprint_error("%s: unable to read Ethernet address\n",
sc->sc_dev.dv_xname);
return;
}
enaddr[0] = myea[0] & 0xff;
enaddr[1] = myea[0] >> 8;
enaddr[2] = myea[1] & 0xff;
enaddr[3] = myea[1] >> 8;
enaddr[4] = myea[2] & 0xff;
enaddr[5] = myea[2] >> 8;
}
/*
* Toggle the LSB of the MAC address on the second port
* of the dual port controller.
*/
if (sc->sc_type == WM_T_82546 || sc->sc_type == WM_T_82546_3
|| sc->sc_type == WM_T_82571 || sc->sc_type == WM_T_80003) {
if ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1)
enaddr[5] ^= 1;
}
aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(enaddr));
/*
* Read the config info from the EEPROM, and set up various
* bits in the control registers based on their contents.
*/
pn = prop_dictionary_get(device_properties(&sc->sc_dev),
"i82543-cfg1");
if (pn != NULL) {
KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
cfg1 = (uint16_t) prop_number_integer_value(pn);
} else {
if (wm_read_eeprom(sc, EEPROM_OFF_CFG1, 1, &cfg1)) {
aprint_error("%s: unable to read CFG1\n",
sc->sc_dev.dv_xname);
return;
}
}
pn = prop_dictionary_get(device_properties(&sc->sc_dev),
"i82543-cfg2");
if (pn != NULL) {
KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
cfg2 = (uint16_t) prop_number_integer_value(pn);
} else {
if (wm_read_eeprom(sc, EEPROM_OFF_CFG2, 1, &cfg2)) {
aprint_error("%s: unable to read CFG2\n",
sc->sc_dev.dv_xname);
return;
}
}
if (sc->sc_type >= WM_T_82544) {
pn = prop_dictionary_get(device_properties(&sc->sc_dev),
"i82543-swdpin");
if (pn != NULL) {
KASSERT(prop_object_type(pn) == PROP_TYPE_NUMBER);
swdpin = (uint16_t) prop_number_integer_value(pn);
} else {
if (wm_read_eeprom(sc, EEPROM_OFF_SWDPIN, 1, &swdpin)) {
aprint_error("%s: unable to read SWDPIN\n",
sc->sc_dev.dv_xname);
return;
}
}
}
if (cfg1 & EEPROM_CFG1_ILOS)
sc->sc_ctrl |= CTRL_ILOS;
if (sc->sc_type >= WM_T_82544) {
sc->sc_ctrl |=
((swdpin >> EEPROM_SWDPIN_SWDPIO_SHIFT) & 0xf) <<
CTRL_SWDPIO_SHIFT;
sc->sc_ctrl |=
((swdpin >> EEPROM_SWDPIN_SWDPIN_SHIFT) & 0xf) <<
CTRL_SWDPINS_SHIFT;
} else {
sc->sc_ctrl |=
((cfg1 >> EEPROM_CFG1_SWDPIO_SHIFT) & 0xf) <<
CTRL_SWDPIO_SHIFT;
}
#if 0
if (sc->sc_type >= WM_T_82544) {
if (cfg1 & EEPROM_CFG1_IPS0)
sc->sc_ctrl_ext |= CTRL_EXT_IPS;
if (cfg1 & EEPROM_CFG1_IPS1)
sc->sc_ctrl_ext |= CTRL_EXT_IPS1;
sc->sc_ctrl_ext |=
((swdpin >> (EEPROM_SWDPIN_SWDPIO_SHIFT + 4)) & 0xd) <<
CTRL_EXT_SWDPIO_SHIFT;
sc->sc_ctrl_ext |=
((swdpin >> (EEPROM_SWDPIN_SWDPIN_SHIFT + 4)) & 0xd) <<
CTRL_EXT_SWDPINS_SHIFT;
} else {
sc->sc_ctrl_ext |=
((cfg2 >> EEPROM_CFG2_SWDPIO_SHIFT) & 0xf) <<
CTRL_EXT_SWDPIO_SHIFT;
}
#endif
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
#if 0
CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
#endif
/*
* Set up some register offsets that are different between
* the i82542 and the i82543 and later chips.
*/
if (sc->sc_type < WM_T_82543) {
sc->sc_rdt_reg = WMREG_OLD_RDT0;
sc->sc_tdt_reg = WMREG_OLD_TDT;
} else {
sc->sc_rdt_reg = WMREG_RDT;
sc->sc_tdt_reg = WMREG_TDT;
}
/*
* Determine if we're TBI or GMII mode, and initialize the
* media structures accordingly.
*/
if (sc->sc_type < WM_T_82543 ||
(CSR_READ(sc, WMREG_STATUS) & STATUS_TBIMODE) != 0) {
if (wmp->wmp_flags & WMP_F_1000T)
aprint_error("%s: WARNING: TBIMODE set on 1000BASE-T "
"product!\n", sc->sc_dev.dv_xname);
wm_tbi_mediainit(sc);
} else {
if (wmp->wmp_flags & WMP_F_1000X)
aprint_error("%s: WARNING: TBIMODE clear on 1000BASE-X "
"product!\n", sc->sc_dev.dv_xname);
wm_gmii_mediainit(sc);
}
ifp = &sc->sc_ethercom.ec_if;
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = wm_ioctl;
ifp->if_start = wm_start;
ifp->if_watchdog = wm_watchdog;
ifp->if_init = wm_init;
ifp->if_stop = wm_stop;
IFQ_SET_MAXLEN(&ifp->if_snd, max(WM_IFQUEUELEN, IFQ_MAXLEN));
IFQ_SET_READY(&ifp->if_snd);
if (sc->sc_type != WM_T_82573)
sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
/*
* If we're a i82543 or greater, we can support VLANs.
*/
if (sc->sc_type >= WM_T_82543)
sc->sc_ethercom.ec_capabilities |=
ETHERCAP_VLAN_MTU /* XXXJRT | ETHERCAP_VLAN_HWTAGGING */;
/*
* We can perform TCPv4 and UDPv4 checkums in-bound. Only
* on i82543 and later.
*/
if (sc->sc_type >= WM_T_82543) {
ifp->if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
IFCAP_CSUM_TCPv6_Tx |
IFCAP_CSUM_UDPv6_Tx;
}
/*
* XXXyamt: i'm not sure which chips support RXCSUM_IPV6OFL.
*
* 82541GI (8086:1076) ... no
* 82572EI (8086:10b9) ... yes
*/
if (sc->sc_type >= WM_T_82571) {
ifp->if_capabilities |=
IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
}
/*
* If we're a i82544 or greater (except i82547), we can do
* TCP segmentation offload.
*/
if (sc->sc_type >= WM_T_82544 && sc->sc_type != WM_T_82547) {
ifp->if_capabilities |= IFCAP_TSOv4;
}
if (sc->sc_type >= WM_T_82571) {
ifp->if_capabilities |= IFCAP_TSOv6;
}
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp, enaddr);
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
#ifdef WM_EVENT_COUNTERS
/* Attach event counters. */
evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txsstall");
evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txdstall");
evcnt_attach_dynamic(&sc->sc_ev_txfifo_stall, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txfifo_stall");
evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "txdw");
evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "txqe");
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "rxintr");
evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
NULL, sc->sc_dev.dv_xname, "linkintr");
evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rxipsum");
evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rxtusum");
evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txipsum");
evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txtusum");
evcnt_attach_dynamic(&sc->sc_ev_txtusum6, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txtusum6");
evcnt_attach_dynamic(&sc->sc_ev_txtso, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txtso");
evcnt_attach_dynamic(&sc->sc_ev_txtso6, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txtso6");
evcnt_attach_dynamic(&sc->sc_ev_txtsopain, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txtsopain");
for (i = 0; i < WM_NTXSEGS; i++) {
sprintf(wm_txseg_evcnt_names[i], "txseg%d", i);
evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, wm_txseg_evcnt_names[i]);
}
evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "txdrop");
evcnt_attach_dynamic(&sc->sc_ev_tu, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "tu");
evcnt_attach_dynamic(&sc->sc_ev_tx_xoff, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "tx_xoff");
evcnt_attach_dynamic(&sc->sc_ev_tx_xon, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "tx_xon");
evcnt_attach_dynamic(&sc->sc_ev_rx_xoff, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rx_xoff");
evcnt_attach_dynamic(&sc->sc_ev_rx_xon, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rx_xon");
evcnt_attach_dynamic(&sc->sc_ev_rx_macctl, EVCNT_TYPE_MISC,
NULL, sc->sc_dev.dv_xname, "rx_macctl");
#endif /* WM_EVENT_COUNTERS */
/*
* Make sure the interface is shutdown during reboot.
*/
sc->sc_sdhook = shutdownhook_establish(wm_shutdown, sc);
if (sc->sc_sdhook == NULL)
aprint_error("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
wm_powerhook, sc);
if (sc->sc_powerhook == NULL)
aprint_error("%s: can't establish powerhook\n",
sc->sc_dev.dv_xname);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < WM_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].rxs_dmamap);
}
fail_4:
for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
cdata_size);
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
/*
* wm_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
static void
wm_shutdown(void *arg)
{
struct wm_softc *sc = arg;
wm_stop(&sc->sc_ethercom.ec_if, 1);
}
static void
wm_powerhook(int why, void *arg)
{
struct wm_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pci_chipset_tag_t pc = sc->sc_pc;
pcitag_t tag = sc->sc_pcitag;
switch (why) {
case PWR_SOFTSUSPEND:
wm_shutdown(sc);
break;
case PWR_SOFTRESUME:
ifp->if_flags &= ~IFF_RUNNING;
wm_init(ifp);
if (ifp->if_flags & IFF_RUNNING)
wm_start(ifp);
break;
case PWR_SUSPEND:
pci_conf_capture(pc, tag, &sc->sc_pciconf);
break;
case PWR_RESUME:
pci_conf_restore(pc, tag, &sc->sc_pciconf);
break;
}
return;
}
/*
* wm_tx_offload:
*
* Set up TCP/IP checksumming parameters for the
* specified packet.
*/
static int
wm_tx_offload(struct wm_softc *sc, struct wm_txsoft *txs, uint32_t *cmdp,
uint8_t *fieldsp)
{
struct mbuf *m0 = txs->txs_mbuf;
struct livengood_tcpip_ctxdesc *t;
uint32_t ipcs, tucs, cmd, cmdlen, seg;
uint32_t ipcse;
struct ether_header *eh;
int offset, iphl;
uint8_t fields;
/*
* XXX It would be nice if the mbuf pkthdr had offset
* fields for the protocol headers.
*/
eh = mtod(m0, struct ether_header *);
switch (htons(eh->ether_type)) {
case ETHERTYPE_IP:
case ETHERTYPE_IPV6:
offset = ETHER_HDR_LEN;
break;
case ETHERTYPE_VLAN:
offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
break;
default:
/*
* Don't support this protocol or encapsulation.
*/
*fieldsp = 0;
*cmdp = 0;
return (0);
}
if ((m0->m_pkthdr.csum_flags &
(M_CSUM_TSOv4|M_CSUM_UDPv4|M_CSUM_TCPv4)) != 0) {
iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
} else {
iphl = M_CSUM_DATA_IPv6_HL(m0->m_pkthdr.csum_data);
}
ipcse = offset + iphl - 1;
cmd = WTX_CMD_DEXT | WTX_DTYP_D;
cmdlen = WTX_CMD_DEXT | WTX_DTYP_C | WTX_CMD_IDE;
seg = 0;
fields = 0;
if ((m0->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
int hlen = offset + iphl;
bool v4 = (m0->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
if (__predict_false(m0->m_len <
(hlen + sizeof(struct tcphdr)))) {
/*
* TCP/IP headers are not in the first mbuf; we need
* to do this the slow and painful way. Let's just
* hope this doesn't happen very often.
*/
struct tcphdr th;
WM_EVCNT_INCR(&sc->sc_ev_txtsopain);
m_copydata(m0, hlen, sizeof(th), &th);
if (v4) {
struct ip ip;
m_copydata(m0, offset, sizeof(ip), &ip);
ip.ip_len = 0;
m_copyback(m0,
offset + offsetof(struct ip, ip_len),
sizeof(ip.ip_len), &ip.ip_len);
th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
ip.ip_dst.s_addr, htons(IPPROTO_TCP));
} else {
struct ip6_hdr ip6;
m_copydata(m0, offset, sizeof(ip6), &ip6);
ip6.ip6_plen = 0;
m_copyback(m0,
offset + offsetof(struct ip6_hdr, ip6_plen),
sizeof(ip6.ip6_plen), &ip6.ip6_plen);
th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
&ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
}
m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
sizeof(th.th_sum), &th.th_sum);
hlen += th.th_off << 2;
} else {
/*
* TCP/IP headers are in the first mbuf; we can do
* this the easy way.
*/
struct tcphdr *th;
if (v4) {
struct ip *ip =
(void *)(mtod(m0, char *) + offset);
th = (void *)(mtod(m0, char *) + hlen);
ip->ip_len = 0;
th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
} else {
struct ip6_hdr *ip6 =
(void *)(mtod(m0, char *) + offset);
th = (void *)(mtod(m0, char *) + hlen);
ip6->ip6_plen = 0;
th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
&ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
}
hlen += th->th_off << 2;
}
if (v4) {
WM_EVCNT_INCR(&sc->sc_ev_txtso);
cmdlen |= WTX_TCPIP_CMD_IP;
} else {
WM_EVCNT_INCR(&sc->sc_ev_txtso6);
ipcse = 0;
}
cmd |= WTX_TCPIP_CMD_TSE;
cmdlen |= WTX_TCPIP_CMD_TSE |
WTX_TCPIP_CMD_TCP | (m0->m_pkthdr.len - hlen);
seg = WTX_TCPIP_SEG_HDRLEN(hlen) |
WTX_TCPIP_SEG_MSS(m0->m_pkthdr.segsz);
}
/*
* NOTE: Even if we're not using the IP or TCP/UDP checksum
* offload feature, if we load the context descriptor, we
* MUST provide valid values for IPCSS and TUCSS fields.
*/
ipcs = WTX_TCPIP_IPCSS(offset) |
WTX_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
WTX_TCPIP_IPCSE(ipcse);
if (m0->m_pkthdr.csum_flags & (M_CSUM_IPv4|M_CSUM_TSOv4)) {
WM_EVCNT_INCR(&sc->sc_ev_txipsum);
fields |= WTX_IXSM;
}
offset += iphl;
if (m0->m_pkthdr.csum_flags &
(M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TSOv4)) {
WM_EVCNT_INCR(&sc->sc_ev_txtusum);
fields |= WTX_TXSM;
tucs = WTX_TCPIP_TUCSS(offset) |
WTX_TCPIP_TUCSO(offset +
M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
WTX_TCPIP_TUCSE(0) /* rest of packet */;
} else if ((m0->m_pkthdr.csum_flags &
(M_CSUM_TCPv6|M_CSUM_UDPv6|M_CSUM_TSOv6)) != 0) {
WM_EVCNT_INCR(&sc->sc_ev_txtusum6);
fields |= WTX_TXSM;
tucs = WTX_TCPIP_TUCSS(offset) |
WTX_TCPIP_TUCSO(offset +
M_CSUM_DATA_IPv6_OFFSET(m0->m_pkthdr.csum_data)) |
WTX_TCPIP_TUCSE(0) /* rest of packet */;
} else {
/* Just initialize it to a valid TCP context. */
tucs = WTX_TCPIP_TUCSS(offset) |
WTX_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
WTX_TCPIP_TUCSE(0) /* rest of packet */;
}
/* Fill in the context descriptor. */
t = (struct livengood_tcpip_ctxdesc *)
&sc->sc_txdescs[sc->sc_txnext];
t->tcpip_ipcs = htole32(ipcs);
t->tcpip_tucs = htole32(tucs);
t->tcpip_cmdlen = htole32(cmdlen);
t->tcpip_seg = htole32(seg);
WM_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
sc->sc_txnext = WM_NEXTTX(sc, sc->sc_txnext);
txs->txs_ndesc++;
*cmdp = cmd;
*fieldsp = fields;
return (0);
}
static void
wm_dump_mbuf_chain(struct wm_softc *sc, struct mbuf *m0)
{
struct mbuf *m;
int i;
log(LOG_DEBUG, "%s: mbuf chain:\n", sc->sc_dev.dv_xname);
for (m = m0, i = 0; m != NULL; m = m->m_next, i++)
log(LOG_DEBUG, "%s:\tm_data = %p, m_len = %d, "
"m_flags = 0x%08x\n", sc->sc_dev.dv_xname,
m->m_data, m->m_len, m->m_flags);
log(LOG_DEBUG, "%s:\t%d mbuf%s in chain\n", sc->sc_dev.dv_xname,
i, i == 1 ? "" : "s");
}
/*
* wm_82547_txfifo_stall:
*
* Callout used to wait for the 82547 Tx FIFO to drain,
* reset the FIFO pointers, and restart packet transmission.
*/
static void
wm_82547_txfifo_stall(void *arg)
{
struct wm_softc *sc = arg;
int s;
s = splnet();
if (sc->sc_txfifo_stall) {
if (CSR_READ(sc, WMREG_TDT) == CSR_READ(sc, WMREG_TDH) &&
CSR_READ(sc, WMREG_TDFT) == CSR_READ(sc, WMREG_TDFH) &&
CSR_READ(sc, WMREG_TDFTS) == CSR_READ(sc, WMREG_TDFHS)) {
/*
* Packets have drained. Stop transmitter, reset
* FIFO pointers, restart transmitter, and kick
* the packet queue.
*/
uint32_t tctl = CSR_READ(sc, WMREG_TCTL);
CSR_WRITE(sc, WMREG_TCTL, tctl & ~TCTL_EN);
CSR_WRITE(sc, WMREG_TDFT, sc->sc_txfifo_addr);
CSR_WRITE(sc, WMREG_TDFH, sc->sc_txfifo_addr);
CSR_WRITE(sc, WMREG_TDFTS, sc->sc_txfifo_addr);
CSR_WRITE(sc, WMREG_TDFHS, sc->sc_txfifo_addr);
CSR_WRITE(sc, WMREG_TCTL, tctl);
CSR_WRITE_FLUSH(sc);
sc->sc_txfifo_head = 0;
sc->sc_txfifo_stall = 0;
wm_start(&sc->sc_ethercom.ec_if);
} else {
/*
* Still waiting for packets to drain; try again in
* another tick.
*/
callout_schedule(&sc->sc_txfifo_ch, 1);
}
}
splx(s);
}
/*
* wm_82547_txfifo_bugchk:
*
* Check for bug condition in the 82547 Tx FIFO. We need to
* prevent enqueueing a packet that would wrap around the end
* if the Tx FIFO ring buffer, otherwise the chip will croak.
*
* We do this by checking the amount of space before the end
* of the Tx FIFO buffer. If the packet will not fit, we "stall"
* the Tx FIFO, wait for all remaining packets to drain, reset
* the internal FIFO pointers to the beginning, and restart
* transmission on the interface.
*/
#define WM_FIFO_HDR 0x10
#define WM_82547_PAD_LEN 0x3e0
static int
wm_82547_txfifo_bugchk(struct wm_softc *sc, struct mbuf *m0)
{
int space = sc->sc_txfifo_size - sc->sc_txfifo_head;
int len = roundup(m0->m_pkthdr.len + WM_FIFO_HDR, WM_FIFO_HDR);
/* Just return if already stalled. */
if (sc->sc_txfifo_stall)
return (1);
if (sc->sc_mii.mii_media_active & IFM_FDX) {
/* Stall only occurs in half-duplex mode. */
goto send_packet;
}
if (len >= WM_82547_PAD_LEN + space) {
sc->sc_txfifo_stall = 1;
callout_schedule(&sc->sc_txfifo_ch, 1);
return (1);
}
send_packet:
sc->sc_txfifo_head += len;
if (sc->sc_txfifo_head >= sc->sc_txfifo_size)
sc->sc_txfifo_head -= sc->sc_txfifo_size;
return (0);
}
/*
* wm_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
static void
wm_start(struct ifnet *ifp)
{
struct wm_softc *sc = ifp->if_softc;
struct mbuf *m0;
#if 0 /* XXXJRT */
struct m_tag *mtag;
#endif
struct wm_txsoft *txs;
bus_dmamap_t dmamap;
int error, nexttx, lasttx = -1, ofree, seg, segs_needed, use_tso;
bus_addr_t curaddr;
bus_size_t seglen, curlen;
uint32_t cksumcmd;
uint8_t cksumfields;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of free descriptors.
*/
ofree = sc->sc_txfree;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
/* Grab a packet off the queue. */
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
DPRINTF(WM_DEBUG_TX,
("%s: TX: have packet to transmit: %p\n",
sc->sc_dev.dv_xname, m0));
/* Get a work queue entry. */
if (sc->sc_txsfree < WM_TXQUEUE_GC(sc)) {
wm_txintr(sc);
if (sc->sc_txsfree == 0) {
DPRINTF(WM_DEBUG_TX,
("%s: TX: no free job descriptors\n",
sc->sc_dev.dv_xname));
WM_EVCNT_INCR(&sc->sc_ev_txsstall);
break;
}
}
txs = &sc->sc_txsoft[sc->sc_txsnext];
dmamap = txs->txs_dmamap;
use_tso = (m0->m_pkthdr.csum_flags &
(M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0;
/*
* So says the Linux driver:
* The controller does a simple calculation to make sure
* there is enough room in the FIFO before initiating the
* DMA for each buffer. The calc is:
* 4 = ceil(buffer len / MSS)
* To make sure we don't overrun the FIFO, adjust the max
* buffer len if the MSS drops.
*/
dmamap->dm_maxsegsz =
(use_tso && (m0->m_pkthdr.segsz << 2) < WTX_MAX_LEN)
? m0->m_pkthdr.segsz << 2
: WTX_MAX_LEN;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the allotted number of segments, or we
* were short on resources. For the too-many-segments
* case, we simply report an error and drop the packet,
* since we can't sanely copy a jumbo packet to a single
* buffer.
*/
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
if (error == EFBIG) {
WM_EVCNT_INCR(&sc->sc_ev_txdrop);
log(LOG_ERR, "%s: Tx packet consumes too many "
"DMA segments, dropping...\n",
sc->sc_dev.dv_xname);
IFQ_DEQUEUE(&ifp->if_snd, m0);
wm_dump_mbuf_chain(sc, m0);
m_freem(m0);
continue;
}
/*
* Short on resources, just stop for now.
*/
DPRINTF(WM_DEBUG_TX,
("%s: TX: dmamap load failed: %d\n",
sc->sc_dev.dv_xname, error));
break;
}
segs_needed = dmamap->dm_nsegs;
if (use_tso) {
/* For sentinel descriptor; see below. */
segs_needed++;
}
/*
* Ensure we have enough descriptors free to describe
* the packet. Note, we always reserve one descriptor
* at the end of the ring due to the semantics of the
* TDT register, plus one more in the event we need
* to load offload context.
*/
if (segs_needed > sc->sc_txfree - 2) {
/*
* Not enough free descriptors to transmit this
* packet. We haven't committed anything yet,
* so just unload the DMA map, put the packet
* pack on the queue, and punt. Notify the upper
* layer that there are no more slots left.
*/
DPRINTF(WM_DEBUG_TX,
("%s: TX: need %d (%d) descriptors, have %d\n",
sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed,
sc->sc_txfree - 1));
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, dmamap);
WM_EVCNT_INCR(&sc->sc_ev_txdstall);
break;
}
/*
* Check for 82547 Tx FIFO bug. We need to do this
* once we know we can transmit the packet, since we
* do some internal FIFO space accounting here.
*/
if (sc->sc_type == WM_T_82547 &&
wm_82547_txfifo_bugchk(sc, m0)) {
DPRINTF(WM_DEBUG_TX,
("%s: TX: 82547 Tx FIFO bug detected\n",
sc->sc_dev.dv_xname));
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, dmamap);
WM_EVCNT_INCR(&sc->sc_ev_txfifo_stall);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
DPRINTF(WM_DEBUG_TX,
("%s: TX: packet has %d (%d) DMA segments\n",
sc->sc_dev.dv_xname, dmamap->dm_nsegs, segs_needed));
WM_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
/*
* Store a pointer to the packet so that we can free it
* later.
*
* Initially, we consider the number of descriptors the
* packet uses the number of DMA segments. This may be
* incremented by 1 if we do checksum offload (a descriptor
* is used to set the checksum context).
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_ndesc = segs_needed;
/* Set up offload parameters for this packet. */
if (m0->m_pkthdr.csum_flags &
(M_CSUM_TSOv4|M_CSUM_TSOv6|
M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4|
M_CSUM_TCPv6|M_CSUM_UDPv6)) {
if (wm_tx_offload(sc, txs, &cksumcmd,
&cksumfields) != 0) {
/* Error message already displayed. */
bus_dmamap_unload(sc->sc_dmat, dmamap);
continue;
}
} else {
cksumcmd = 0;
cksumfields = 0;
}
cksumcmd |= WTX_CMD_IDE | WTX_CMD_IFCS;
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Initialize the transmit descriptor.
*/
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs; seg++) {
for (seglen = dmamap->dm_segs[seg].ds_len,
curaddr = dmamap->dm_segs[seg].ds_addr;
seglen != 0;
curaddr += curlen, seglen -= curlen,
nexttx = WM_NEXTTX(sc, nexttx)) {
curlen = seglen;
/*
* So says the Linux driver:
* Work around for premature descriptor
* write-backs in TSO mode. Append a
* 4-byte sentinel descriptor.
*/
if (use_tso &&
seg == dmamap->dm_nsegs - 1 &&
curlen > 8)
curlen -= 4;
wm_set_dma_addr(
&sc->sc_txdescs[nexttx].wtx_addr,
curaddr);
sc->sc_txdescs[nexttx].wtx_cmdlen =
htole32(cksumcmd | curlen);
sc->sc_txdescs[nexttx].wtx_fields.wtxu_status =
0;
sc->sc_txdescs[nexttx].wtx_fields.wtxu_options =
cksumfields;
sc->sc_txdescs[nexttx].wtx_fields.wtxu_vlan = 0;
lasttx = nexttx;
DPRINTF(WM_DEBUG_TX,
("%s: TX: desc %d: low 0x%08lx, "
"len 0x%04x\n",
sc->sc_dev.dv_xname, nexttx,
curaddr & 0xffffffffUL, (unsigned)curlen));
}
}
KASSERT(lasttx != -1);
/*
* Set up the command byte on the last descriptor of
* the packet. If we're in the interrupt delay window,
* delay the interrupt.
*/
sc->sc_txdescs[lasttx].wtx_cmdlen |=
htole32(WTX_CMD_EOP | WTX_CMD_RS);
#if 0 /* XXXJRT */
/*
* If VLANs are enabled and the packet has a VLAN tag, set
* up the descriptor to encapsulate the packet for us.
*
* This is only valid on the last descriptor of the packet.
*/
if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL) {
sc->sc_txdescs[lasttx].wtx_cmdlen |=
htole32(WTX_CMD_VLE);
sc->sc_txdescs[lasttx].wtx_fields.wtxu_vlan
= htole16(VLAN_TAG_VALUE(mtag) & 0xffff);
}
#endif /* XXXJRT */
txs->txs_lastdesc = lasttx;
DPRINTF(WM_DEBUG_TX,
("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
lasttx, le32toh(sc->sc_txdescs[lasttx].wtx_cmdlen)));
/* Sync the descriptors we're using. */
WM_CDTXSYNC(sc, sc->sc_txnext, txs->txs_ndesc,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Give the packet to the chip. */
CSR_WRITE(sc, sc->sc_tdt_reg, nexttx);
DPRINTF(WM_DEBUG_TX,
("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
DPRINTF(WM_DEBUG_TX,
("%s: TX: finished transmitting packet, job %d\n",
sc->sc_dev.dv_xname, sc->sc_txsnext));
/* Advance the tx pointer. */
sc->sc_txfree -= txs->txs_ndesc;
sc->sc_txnext = nexttx;
sc->sc_txsfree--;
sc->sc_txsnext = WM_NEXTTXS(sc, sc->sc_txsnext);
#if NBPFILTER > 0
/* Pass the packet to any BPF listeners. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif /* NBPFILTER > 0 */
}
if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
/* No more slots; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txfree != ofree) {
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* wm_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
static void
wm_watchdog(struct ifnet *ifp)
{
struct wm_softc *sc = ifp->if_softc;
/*
* Since we're using delayed interrupts, sweep up
* before we report an error.
*/
wm_txintr(sc);
if (sc->sc_txfree != WM_NTXDESC(sc)) {
log(LOG_ERR,
"%s: device timeout (txfree %d txsfree %d txnext %d)\n",
sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
sc->sc_txnext);
ifp->if_oerrors++;
/* Reset the interface. */
(void) wm_init(ifp);
}
/* Try to get more packets going. */
wm_start(ifp);
}
/*
* wm_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
static int
wm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct wm_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
/* Flow control requires full-duplex mode. */
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
(ifr->ifr_media & IFM_FDX) == 0)
ifr->ifr_media &= ~IFM_ETH_FMASK;
if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
/* We can do both TXPAUSE and RXPAUSE. */
ifr->ifr_media |=
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
}
sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
}
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
if (ifp->if_flags & IFF_RUNNING)
wm_set_filter(sc);
error = 0;
}
break;
}
/* Try to get more packets going. */
wm_start(ifp);
splx(s);
return (error);
}
/*
* wm_intr:
*
* Interrupt service routine.
*/
static int
wm_intr(void *arg)
{
struct wm_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t icr;
int handled = 0;
while (1 /* CONSTCOND */) {
icr = CSR_READ(sc, WMREG_ICR);
if ((icr & sc->sc_icr) == 0)
break;
#if 0 /*NRND > 0*/
if (RND_ENABLED(&sc->rnd_source))
rnd_add_uint32(&sc->rnd_source, icr);
#endif
handled = 1;
#if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
if (icr & (ICR_RXDMT0|ICR_RXT0)) {
DPRINTF(WM_DEBUG_RX,
("%s: RX: got Rx intr 0x%08x\n",
sc->sc_dev.dv_xname,
icr & (ICR_RXDMT0|ICR_RXT0)));
WM_EVCNT_INCR(&sc->sc_ev_rxintr);
}
#endif
wm_rxintr(sc);
#if defined(WM_DEBUG) || defined(WM_EVENT_COUNTERS)
if (icr & ICR_TXDW) {
DPRINTF(WM_DEBUG_TX,
("%s: TX: got TXDW interrupt\n",
sc->sc_dev.dv_xname));
WM_EVCNT_INCR(&sc->sc_ev_txdw);
}
#endif
wm_txintr(sc);
if (icr & (ICR_LSC|ICR_RXSEQ|ICR_RXCFG)) {
WM_EVCNT_INCR(&sc->sc_ev_linkintr);
wm_linkintr(sc, icr);
}
if (icr & ICR_RXO) {
ifp->if_ierrors++;
#if defined(WM_DEBUG)
log(LOG_WARNING, "%s: Receive overrun\n",
sc->sc_dev.dv_xname);
#endif /* defined(WM_DEBUG) */
}
}
if (handled) {
/* Try to get more packets going. */
wm_start(ifp);
}
return (handled);
}
/*
* wm_txintr:
*
* Helper; handle transmit interrupts.
*/
static void
wm_txintr(struct wm_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct wm_txsoft *txs;
uint8_t status;
int i;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through the Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (i = sc->sc_txsdirty; sc->sc_txsfree != WM_TXQUEUELEN(sc);
i = WM_NEXTTXS(sc, i), sc->sc_txsfree++) {
txs = &sc->sc_txsoft[i];
DPRINTF(WM_DEBUG_TX,
("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
WM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status =
sc->sc_txdescs[txs->txs_lastdesc].wtx_fields.wtxu_status;
if ((status & WTX_ST_DD) == 0) {
WM_CDTXSYNC(sc, txs->txs_lastdesc, 1,
BUS_DMASYNC_PREREAD);
break;
}
DPRINTF(WM_DEBUG_TX,
("%s: TX: job %d done: descs %d..%d\n",
sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
txs->txs_lastdesc));
/*
* XXX We should probably be using the statistics
* XXX registers, but I don't know if they exist
* XXX on chips before the i82544.
*/
#ifdef WM_EVENT_COUNTERS
if (status & WTX_ST_TU)
WM_EVCNT_INCR(&sc->sc_ev_tu);
#endif /* WM_EVENT_COUNTERS */
if (status & (WTX_ST_EC|WTX_ST_LC)) {
ifp->if_oerrors++;
if (status & WTX_ST_LC)
log(LOG_WARNING, "%s: late collision\n",
sc->sc_dev.dv_xname);
else if (status & WTX_ST_EC) {
ifp->if_collisions += 16;
log(LOG_WARNING, "%s: excessive collisions\n",
sc->sc_dev.dv_xname);
}
} else
ifp->if_opackets++;
sc->sc_txfree += txs->txs_ndesc;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
/* Update the dirty transmit buffer pointer. */
sc->sc_txsdirty = i;
DPRINTF(WM_DEBUG_TX,
("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (sc->sc_txsfree == WM_TXQUEUELEN(sc))
ifp->if_timer = 0;
}
/*
* wm_rxintr:
*
* Helper; handle receive interrupts.
*/
static void
wm_rxintr(struct wm_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct wm_rxsoft *rxs;
struct mbuf *m;
int i, len;
uint8_t status, errors;
for (i = sc->sc_rxptr;; i = WM_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
DPRINTF(WM_DEBUG_RX,
("%s: RX: checking descriptor %d\n",
sc->sc_dev.dv_xname, i));
WM_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = sc->sc_rxdescs[i].wrx_status;
errors = sc->sc_rxdescs[i].wrx_errors;
len = le16toh(sc->sc_rxdescs[i].wrx_len);
if ((status & WRX_ST_DD) == 0) {
/*
* We have processed all of the receive descriptors.
*/
WM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
break;
}
if (__predict_false(sc->sc_rxdiscard)) {
DPRINTF(WM_DEBUG_RX,
("%s: RX: discarding contents of descriptor %d\n",
sc->sc_dev.dv_xname, i));
WM_INIT_RXDESC(sc, i);
if (status & WRX_ST_EOP) {
/* Reset our state. */
DPRINTF(WM_DEBUG_RX,
("%s: RX: resetting rxdiscard -> 0\n",
sc->sc_dev.dv_xname));
sc->sc_rxdiscard = 0;
}
continue;
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
m = rxs->rxs_mbuf;
/*
* Add a new receive buffer to the ring, unless of
* course the length is zero. Treat the latter as a
* failed mapping.
*/
if ((len == 0) || (wm_add_rxbuf(sc, i) != 0)) {
/*
* Failed, throw away what we've done so
* far, and discard the rest of the packet.
*/
ifp->if_ierrors++;
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
WM_INIT_RXDESC(sc, i);
if ((status & WRX_ST_EOP) == 0)
sc->sc_rxdiscard = 1;
if (sc->sc_rxhead != NULL)
m_freem(sc->sc_rxhead);
WM_RXCHAIN_RESET(sc);
DPRINTF(WM_DEBUG_RX,
("%s: RX: Rx buffer allocation failed, "
"dropping packet%s\n", sc->sc_dev.dv_xname,
sc->sc_rxdiscard ? " (discard)" : ""));
continue;
}
WM_RXCHAIN_LINK(sc, m);
m->m_len = len;
DPRINTF(WM_DEBUG_RX,
("%s: RX: buffer at %p len %d\n",
sc->sc_dev.dv_xname, m->m_data, len));
/*
* If this is not the end of the packet, keep
* looking.
*/
if ((status & WRX_ST_EOP) == 0) {
sc->sc_rxlen += len;
DPRINTF(WM_DEBUG_RX,
("%s: RX: not yet EOP, rxlen -> %d\n",
sc->sc_dev.dv_xname, sc->sc_rxlen));
continue;
}
/*
* Okay, we have the entire packet now. The chip is
* configured to include the FCS (not all chips can
* be configured to strip it), so we need to trim it.
*/
m->m_len -= ETHER_CRC_LEN;
*sc->sc_rxtailp = NULL;
len = m->m_len + sc->sc_rxlen;
m = sc->sc_rxhead;
WM_RXCHAIN_RESET(sc);
DPRINTF(WM_DEBUG_RX,
("%s: RX: have entire packet, len -> %d\n",
sc->sc_dev.dv_xname, len));
/*
* If an error occurred, update stats and drop the packet.
*/
if (errors &
(WRX_ER_CE|WRX_ER_SE|WRX_ER_SEQ|WRX_ER_CXE|WRX_ER_RXE)) {
ifp->if_ierrors++;
if (errors & WRX_ER_SE)
log(LOG_WARNING, "%s: symbol error\n",
sc->sc_dev.dv_xname);
else if (errors & WRX_ER_SEQ)
log(LOG_WARNING, "%s: receive sequence error\n",
sc->sc_dev.dv_xname);
else if (errors & WRX_ER_CE)
log(LOG_WARNING, "%s: CRC error\n",
sc->sc_dev.dv_xname);
m_freem(m);
continue;
}
/*
* No errors. Receive the packet.
*/
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
#if 0 /* XXXJRT */
/*
* If VLANs are enabled, VLAN packets have been unwrapped
* for us. Associate the tag with the packet.
*/
if ((status & WRX_ST_VP) != 0) {
VLAN_INPUT_TAG(ifp, m,
le16toh(sc->sc_rxdescs[i].wrx_special,
continue);
}
#endif /* XXXJRT */
/*
* Set up checksum info for this packet.
*/
if ((status & WRX_ST_IXSM) == 0) {
if (status & WRX_ST_IPCS) {
WM_EVCNT_INCR(&sc->sc_ev_rxipsum);
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if (errors & WRX_ER_IPE)
m->m_pkthdr.csum_flags |=
M_CSUM_IPv4_BAD;
}
if (status & WRX_ST_TCPCS) {
/*
* Note: we don't know if this was TCP or UDP,
* so we just set both bits, and expect the
* upper layers to deal.
*/
WM_EVCNT_INCR(&sc->sc_ev_rxtusum);
m->m_pkthdr.csum_flags |=
M_CSUM_TCPv4 | M_CSUM_UDPv4 |
M_CSUM_TCPv6 | M_CSUM_UDPv6;
if (errors & WRX_ER_TCPE)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
}
}
ifp->if_ipackets++;
#if NBPFILTER > 0
/* Pass this up to any BPF listeners. */
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif /* NBPFILTER > 0 */
/* Pass it on. */
(*ifp->if_input)(ifp, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
DPRINTF(WM_DEBUG_RX,
("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
}
/*
* wm_linkintr:
*
* Helper; handle link interrupts.
*/
static void
wm_linkintr(struct wm_softc *sc, uint32_t icr)
{
uint32_t status;
/*
* If we get a link status interrupt on a 1000BASE-T
* device, just fall into the normal MII tick path.
*/
if (sc->sc_flags & WM_F_HAS_MII) {
if (icr & ICR_LSC) {
DPRINTF(WM_DEBUG_LINK,
("%s: LINK: LSC -> mii_tick\n",
sc->sc_dev.dv_xname));
mii_tick(&sc->sc_mii);
} else if (icr & ICR_RXSEQ) {
DPRINTF(WM_DEBUG_LINK,
("%s: LINK Receive sequence error\n",
sc->sc_dev.dv_xname));
}
return;
}
/*
* If we are now receiving /C/, check for link again in
* a couple of link clock ticks.
*/
if (icr & ICR_RXCFG) {
DPRINTF(WM_DEBUG_LINK, ("%s: LINK: receiving /C/\n",
sc->sc_dev.dv_xname));
sc->sc_tbi_anstate = 2;
}
if (icr & ICR_LSC) {
status = CSR_READ(sc, WMREG_STATUS);
if (status & STATUS_LU) {
DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> up %s\n",
sc->sc_dev.dv_xname,
(status & STATUS_FD) ? "FDX" : "HDX"));
sc->sc_tctl &= ~TCTL_COLD(0x3ff);
sc->sc_fcrtl &= ~FCRTL_XONE;
if (status & STATUS_FD)
sc->sc_tctl |=
TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
else
sc->sc_tctl |=
TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
sc->sc_fcrtl |= FCRTL_XONE;
CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
WMREG_OLD_FCRTL : WMREG_FCRTL,
sc->sc_fcrtl);
sc->sc_tbi_linkup = 1;
} else {
DPRINTF(WM_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
sc->sc_dev.dv_xname));
sc->sc_tbi_linkup = 0;
}
sc->sc_tbi_anstate = 2;
wm_tbi_set_linkled(sc);
} else if (icr & ICR_RXSEQ) {
DPRINTF(WM_DEBUG_LINK,
("%s: LINK: Receive sequence error\n",
sc->sc_dev.dv_xname));
}
}
/*
* wm_tick:
*
* One second timer, used to check link status, sweep up
* completed transmit jobs, etc.
*/
static void
wm_tick(void *arg)
{
struct wm_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int s;
s = splnet();
if (sc->sc_type >= WM_T_82542_2_1) {
WM_EVCNT_ADD(&sc->sc_ev_rx_xon, CSR_READ(sc, WMREG_XONRXC));
WM_EVCNT_ADD(&sc->sc_ev_tx_xon, CSR_READ(sc, WMREG_XONTXC));
WM_EVCNT_ADD(&sc->sc_ev_rx_xoff, CSR_READ(sc, WMREG_XOFFRXC));
WM_EVCNT_ADD(&sc->sc_ev_tx_xoff, CSR_READ(sc, WMREG_XOFFTXC));
WM_EVCNT_ADD(&sc->sc_ev_rx_macctl, CSR_READ(sc, WMREG_FCRUC));
}
ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
if (sc->sc_flags & WM_F_HAS_MII)
mii_tick(&sc->sc_mii);
else
wm_tbi_check_link(sc);
splx(s);
callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
}
/*
* wm_reset:
*
* Reset the i82542 chip.
*/
static void
wm_reset(struct wm_softc *sc)
{
int i;
/*
* Allocate on-chip memory according to the MTU size.
* The Packet Buffer Allocation register must be written
* before the chip is reset.
*/
switch (sc->sc_type) {
case WM_T_82547:
case WM_T_82547_2:
sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
PBA_22K : PBA_30K;
sc->sc_txfifo_head = 0;
sc->sc_txfifo_addr = sc->sc_pba << PBA_ADDR_SHIFT;
sc->sc_txfifo_size =
(PBA_40K - sc->sc_pba) << PBA_BYTE_SHIFT;
sc->sc_txfifo_stall = 0;
break;
case WM_T_82571:
case WM_T_82572:
case WM_T_80003:
sc->sc_pba = PBA_32K;
break;
case WM_T_82573:
sc->sc_pba = PBA_12K;
break;
default:
sc->sc_pba = sc->sc_ethercom.ec_if.if_mtu > 8192 ?
PBA_40K : PBA_48K;
break;
}
CSR_WRITE(sc, WMREG_PBA, sc->sc_pba);
switch (sc->sc_type) {
case WM_T_82544:
case WM_T_82540:
case WM_T_82545:
case WM_T_82546:
case WM_T_82541:
case WM_T_82541_2:
/*
* On some chipsets, a reset through a memory-mapped write
* cycle can cause the chip to reset before completing the
* write cycle. This causes major headache that can be
* avoided by issuing the reset via indirect register writes
* through I/O space.
*
* So, if we successfully mapped the I/O BAR at attach time,
* use that. Otherwise, try our luck with a memory-mapped
* reset.
*/
if (sc->sc_flags & WM_F_IOH_VALID)
wm_io_write(sc, WMREG_CTRL, CTRL_RST);
else
CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
break;
case WM_T_82545_3:
case WM_T_82546_3:
/* Use the shadow control register on these chips. */
CSR_WRITE(sc, WMREG_CTRL_SHADOW, CTRL_RST);
break;
default:
/* Everything else can safely use the documented method. */
CSR_WRITE(sc, WMREG_CTRL, CTRL_RST);
break;
}
delay(10000);
for (i = 0; i < 1000; i++) {
if ((CSR_READ(sc, WMREG_CTRL) & CTRL_RST) == 0)
return;
delay(20);
}
if (CSR_READ(sc, WMREG_CTRL) & CTRL_RST)
log(LOG_ERR, "%s: reset failed to complete\n",
sc->sc_dev.dv_xname);
if (sc->sc_type == WM_T_80003) {
/* wait for eeprom to reload */
for (i = 1000; i > 0; i--) {
if (CSR_READ(sc, WMREG_EECD) & EECD_EE_AUTORD)
break;
}
if (i == 0) {
log(LOG_ERR, "%s: auto read from eeprom failed to "
"complete\n", sc->sc_dev.dv_xname);
}
}
}
/*
* wm_init: [ifnet interface function]
*
* Initialize the interface. Must be called at splnet().
*/
static int
wm_init(struct ifnet *ifp)
{
struct wm_softc *sc = ifp->if_softc;
struct wm_rxsoft *rxs;
int i, error = 0;
uint32_t reg;
/*
* *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
* There is a small but measurable benefit to avoiding the adjusment
* of the descriptor so that the headers are aligned, for normal mtu,
* on such platforms. One possibility is that the DMA itself is
* slightly more efficient if the front of the entire packet (instead
* of the front of the headers) is aligned.
*
* Note we must always set align_tweak to 0 if we are using
* jumbo frames.
*/
#ifdef __NO_STRICT_ALIGNMENT
sc->sc_align_tweak = 0;
#else
if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
sc->sc_align_tweak = 0;
else
sc->sc_align_tweak = 2;
#endif /* __NO_STRICT_ALIGNMENT */
/* Cancel any pending I/O. */
wm_stop(ifp, 0);
/* update statistics before reset */
ifp->if_collisions += CSR_READ(sc, WMREG_COLC);
ifp->if_ierrors += CSR_READ(sc, WMREG_RXERRC);
/* Reset the chip to a known state. */
wm_reset(sc);
/* Initialize the transmit descriptor ring. */
memset(sc->sc_txdescs, 0, WM_TXDESCSIZE(sc));
WM_CDTXSYNC(sc, 0, WM_NTXDESC(sc),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_txfree = WM_NTXDESC(sc);
sc->sc_txnext = 0;
if (sc->sc_type < WM_T_82543) {
CSR_WRITE(sc, WMREG_OLD_TBDAH, WM_CDTXADDR_HI(sc, 0));
CSR_WRITE(sc, WMREG_OLD_TBDAL, WM_CDTXADDR_LO(sc, 0));
CSR_WRITE(sc, WMREG_OLD_TDLEN, WM_TXDESCSIZE(sc));
CSR_WRITE(sc, WMREG_OLD_TDH, 0);
CSR_WRITE(sc, WMREG_OLD_TDT, 0);
CSR_WRITE(sc, WMREG_OLD_TIDV, 128);
} else {
CSR_WRITE(sc, WMREG_TBDAH, WM_CDTXADDR_HI(sc, 0));
CSR_WRITE(sc, WMREG_TBDAL, WM_CDTXADDR_LO(sc, 0));
CSR_WRITE(sc, WMREG_TDLEN, WM_TXDESCSIZE(sc));
CSR_WRITE(sc, WMREG_TDH, 0);
CSR_WRITE(sc, WMREG_TDT, 0);
CSR_WRITE(sc, WMREG_TIDV, 64);
CSR_WRITE(sc, WMREG_TADV, 128);
CSR_WRITE(sc, WMREG_TXDCTL, TXDCTL_PTHRESH(0) |
TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
CSR_WRITE(sc, WMREG_RXDCTL, RXDCTL_PTHRESH(0) |
RXDCTL_HTHRESH(0) | RXDCTL_WTHRESH(1));
}
CSR_WRITE(sc, WMREG_TQSA_LO, 0);
CSR_WRITE(sc, WMREG_TQSA_HI, 0);
/* Initialize the transmit job descriptors. */
for (i = 0; i < WM_TXQUEUELEN(sc); i++)
sc->sc_txsoft[i].txs_mbuf = NULL;
sc->sc_txsfree = WM_TXQUEUELEN(sc);
sc->sc_txsnext = 0;
sc->sc_txsdirty = 0;
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
if (sc->sc_type < WM_T_82543) {
CSR_WRITE(sc, WMREG_OLD_RDBAH0, WM_CDRXADDR_HI(sc, 0));
CSR_WRITE(sc, WMREG_OLD_RDBAL0, WM_CDRXADDR_LO(sc, 0));
CSR_WRITE(sc, WMREG_OLD_RDLEN0, sizeof(sc->sc_rxdescs));
CSR_WRITE(sc, WMREG_OLD_RDH0, 0);
CSR_WRITE(sc, WMREG_OLD_RDT0, 0);
CSR_WRITE(sc, WMREG_OLD_RDTR0, 28 | RDTR_FPD);
CSR_WRITE(sc, WMREG_OLD_RDBA1_HI, 0);
CSR_WRITE(sc, WMREG_OLD_RDBA1_LO, 0);
CSR_WRITE(sc, WMREG_OLD_RDLEN1, 0);
CSR_WRITE(sc, WMREG_OLD_RDH1, 0);
CSR_WRITE(sc, WMREG_OLD_RDT1, 0);
CSR_WRITE(sc, WMREG_OLD_RDTR1, 0);
} else {
CSR_WRITE(sc, WMREG_RDBAH, WM_CDRXADDR_HI(sc, 0));
CSR_WRITE(sc, WMREG_RDBAL, WM_CDRXADDR_LO(sc, 0));
CSR_WRITE(sc, WMREG_RDLEN, sizeof(sc->sc_rxdescs));
CSR_WRITE(sc, WMREG_RDH, 0);
CSR_WRITE(sc, WMREG_RDT, 0);
CSR_WRITE(sc, WMREG_RDTR, 0 | RDTR_FPD);
CSR_WRITE(sc, WMREG_RADV, 128);
}
for (i = 0; i < WM_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = wm_add_rxbuf(sc, i)) != 0) {
log(LOG_ERR, "%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
wm_rxdrain(sc);
goto out;
}
} else
WM_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
sc->sc_rxdiscard = 0;
WM_RXCHAIN_RESET(sc);
/*
* Clear out the VLAN table -- we don't use it (yet).
*/
CSR_WRITE(sc, WMREG_VET, 0);
for (i = 0; i < WM_VLAN_TABSIZE; i++)
CSR_WRITE(sc, WMREG_VFTA + (i << 2), 0);
/*
* Set up flow-control parameters.
*
* XXX Values could probably stand some tuning.
*/
CSR_WRITE(sc, WMREG_FCAL, FCAL_CONST);
CSR_WRITE(sc, WMREG_FCAH, FCAH_CONST);
CSR_WRITE(sc, WMREG_FCT, ETHERTYPE_FLOWCONTROL);
sc->sc_fcrtl = FCRTL_DFLT;
if (sc->sc_type < WM_T_82543) {
CSR_WRITE(sc, WMREG_OLD_FCRTH, FCRTH_DFLT);
CSR_WRITE(sc, WMREG_OLD_FCRTL, sc->sc_fcrtl);
} else {
CSR_WRITE(sc, WMREG_FCRTH, FCRTH_DFLT);
CSR_WRITE(sc, WMREG_FCRTL, sc->sc_fcrtl);
}
CSR_WRITE(sc, WMREG_FCTTV, FCTTV_DFLT);
#if 0 /* XXXJRT */
/* Deal with VLAN enables. */
if (VLAN_ATTACHED(&sc->sc_ethercom))
sc->sc_ctrl |= CTRL_VME;
else
#endif /* XXXJRT */
sc->sc_ctrl &= ~CTRL_VME;
/* Write the control registers. */
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
if (sc->sc_type >= WM_T_80003 && (sc->sc_flags & WM_F_HAS_MII)) {
int val;
val = CSR_READ(sc, WMREG_CTRL_EXT);
val &= ~CTRL_EXT_LINK_MODE_MASK;
CSR_WRITE(sc, WMREG_CTRL_EXT, val);
/* Bypass RX and TX FIFO's */
wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_FIFO_CTRL,
KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_CTRL,
KUMCTRLSTA_INB_CTRL_DIS_PADDING |
KUMCTRLSTA_INB_CTRL_LINK_TMOUT_DFLT);
/*
* Set the mac to wait the maximum time between each
* iteration and increase the max iterations when
* polling the phy; this fixes erroneous timeouts at 10Mbps.
*/
wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_TIMEOUTS, 0xFFFF);
val = wm_kmrn_i80003_readreg(sc, KUMCTRLSTA_OFFSET_INB_PARAM);
val |= 0x3F;
wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_INB_PARAM, val);
}
#if 0
CSR_WRITE(sc, WMREG_CTRL_EXT, sc->sc_ctrl_ext);
#endif
/*
* Set up checksum offload parameters.
*/
reg = CSR_READ(sc, WMREG_RXCSUM);
reg &= ~(RXCSUM_IPOFL | RXCSUM_IPV6OFL | RXCSUM_TUOFL);
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
reg |= RXCSUM_IPOFL;
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
if (ifp->if_capenable & (IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx))
reg |= RXCSUM_IPV6OFL | RXCSUM_TUOFL;
CSR_WRITE(sc, WMREG_RXCSUM, reg);
/*
* Set up the interrupt registers.
*/
CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
ICR_RXO | ICR_RXT0;
if ((sc->sc_flags & WM_F_HAS_MII) == 0)
sc->sc_icr |= ICR_RXCFG;
CSR_WRITE(sc, WMREG_IMS, sc->sc_icr);
/* Set up the inter-packet gap. */
CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
if (sc->sc_type >= WM_T_82543) {
/* Set up the interrupt throttling register (units of 256ns) */
sc->sc_itr = 1000000000 / (7000 * 256);
CSR_WRITE(sc, WMREG_ITR, sc->sc_itr);
}
#if 0 /* XXXJRT */
/* Set the VLAN ethernetype. */
CSR_WRITE(sc, WMREG_VET, ETHERTYPE_VLAN);
#endif
/*
* Set up the transmit control register; we start out with
* a collision distance suitable for FDX, but update it whe
* we resolve the media type.
*/
sc->sc_tctl = TCTL_EN | TCTL_PSP | TCTL_CT(TX_COLLISION_THRESHOLD) |
TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
if (sc->sc_type >= WM_T_82571)
sc->sc_tctl |= TCTL_MULR;
if (sc->sc_type >= WM_T_80003)
sc->sc_tctl |= TCTL_RTLC;
CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
/* Set the media. */
(void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
/*
* Set up the receive control register; we actually program
* the register when we set the receive filter. Use multicast
* address offset type 0.
*
* Only the i82544 has the ability to strip the incoming
* CRC, so we don't enable that feature.
*/
sc->sc_mchash_type = 0;
sc->sc_rctl = RCTL_EN | RCTL_LBM_NONE | RCTL_RDMTS_1_2 | RCTL_DPF
| RCTL_MO(sc->sc_mchash_type);
/* 82573 doesn't support jumbo frame */
if (sc->sc_type != WM_T_82573)
sc->sc_rctl |= RCTL_LPE;
if (MCLBYTES == 2048) {
sc->sc_rctl |= RCTL_2k;
} else {
if (sc->sc_type >= WM_T_82543) {
switch(MCLBYTES) {
case 4096:
sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_4k;
break;
case 8192:
sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_8k;
break;
case 16384:
sc->sc_rctl |= RCTL_BSEX | RCTL_BSEX_16k;
break;
default:
panic("wm_init: MCLBYTES %d unsupported",
MCLBYTES);
break;
}
} else panic("wm_init: i82542 requires MCLBYTES = 2048");
}
/* Set the receive filter. */
wm_set_filter(sc);
/* Start the one second link check clock. */
callout_reset(&sc->sc_tick_ch, hz, wm_tick, sc);
/* ...all done! */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
out:
if (error)
log(LOG_ERR, "%s: interface not running\n",
sc->sc_dev.dv_xname);
return (error);
}
/*
* wm_rxdrain:
*
* Drain the receive queue.
*/
static void
wm_rxdrain(struct wm_softc *sc)
{
struct wm_rxsoft *rxs;
int i;
for (i = 0; i < WM_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* wm_stop: [ifnet interface function]
*
* Stop transmission on the interface.
*/
static void
wm_stop(struct ifnet *ifp, int disable)
{
struct wm_softc *sc = ifp->if_softc;
struct wm_txsoft *txs;
int i;
/* Stop the one second clock. */
callout_stop(&sc->sc_tick_ch);
/* Stop the 82547 Tx FIFO stall check timer. */
if (sc->sc_type == WM_T_82547)
callout_stop(&sc->sc_txfifo_ch);
if (sc->sc_flags & WM_F_HAS_MII) {
/* Down the MII. */
mii_down(&sc->sc_mii);
}
/* Stop the transmit and receive processes. */
CSR_WRITE(sc, WMREG_TCTL, 0);
CSR_WRITE(sc, WMREG_RCTL, 0);
/*
* Clear the interrupt mask to ensure the device cannot assert its
* interrupt line.
* Clear sc->sc_icr to ensure wm_intr() makes no attempt to service
* any currently pending or shared interrupt.
*/
CSR_WRITE(sc, WMREG_IMC, 0xffffffffU);
sc->sc_icr = 0;
/* Release any queued transmit buffers. */
for (i = 0; i < WM_TXQUEUELEN(sc); i++) {
txs = &sc->sc_txsoft[i];
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
if (disable)
wm_rxdrain(sc);
/* Mark the interface as down and cancel the watchdog timer. */
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
/*
* wm_acquire_eeprom:
*
* Perform the EEPROM handshake required on some chips.
*/
static int
wm_acquire_eeprom(struct wm_softc *sc)
{
uint32_t reg;
int x;
int ret = 0;
/* always success */
if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
return 0;
if (sc->sc_flags & WM_F_SWFW_SYNC) {
/* this will also do wm_get_swsm_semaphore() if needed */
ret = wm_get_swfw_semaphore(sc, SWFW_EEP_SM);
} else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
ret = wm_get_swsm_semaphore(sc);
}
if (ret)
return 1;
if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
reg = CSR_READ(sc, WMREG_EECD);
/* Request EEPROM access. */
reg |= EECD_EE_REQ;
CSR_WRITE(sc, WMREG_EECD, reg);
/* ..and wait for it to be granted. */
for (x = 0; x < 1000; x++) {
reg = CSR_READ(sc, WMREG_EECD);
if (reg & EECD_EE_GNT)
break;
delay(5);
}
if ((reg & EECD_EE_GNT) == 0) {
aprint_error("%s: could not acquire EEPROM GNT\n",
sc->sc_dev.dv_xname);
reg &= ~EECD_EE_REQ;
CSR_WRITE(sc, WMREG_EECD, reg);
if (sc->sc_flags & WM_F_SWFW_SYNC)
wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
wm_put_swsm_semaphore(sc);
return (1);
}
}
return (0);
}
/*
* wm_release_eeprom:
*
* Release the EEPROM mutex.
*/
static void
wm_release_eeprom(struct wm_softc *sc)
{
uint32_t reg;
/* always success */
if ((sc->sc_flags & WM_F_EEPROM_FLASH) != 0)
return;
if (sc->sc_flags & WM_F_EEPROM_HANDSHAKE) {
reg = CSR_READ(sc, WMREG_EECD);
reg &= ~EECD_EE_REQ;
CSR_WRITE(sc, WMREG_EECD, reg);
}
if (sc->sc_flags & WM_F_SWFW_SYNC)
wm_put_swfw_semaphore(sc, SWFW_EEP_SM);
else if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
wm_put_swsm_semaphore(sc);
}
/*
* wm_eeprom_sendbits:
*
* Send a series of bits to the EEPROM.
*/
static void
wm_eeprom_sendbits(struct wm_softc *sc, uint32_t bits, int nbits)
{
uint32_t reg;
int x;
reg = CSR_READ(sc, WMREG_EECD);
for (x = nbits; x > 0; x--) {
if (bits & (1U << (x - 1)))
reg |= EECD_DI;
else
reg &= ~EECD_DI;
CSR_WRITE(sc, WMREG_EECD, reg);
delay(2);
CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
delay(2);
CSR_WRITE(sc, WMREG_EECD, reg);
delay(2);
}
}
/*
* wm_eeprom_recvbits:
*
* Receive a series of bits from the EEPROM.
*/
static void
wm_eeprom_recvbits(struct wm_softc *sc, uint32_t *valp, int nbits)
{
uint32_t reg, val;
int x;
reg = CSR_READ(sc, WMREG_EECD) & ~EECD_DI;
val = 0;
for (x = nbits; x > 0; x--) {
CSR_WRITE(sc, WMREG_EECD, reg | EECD_SK);
delay(2);
if (CSR_READ(sc, WMREG_EECD) & EECD_DO)
val |= (1U << (x - 1));
CSR_WRITE(sc, WMREG_EECD, reg);
delay(2);
}
*valp = val;
}
/*
* wm_read_eeprom_uwire:
*
* Read a word from the EEPROM using the MicroWire protocol.
*/
static int
wm_read_eeprom_uwire(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
{
uint32_t reg, val;
int i;
for (i = 0; i < wordcnt; i++) {
/* Clear SK and DI. */
reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_DI);
CSR_WRITE(sc, WMREG_EECD, reg);
/* Set CHIP SELECT. */
reg |= EECD_CS;
CSR_WRITE(sc, WMREG_EECD, reg);
delay(2);
/* Shift in the READ command. */
wm_eeprom_sendbits(sc, UWIRE_OPC_READ, 3);
/* Shift in address. */
wm_eeprom_sendbits(sc, word + i, sc->sc_ee_addrbits);
/* Shift out the data. */
wm_eeprom_recvbits(sc, &val, 16);
data[i] = val & 0xffff;
/* Clear CHIP SELECT. */
reg = CSR_READ(sc, WMREG_EECD) & ~EECD_CS;
CSR_WRITE(sc, WMREG_EECD, reg);
delay(2);
}
return (0);
}
/*
* wm_spi_eeprom_ready:
*
* Wait for a SPI EEPROM to be ready for commands.
*/
static int
wm_spi_eeprom_ready(struct wm_softc *sc)
{
uint32_t val;
int usec;
for (usec = 0; usec < SPI_MAX_RETRIES; delay(5), usec += 5) {
wm_eeprom_sendbits(sc, SPI_OPC_RDSR, 8);
wm_eeprom_recvbits(sc, &val, 8);
if ((val & SPI_SR_RDY) == 0)
break;
}
if (usec >= SPI_MAX_RETRIES) {
aprint_error("%s: EEPROM failed to become ready\n",
sc->sc_dev.dv_xname);
return (1);
}
return (0);
}
/*
* wm_read_eeprom_spi:
*
* Read a work from the EEPROM using the SPI protocol.
*/
static int
wm_read_eeprom_spi(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
{
uint32_t reg, val;
int i;
uint8_t opc;
/* Clear SK and CS. */
reg = CSR_READ(sc, WMREG_EECD) & ~(EECD_SK | EECD_CS);
CSR_WRITE(sc, WMREG_EECD, reg);
delay(2);
if (wm_spi_eeprom_ready(sc))
return (1);
/* Toggle CS to flush commands. */
CSR_WRITE(sc, WMREG_EECD, reg | EECD_CS);
delay(2);
CSR_WRITE(sc, WMREG_EECD, reg);
delay(2);
opc = SPI_OPC_READ;
if (sc->sc_ee_addrbits == 8 && word >= 128)
opc |= SPI_OPC_A8;
wm_eeprom_sendbits(sc, opc, 8);
wm_eeprom_sendbits(sc, word << 1, sc->sc_ee_addrbits);
for (i = 0; i < wordcnt; i++) {
wm_eeprom_recvbits(sc, &val, 16);
data[i] = ((val >> 8) & 0xff) | ((val & 0xff) << 8);
}
/* Raise CS and clear SK. */
reg = (CSR_READ(sc, WMREG_EECD) & ~EECD_SK) | EECD_CS;
CSR_WRITE(sc, WMREG_EECD, reg);
delay(2);
return (0);
}
#define EEPROM_CHECKSUM 0xBABA
#define EEPROM_SIZE 0x0040
/*
* wm_validate_eeprom_checksum
*
* The checksum is defined as the sum of the first 64 (16 bit) words.
*/
static int
wm_validate_eeprom_checksum(struct wm_softc *sc)
{
uint16_t checksum;
uint16_t eeprom_data;
int i;
checksum = 0;
for (i = 0; i < EEPROM_SIZE; i++) {
if (wm_read_eeprom(sc, i, 1, &eeprom_data))
return 1;
checksum += eeprom_data;
}
if (checksum != (uint16_t) EEPROM_CHECKSUM)
return 1;
return 0;
}
/*
* wm_read_eeprom:
*
* Read data from the serial EEPROM.
*/
static int
wm_read_eeprom(struct wm_softc *sc, int word, int wordcnt, uint16_t *data)
{
int rv;
if (sc->sc_flags & WM_F_EEPROM_INVALID)
return 1;
if (wm_acquire_eeprom(sc))
return 1;
if (sc->sc_flags & WM_F_EEPROM_EERDEEWR)
rv = wm_read_eeprom_eerd(sc, word, wordcnt, data);
else if (sc->sc_flags & WM_F_EEPROM_SPI)
rv = wm_read_eeprom_spi(sc, word, wordcnt, data);
else
rv = wm_read_eeprom_uwire(sc, word, wordcnt, data);
wm_release_eeprom(sc);
return rv;
}
static int
wm_read_eeprom_eerd(struct wm_softc *sc, int offset, int wordcnt,
uint16_t *data)
{
int i, eerd = 0;
int error = 0;
for (i = 0; i < wordcnt; i++) {
eerd = ((offset + i) << EERD_ADDR_SHIFT) | EERD_START;
CSR_WRITE(sc, WMREG_EERD, eerd);
error = wm_poll_eerd_eewr_done(sc, WMREG_EERD);
if (error != 0)
break;
data[i] = (CSR_READ(sc, WMREG_EERD) >> EERD_DATA_SHIFT);
}
return error;
}
static int
wm_poll_eerd_eewr_done(struct wm_softc *sc, int rw)
{
uint32_t attempts = 100000;
uint32_t i, reg = 0;
int32_t done = -1;
for (i = 0; i < attempts; i++) {
reg = CSR_READ(sc, rw);
if (reg & EERD_DONE) {
done = 0;
break;
}
delay(5);
}
return done;
}
/*
* wm_add_rxbuf:
*
* Add a receive buffer to the indiciated descriptor.
*/
static int
wm_add_rxbuf(struct wm_softc *sc, int idx)
{
struct wm_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
/* XXX XXX XXX */
printf("%s: unable to load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, idx, error);
panic("wm_add_rxbuf");
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
WM_INIT_RXDESC(sc, idx);
return (0);
}
/*
* wm_set_ral:
*
* Set an entery in the receive address list.
*/
static void
wm_set_ral(struct wm_softc *sc, const uint8_t *enaddr, int idx)
{
uint32_t ral_lo, ral_hi;
if (enaddr != NULL) {
ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
(enaddr[3] << 24);
ral_hi = enaddr[4] | (enaddr[5] << 8);
ral_hi |= RAL_AV;
} else {
ral_lo = 0;
ral_hi = 0;
}
if (sc->sc_type >= WM_T_82544) {
CSR_WRITE(sc, WMREG_RAL_LO(WMREG_CORDOVA_RAL_BASE, idx),
ral_lo);
CSR_WRITE(sc, WMREG_RAL_HI(WMREG_CORDOVA_RAL_BASE, idx),
ral_hi);
} else {
CSR_WRITE(sc, WMREG_RAL_LO(WMREG_RAL_BASE, idx), ral_lo);
CSR_WRITE(sc, WMREG_RAL_HI(WMREG_RAL_BASE, idx), ral_hi);
}
}
/*
* wm_mchash:
*
* Compute the hash of the multicast address for the 4096-bit
* multicast filter.
*/
static uint32_t
wm_mchash(struct wm_softc *sc, const uint8_t *enaddr)
{
static const int lo_shift[4] = { 4, 3, 2, 0 };
static const int hi_shift[4] = { 4, 5, 6, 8 };
uint32_t hash;
hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
(((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
return (hash & 0xfff);
}
/*
* wm_set_filter:
*
* Set up the receive filter.
*/
static void
wm_set_filter(struct wm_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
bus_addr_t mta_reg;
uint32_t hash, reg, bit;
int i;
if (sc->sc_type >= WM_T_82544)
mta_reg = WMREG_CORDOVA_MTA;
else
mta_reg = WMREG_MTA;
sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
if (ifp->if_flags & IFF_BROADCAST)
sc->sc_rctl |= RCTL_BAM;
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_rctl |= RCTL_UPE;
goto allmulti;
}
/*
* Set the station address in the first RAL slot, and
* clear the remaining slots.
*/
wm_set_ral(sc, LLADDR(ifp->if_sadl), 0);
for (i = 1; i < WM_RAL_TABSIZE; i++)
wm_set_ral(sc, NULL, i);
/* Clear out the multicast table. */
for (i = 0; i < WM_MC_TABSIZE; i++)
CSR_WRITE(sc, mta_reg + (i << 2), 0);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
hash = wm_mchash(sc, enm->enm_addrlo);
reg = (hash >> 5) & 0x7f;
bit = hash & 0x1f;
hash = CSR_READ(sc, mta_reg + (reg << 2));
hash |= 1U << bit;
/* XXX Hardware bug?? */
if (sc->sc_type == WM_T_82544 && (reg & 0xe) == 1) {
bit = CSR_READ(sc, mta_reg + ((reg - 1) << 2));
CSR_WRITE(sc, mta_reg + (reg << 2), hash);
CSR_WRITE(sc, mta_reg + ((reg - 1) << 2), bit);
} else
CSR_WRITE(sc, mta_reg + (reg << 2), hash);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
goto setit;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_rctl |= RCTL_MPE;
setit:
CSR_WRITE(sc, WMREG_RCTL, sc->sc_rctl);
}
/*
* wm_tbi_mediainit:
*
* Initialize media for use on 1000BASE-X devices.
*/
static void
wm_tbi_mediainit(struct wm_softc *sc)
{
const char *sep = "";
if (sc->sc_type < WM_T_82543)
sc->sc_tipg = TIPG_WM_DFLT;
else
sc->sc_tipg = TIPG_LG_DFLT;
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_tbi_mediachange,
wm_tbi_mediastatus);
/*
* SWD Pins:
*
* 0 = Link LED (output)
* 1 = Loss Of Signal (input)
*/
sc->sc_ctrl |= CTRL_SWDPIO(0);
sc->sc_ctrl &= ~CTRL_SWDPIO(1);
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
#define ADD(ss, mm, dd) \
do { \
aprint_normal("%s%s", sep, ss); \
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(mm), (dd), NULL); \
sep = ", "; \
} while (/*CONSTCOND*/0)
aprint_normal("%s: ", sc->sc_dev.dv_xname);
ADD("1000baseSX", IFM_1000_SX, ANAR_X_HD);
ADD("1000baseSX-FDX", IFM_1000_SX|IFM_FDX, ANAR_X_FD);
ADD("auto", IFM_AUTO, ANAR_X_FD|ANAR_X_HD);
aprint_normal("\n");
#undef ADD
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
}
/*
* wm_tbi_mediastatus: [ifmedia interface function]
*
* Get the current interface media status on a 1000BASE-X device.
*/
static void
wm_tbi_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct wm_softc *sc = ifp->if_softc;
uint32_t ctrl;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (sc->sc_tbi_linkup == 0) {
ifmr->ifm_active |= IFM_NONE;
return;
}
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_1000_SX;
if (CSR_READ(sc, WMREG_STATUS) & STATUS_FD)
ifmr->ifm_active |= IFM_FDX;
ctrl = CSR_READ(sc, WMREG_CTRL);
if (ctrl & CTRL_RFCE)
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_RXPAUSE;
if (ctrl & CTRL_TFCE)
ifmr->ifm_active |= IFM_FLOW | IFM_ETH_TXPAUSE;
}
/*
* wm_tbi_mediachange: [ifmedia interface function]
*
* Set hardware to newly-selected media on a 1000BASE-X device.
*/
static int
wm_tbi_mediachange(struct ifnet *ifp)
{
struct wm_softc *sc = ifp->if_softc;
struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
uint32_t status;
int i;
sc->sc_txcw = ife->ifm_data;
DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x on entry\n",
sc->sc_dev.dv_xname,sc->sc_txcw));
if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO ||
(sc->sc_mii.mii_media.ifm_media & IFM_FLOW) != 0)
sc->sc_txcw |= ANAR_X_PAUSE_SYM | ANAR_X_PAUSE_ASYM;
if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
sc->sc_txcw |= TXCW_ANE;
} else {
/*If autonegotiation is turned off, force link up and turn on full duplex*/
sc->sc_txcw &= ~TXCW_ANE;
sc->sc_ctrl |= CTRL_SLU | CTRL_FD;
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
delay(1000);
}
DPRINTF(WM_DEBUG_LINK,("%s: sc_txcw = 0x%x after autoneg check\n",
sc->sc_dev.dv_xname,sc->sc_txcw));
CSR_WRITE(sc, WMREG_TXCW, sc->sc_txcw);
delay(10000);
/* NOTE: CTRL will update TFCE and RFCE automatically. */
sc->sc_tbi_anstate = 0;
i = CSR_READ(sc, WMREG_CTRL) & CTRL_SWDPIN(1);
DPRINTF(WM_DEBUG_LINK,("%s: i = 0x%x\n", sc->sc_dev.dv_xname,i));
/*
* On 82544 chips and later, the CTRL_SWDPIN(1) bit will be set if the
* optics detect a signal, 0 if they don't.
*/
if (((i != 0) && (sc->sc_type >= WM_T_82544)) || (i == 0)) {
/* Have signal; wait for the link to come up. */
if (IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO) {
/*
* Reset the link, and let autonegotiation do its thing
*/
sc->sc_ctrl |= CTRL_LRST;
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
delay(1000);
sc->sc_ctrl &= ~CTRL_LRST;
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
delay(1000);
}
for (i = 0; i < 50; i++) {
delay(10000);
if (CSR_READ(sc, WMREG_STATUS) & STATUS_LU)
break;
}
DPRINTF(WM_DEBUG_LINK,("%s: i = %d after waiting for link\n",
sc->sc_dev.dv_xname,i));
status = CSR_READ(sc, WMREG_STATUS);
DPRINTF(WM_DEBUG_LINK,
("%s: status after final read = 0x%x, STATUS_LU = 0x%x\n",
sc->sc_dev.dv_xname,status, STATUS_LU));
if (status & STATUS_LU) {
/* Link is up. */
DPRINTF(WM_DEBUG_LINK,
("%s: LINK: set media -> link up %s\n",
sc->sc_dev.dv_xname,
(status & STATUS_FD) ? "FDX" : "HDX"));
sc->sc_tctl &= ~TCTL_COLD(0x3ff);
sc->sc_fcrtl &= ~FCRTL_XONE;
if (status & STATUS_FD)
sc->sc_tctl |=
TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
else
sc->sc_tctl |=
TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
if (CSR_READ(sc, WMREG_CTRL) & CTRL_TFCE)
sc->sc_fcrtl |= FCRTL_XONE;
CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
WMREG_OLD_FCRTL : WMREG_FCRTL,
sc->sc_fcrtl);
sc->sc_tbi_linkup = 1;
} else {
/* Link is down. */
DPRINTF(WM_DEBUG_LINK,
("%s: LINK: set media -> link down\n",
sc->sc_dev.dv_xname));
sc->sc_tbi_linkup = 0;
}
} else {
DPRINTF(WM_DEBUG_LINK, ("%s: LINK: set media -> no signal\n",
sc->sc_dev.dv_xname));
sc->sc_tbi_linkup = 0;
}
wm_tbi_set_linkled(sc);
return (0);
}
/*
* wm_tbi_set_linkled:
*
* Update the link LED on 1000BASE-X devices.
*/
static void
wm_tbi_set_linkled(struct wm_softc *sc)
{
if (sc->sc_tbi_linkup)
sc->sc_ctrl |= CTRL_SWDPIN(0);
else
sc->sc_ctrl &= ~CTRL_SWDPIN(0);
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
}
/*
* wm_tbi_check_link:
*
* Check the link on 1000BASE-X devices.
*/
static void
wm_tbi_check_link(struct wm_softc *sc)
{
uint32_t rxcw, ctrl, status;
if (sc->sc_tbi_anstate == 0)
return;
else if (sc->sc_tbi_anstate > 1) {
DPRINTF(WM_DEBUG_LINK,
("%s: LINK: anstate %d\n", sc->sc_dev.dv_xname,
sc->sc_tbi_anstate));
sc->sc_tbi_anstate--;
return;
}
sc->sc_tbi_anstate = 0;
rxcw = CSR_READ(sc, WMREG_RXCW);
ctrl = CSR_READ(sc, WMREG_CTRL);
status = CSR_READ(sc, WMREG_STATUS);
if ((status & STATUS_LU) == 0) {
DPRINTF(WM_DEBUG_LINK,
("%s: LINK: checklink -> down\n", sc->sc_dev.dv_xname));
sc->sc_tbi_linkup = 0;
} else {
DPRINTF(WM_DEBUG_LINK,
("%s: LINK: checklink -> up %s\n", sc->sc_dev.dv_xname,
(status & STATUS_FD) ? "FDX" : "HDX"));
sc->sc_tctl &= ~TCTL_COLD(0x3ff);
sc->sc_fcrtl &= ~FCRTL_XONE;
if (status & STATUS_FD)
sc->sc_tctl |=
TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
else
sc->sc_tctl |=
TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
if (ctrl & CTRL_TFCE)
sc->sc_fcrtl |= FCRTL_XONE;
CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ?
WMREG_OLD_FCRTL : WMREG_FCRTL,
sc->sc_fcrtl);
sc->sc_tbi_linkup = 1;
}
wm_tbi_set_linkled(sc);
}
/*
* wm_gmii_reset:
*
* Reset the PHY.
*/
static void
wm_gmii_reset(struct wm_softc *sc)
{
uint32_t reg;
int func = 0; /* XXX gcc */
if (sc->sc_type >= WM_T_80003) {
func = (CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1;
if (wm_get_swfw_semaphore(sc,
func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
return;
}
if (sc->sc_type >= WM_T_82544) {
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl | CTRL_PHY_RESET);
delay(20000);
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
delay(20000);
} else {
/*
* With 82543, we need to force speed and duplex on the MAC
* equal to what the PHY speed and duplex configuration is.
* In addition, we need to perform a hardware reset on the PHY
* to take it out of reset.
*/
sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
/* The PHY reset pin is active-low. */
reg = CSR_READ(sc, WMREG_CTRL_EXT);
reg &= ~((CTRL_EXT_SWDPIO_MASK << CTRL_EXT_SWDPIO_SHIFT) |
CTRL_EXT_SWDPIN(4));
reg |= CTRL_EXT_SWDPIO(4);
CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
delay(10);
CSR_WRITE(sc, WMREG_CTRL_EXT, reg);
delay(10000);
CSR_WRITE(sc, WMREG_CTRL_EXT, reg | CTRL_EXT_SWDPIN(4));
delay(10);
#if 0
sc->sc_ctrl_ext = reg | CTRL_EXT_SWDPIN(4);
#endif
}
if (sc->sc_type >= WM_T_80003)
wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
}
/*
* wm_gmii_mediainit:
*
* Initialize media for use on 1000BASE-T devices.
*/
static void
wm_gmii_mediainit(struct wm_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
/* We have MII. */
sc->sc_flags |= WM_F_HAS_MII;
if (sc->sc_type >= WM_T_80003)
sc->sc_tipg = TIPG_1000T_80003_DFLT;
else
sc->sc_tipg = TIPG_1000T_DFLT;
/*
* Let the chip set speed/duplex on its own based on
* signals from the PHY.
* XXXbouyer - I'm not sure this is right for the 80003,
* the em driver only sets CTRL_SLU here - but it seems to work.
*/
sc->sc_ctrl |= CTRL_SLU;
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
/* Initialize our media structures and probe the GMII. */
sc->sc_mii.mii_ifp = ifp;
if (sc->sc_type >= WM_T_80003) {
sc->sc_mii.mii_readreg = wm_gmii_i80003_readreg;
sc->sc_mii.mii_writereg = wm_gmii_i80003_writereg;
} else if (sc->sc_type >= WM_T_82544) {
sc->sc_mii.mii_readreg = wm_gmii_i82544_readreg;
sc->sc_mii.mii_writereg = wm_gmii_i82544_writereg;
} else {
sc->sc_mii.mii_readreg = wm_gmii_i82543_readreg;
sc->sc_mii.mii_writereg = wm_gmii_i82543_writereg;
}
sc->sc_mii.mii_statchg = wm_gmii_statchg;
wm_gmii_reset(sc);
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, wm_gmii_mediachange,
wm_gmii_mediastatus);
mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, MIIF_DOPAUSE);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
}
/*
* wm_gmii_mediastatus: [ifmedia interface function]
*
* Get the current interface media status on a 1000BASE-T device.
*/
static void
wm_gmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct wm_softc *sc = ifp->if_softc;
mii_pollstat(&sc->sc_mii);
ifmr->ifm_status = sc->sc_mii.mii_media_status;
ifmr->ifm_active = (sc->sc_mii.mii_media_active & ~IFM_ETH_FMASK) |
sc->sc_flowflags;
}
/*
* wm_gmii_mediachange: [ifmedia interface function]
*
* Set hardware to newly-selected media on a 1000BASE-T device.
*/
static int
wm_gmii_mediachange(struct ifnet *ifp)
{
struct wm_softc *sc = ifp->if_softc;
struct ifmedia_entry *ife = sc->sc_mii.mii_media.ifm_cur;
if (ifp->if_flags & IFF_UP) {
sc->sc_ctrl &= ~(CTRL_SPEED_MASK | CTRL_FD);
sc->sc_ctrl |= CTRL_SLU;
if ((IFM_SUBTYPE(ife->ifm_media) == IFM_AUTO)
|| (sc->sc_type > WM_T_82543)) {
sc->sc_ctrl &= ~(CTRL_FRCSPD | CTRL_FRCFDX);
} else {
sc->sc_ctrl &= ~CTRL_ASDE;
sc->sc_ctrl |= CTRL_FRCSPD | CTRL_FRCFDX;
if (ife->ifm_media & IFM_FDX)
sc->sc_ctrl |= CTRL_FD;
switch(IFM_SUBTYPE(ife->ifm_media)) {
case IFM_10_T:
sc->sc_ctrl |= CTRL_SPEED_10;
break;
case IFM_100_TX:
sc->sc_ctrl |= CTRL_SPEED_100;
break;
case IFM_1000_T:
sc->sc_ctrl |= CTRL_SPEED_1000;
break;
default:
panic("wm_gmii_mediachange: bad media 0x%x",
ife->ifm_media);
}
}
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
if (sc->sc_type <= WM_T_82543)
wm_gmii_reset(sc);
mii_mediachg(&sc->sc_mii);
}
return (0);
}
#define MDI_IO CTRL_SWDPIN(2)
#define MDI_DIR CTRL_SWDPIO(2) /* host -> PHY */
#define MDI_CLK CTRL_SWDPIN(3)
static void
i82543_mii_sendbits(struct wm_softc *sc, uint32_t data, int nbits)
{
uint32_t i, v;
v = CSR_READ(sc, WMREG_CTRL);
v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
v |= MDI_DIR | CTRL_SWDPIO(3);
for (i = 1 << (nbits - 1); i != 0; i >>= 1) {
if (data & i)
v |= MDI_IO;
else
v &= ~MDI_IO;
CSR_WRITE(sc, WMREG_CTRL, v);
delay(10);
CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
delay(10);
CSR_WRITE(sc, WMREG_CTRL, v);
delay(10);
}
}
static uint32_t
i82543_mii_recvbits(struct wm_softc *sc)
{
uint32_t v, i, data = 0;
v = CSR_READ(sc, WMREG_CTRL);
v &= ~(MDI_IO|MDI_CLK|(CTRL_SWDPIO_MASK << CTRL_SWDPIO_SHIFT));
v |= CTRL_SWDPIO(3);
CSR_WRITE(sc, WMREG_CTRL, v);
delay(10);
CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
delay(10);
CSR_WRITE(sc, WMREG_CTRL, v);
delay(10);
for (i = 0; i < 16; i++) {
data <<= 1;
CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
delay(10);
if (CSR_READ(sc, WMREG_CTRL) & MDI_IO)
data |= 1;
CSR_WRITE(sc, WMREG_CTRL, v);
delay(10);
}
CSR_WRITE(sc, WMREG_CTRL, v | MDI_CLK);
delay(10);
CSR_WRITE(sc, WMREG_CTRL, v);
delay(10);
return (data);
}
#undef MDI_IO
#undef MDI_DIR
#undef MDI_CLK
/*
* wm_gmii_i82543_readreg: [mii interface function]
*
* Read a PHY register on the GMII (i82543 version).
*/
static int
wm_gmii_i82543_readreg(struct device *self, int phy, int reg)
{
struct wm_softc *sc = (void *) self;
int rv;
i82543_mii_sendbits(sc, 0xffffffffU, 32);
i82543_mii_sendbits(sc, reg | (phy << 5) |
(MII_COMMAND_READ << 10) | (MII_COMMAND_START << 12), 14);
rv = i82543_mii_recvbits(sc) & 0xffff;
DPRINTF(WM_DEBUG_GMII,
("%s: GMII: read phy %d reg %d -> 0x%04x\n",
sc->sc_dev.dv_xname, phy, reg, rv));
return (rv);
}
/*
* wm_gmii_i82543_writereg: [mii interface function]
*
* Write a PHY register on the GMII (i82543 version).
*/
static void
wm_gmii_i82543_writereg(struct device *self, int phy, int reg, int val)
{
struct wm_softc *sc = (void *) self;
i82543_mii_sendbits(sc, 0xffffffffU, 32);
i82543_mii_sendbits(sc, val | (MII_COMMAND_ACK << 16) |
(reg << 18) | (phy << 23) | (MII_COMMAND_WRITE << 28) |
(MII_COMMAND_START << 30), 32);
}
/*
* wm_gmii_i82544_readreg: [mii interface function]
*
* Read a PHY register on the GMII.
*/
static int
wm_gmii_i82544_readreg(struct device *self, int phy, int reg)
{
struct wm_softc *sc = (void *) self;
uint32_t mdic = 0;
int i, rv;
CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_READ | MDIC_PHYADD(phy) |
MDIC_REGADD(reg));
for (i = 0; i < 320; i++) {
mdic = CSR_READ(sc, WMREG_MDIC);
if (mdic & MDIC_READY)
break;
delay(10);
}
if ((mdic & MDIC_READY) == 0) {
log(LOG_WARNING, "%s: MDIC read timed out: phy %d reg %d\n",
sc->sc_dev.dv_xname, phy, reg);
rv = 0;
} else if (mdic & MDIC_E) {
#if 0 /* This is normal if no PHY is present. */
log(LOG_WARNING, "%s: MDIC read error: phy %d reg %d\n",
sc->sc_dev.dv_xname, phy, reg);
#endif
rv = 0;
} else {
rv = MDIC_DATA(mdic);
if (rv == 0xffff)
rv = 0;
}
return (rv);
}
/*
* wm_gmii_i82544_writereg: [mii interface function]
*
* Write a PHY register on the GMII.
*/
static void
wm_gmii_i82544_writereg(struct device *self, int phy, int reg, int val)
{
struct wm_softc *sc = (void *) self;
uint32_t mdic = 0;
int i;
CSR_WRITE(sc, WMREG_MDIC, MDIC_OP_WRITE | MDIC_PHYADD(phy) |
MDIC_REGADD(reg) | MDIC_DATA(val));
for (i = 0; i < 320; i++) {
mdic = CSR_READ(sc, WMREG_MDIC);
if (mdic & MDIC_READY)
break;
delay(10);
}
if ((mdic & MDIC_READY) == 0)
log(LOG_WARNING, "%s: MDIC write timed out: phy %d reg %d\n",
sc->sc_dev.dv_xname, phy, reg);
else if (mdic & MDIC_E)
log(LOG_WARNING, "%s: MDIC write error: phy %d reg %d\n",
sc->sc_dev.dv_xname, phy, reg);
}
/*
* wm_gmii_i80003_readreg: [mii interface function]
*
* Read a PHY register on the kumeran
* This could be handled by the PHY layer if we didn't have to lock the
* ressource ...
*/
static int
wm_gmii_i80003_readreg(struct device *self, int phy, int reg)
{
struct wm_softc *sc = (void *) self;
int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
int rv;
if (phy != 1) /* only one PHY on kumeran bus */
return 0;
if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
return 0;
if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
reg >> GG82563_PAGE_SHIFT);
} else {
wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
reg >> GG82563_PAGE_SHIFT);
}
rv = wm_gmii_i82544_readreg(self, phy, reg & GG82563_MAX_REG_ADDRESS);
wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
return (rv);
}
/*
* wm_gmii_i80003_writereg: [mii interface function]
*
* Write a PHY register on the kumeran.
* This could be handled by the PHY layer if we didn't have to lock the
* ressource ...
*/
static void
wm_gmii_i80003_writereg(struct device *self, int phy, int reg, int val)
{
struct wm_softc *sc = (void *) self;
int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
if (phy != 1) /* only one PHY on kumeran bus */
return;
if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
return;
if ((reg & GG82563_MAX_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT,
reg >> GG82563_PAGE_SHIFT);
} else {
wm_gmii_i82544_writereg(self, phy, GG82563_PHY_PAGE_SELECT_ALT,
reg >> GG82563_PAGE_SHIFT);
}
wm_gmii_i82544_writereg(self, phy, reg & GG82563_MAX_REG_ADDRESS, val);
wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
}
/*
* wm_gmii_statchg: [mii interface function]
*
* Callback from MII layer when media changes.
*/
static void
wm_gmii_statchg(struct device *self)
{
struct wm_softc *sc = (void *) self;
struct mii_data *mii = &sc->sc_mii;
sc->sc_ctrl &= ~(CTRL_TFCE | CTRL_RFCE);
sc->sc_tctl &= ~TCTL_COLD(0x3ff);
sc->sc_fcrtl &= ~FCRTL_XONE;
/*
* Get flow control negotiation result.
*/
if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
(mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
mii->mii_media_active &= ~IFM_ETH_FMASK;
}
if (sc->sc_flowflags & IFM_FLOW) {
if (sc->sc_flowflags & IFM_ETH_TXPAUSE) {
sc->sc_ctrl |= CTRL_TFCE;
sc->sc_fcrtl |= FCRTL_XONE;
}
if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
sc->sc_ctrl |= CTRL_RFCE;
}
if (sc->sc_mii.mii_media_active & IFM_FDX) {
DPRINTF(WM_DEBUG_LINK,
("%s: LINK: statchg: FDX\n", sc->sc_dev.dv_xname));
sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_FDX);
} else {
DPRINTF(WM_DEBUG_LINK,
("%s: LINK: statchg: HDX\n", sc->sc_dev.dv_xname));
sc->sc_tctl |= TCTL_COLD(TX_COLLISION_DISTANCE_HDX);
}
CSR_WRITE(sc, WMREG_CTRL, sc->sc_ctrl);
CSR_WRITE(sc, WMREG_TCTL, sc->sc_tctl);
CSR_WRITE(sc, (sc->sc_type < WM_T_82543) ? WMREG_OLD_FCRTL
: WMREG_FCRTL, sc->sc_fcrtl);
if (sc->sc_type >= WM_T_80003) {
switch(IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
case IFM_1000_T:
wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
KUMCTRLSTA_HD_CTRL_1000_DEFAULT);
sc->sc_tipg = TIPG_1000T_80003_DFLT;
break;
default:
wm_kmrn_i80003_writereg(sc, KUMCTRLSTA_OFFSET_HD_CTRL,
KUMCTRLSTA_HD_CTRL_10_100_DEFAULT);
sc->sc_tipg = TIPG_10_100_80003_DFLT;
break;
}
CSR_WRITE(sc, WMREG_TIPG, sc->sc_tipg);
}
}
/*
* wm_kmrn_i80003_readreg:
*
* Read a kumeran register
*/
static int
wm_kmrn_i80003_readreg(struct wm_softc *sc, int reg)
{
int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
int rv;
if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
return 0;
CSR_WRITE(sc, WMREG_KUMCTRLSTA,
((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
KUMCTRLSTA_REN);
delay(2);
rv = CSR_READ(sc, WMREG_KUMCTRLSTA) & KUMCTRLSTA_MASK;
wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
return (rv);
}
/*
* wm_kmrn_i80003_writereg:
*
* Write a kumeran register
*/
static void
wm_kmrn_i80003_writereg(struct wm_softc *sc, int reg, int val)
{
int func = ((CSR_READ(sc, WMREG_STATUS) >> STATUS_FUNCID_SHIFT) & 1);
if (wm_get_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM))
return;
CSR_WRITE(sc, WMREG_KUMCTRLSTA,
((reg << KUMCTRLSTA_OFFSET_SHIFT) & KUMCTRLSTA_OFFSET) |
(val & KUMCTRLSTA_MASK));
wm_put_swfw_semaphore(sc, func ? SWFW_PHY1_SM : SWFW_PHY0_SM);
}
static int
wm_is_onboard_nvm_eeprom(struct wm_softc *sc)
{
uint32_t eecd = 0;
if (sc->sc_type == WM_T_82573) {
eecd = CSR_READ(sc, WMREG_EECD);
/* Isolate bits 15 & 16 */
eecd = ((eecd >> 15) & 0x03);
/* If both bits are set, device is Flash type */
if (eecd == 0x03) {
return 0;
}
}
return 1;
}
static int
wm_get_swsm_semaphore(struct wm_softc *sc)
{
int32_t timeout;
uint32_t swsm;
/* Get the FW semaphore. */
timeout = 1000 + 1; /* XXX */
while (timeout) {
swsm = CSR_READ(sc, WMREG_SWSM);
swsm |= SWSM_SWESMBI;
CSR_WRITE(sc, WMREG_SWSM, swsm);
/* if we managed to set the bit we got the semaphore. */
swsm = CSR_READ(sc, WMREG_SWSM);
if (swsm & SWSM_SWESMBI)
break;
delay(50);
timeout--;
}
if (timeout == 0) {
aprint_error("%s: could not acquire EEPROM GNT\n",
sc->sc_dev.dv_xname);
/* Release semaphores */
wm_put_swsm_semaphore(sc);
return 1;
}
return 0;
}
static void
wm_put_swsm_semaphore(struct wm_softc *sc)
{
uint32_t swsm;
swsm = CSR_READ(sc, WMREG_SWSM);
swsm &= ~(SWSM_SWESMBI);
CSR_WRITE(sc, WMREG_SWSM, swsm);
}
static int
wm_get_swfw_semaphore(struct wm_softc *sc, uint16_t mask) {
uint32_t swfw_sync;
uint32_t swmask = mask << SWFW_SOFT_SHIFT;
uint32_t fwmask = mask << SWFW_FIRM_SHIFT;
int timeout = 200;
for(timeout = 0; timeout < 200; timeout++) {
if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
if (wm_get_swsm_semaphore(sc))
return 1;
}
swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
if ((swfw_sync & (swmask | fwmask)) == 0) {
swfw_sync |= swmask;
CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
wm_put_swsm_semaphore(sc);
return 0;
}
if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
wm_put_swsm_semaphore(sc);
delay(5000);
}
printf("%s: failed to get swfw semaphore mask 0x%x swfw 0x%x\n",
sc->sc_dev.dv_xname, mask, swfw_sync);
return 1;
}
static void
wm_put_swfw_semaphore(struct wm_softc *sc, uint16_t mask) {
uint32_t swfw_sync;
if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE) {
while (wm_get_swsm_semaphore(sc) != 0)
continue;
}
swfw_sync = CSR_READ(sc, WMREG_SW_FW_SYNC);
swfw_sync &= ~(mask << SWFW_SOFT_SHIFT);
CSR_WRITE(sc, WMREG_SW_FW_SYNC, swfw_sync);
if (sc->sc_flags & WM_F_EEPROM_SEMAPHORE)
wm_put_swsm_semaphore(sc);
}