870 lines
24 KiB
C
870 lines
24 KiB
C
/* $NetBSD: uvm_km.c,v 1.130 2012/09/03 15:55:42 matt Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997 Charles D. Cranor and Washington University.
|
|
* Copyright (c) 1991, 1993, The Regents of the University of California.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
|
|
* from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* uvm_km.c: handle kernel memory allocation and management
|
|
*/
|
|
|
|
/*
|
|
* overview of kernel memory management:
|
|
*
|
|
* the kernel virtual address space is mapped by "kernel_map." kernel_map
|
|
* starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
|
|
* note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
|
|
*
|
|
* the kernel_map has several "submaps." submaps can only appear in
|
|
* the kernel_map (user processes can't use them). submaps "take over"
|
|
* the management of a sub-range of the kernel's address space. submaps
|
|
* are typically allocated at boot time and are never released. kernel
|
|
* virtual address space that is mapped by a submap is locked by the
|
|
* submap's lock -- not the kernel_map's lock.
|
|
*
|
|
* thus, the useful feature of submaps is that they allow us to break
|
|
* up the locking and protection of the kernel address space into smaller
|
|
* chunks.
|
|
*
|
|
* the vm system has several standard kernel submaps/arenas, including:
|
|
* kmem_arena => used for kmem/pool (memoryallocators(9))
|
|
* pager_map => used to map "buf" structures into kernel space
|
|
* exec_map => used during exec to handle exec args
|
|
* etc...
|
|
*
|
|
* The kmem_arena is a "special submap", as it lives in a fixed map entry
|
|
* within the kernel_map and is controlled by vmem(9).
|
|
*
|
|
* the kernel allocates its private memory out of special uvm_objects whose
|
|
* reference count is set to UVM_OBJ_KERN (thus indicating that the objects
|
|
* are "special" and never die). all kernel objects should be thought of
|
|
* as large, fixed-sized, sparsely populated uvm_objects. each kernel
|
|
* object is equal to the size of kernel virtual address space (i.e. the
|
|
* value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
|
|
*
|
|
* note that just because a kernel object spans the entire kernel virtual
|
|
* address space doesn't mean that it has to be mapped into the entire space.
|
|
* large chunks of a kernel object's space go unused either because
|
|
* that area of kernel VM is unmapped, or there is some other type of
|
|
* object mapped into that range (e.g. a vnode). for submap's kernel
|
|
* objects, the only part of the object that can ever be populated is the
|
|
* offsets that are managed by the submap.
|
|
*
|
|
* note that the "offset" in a kernel object is always the kernel virtual
|
|
* address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
|
|
* example:
|
|
* suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
|
|
* uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
|
|
* kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
|
|
* then that means that the page at offset 0x235000 in kernel_object is
|
|
* mapped at 0xf8235000.
|
|
*
|
|
* kernel object have one other special property: when the kernel virtual
|
|
* memory mapping them is unmapped, the backing memory in the object is
|
|
* freed right away. this is done with the uvm_km_pgremove() function.
|
|
* this has to be done because there is no backing store for kernel pages
|
|
* and no need to save them after they are no longer referenced.
|
|
*
|
|
* Generic arenas:
|
|
*
|
|
* kmem_arena:
|
|
* Main arena controlling the kernel KVA used by other arenas.
|
|
*
|
|
* kmem_va_arena:
|
|
* Implements quantum caching in order to speedup allocations and
|
|
* reduce fragmentation. The pool(9), unless created with a custom
|
|
* meta-data allocator, and kmem(9) subsystems use this arena.
|
|
*
|
|
* Arenas for meta-data allocations are used by vmem(9) and pool(9).
|
|
* These arenas cannot use quantum cache. However, kmem_va_meta_arena
|
|
* compensates this by importing larger chunks from kmem_arena.
|
|
*
|
|
* kmem_va_meta_arena:
|
|
* Space for meta-data.
|
|
*
|
|
* kmem_meta_arena:
|
|
* Imports from kmem_va_meta_arena. Allocations from this arena are
|
|
* backed with the pages.
|
|
*
|
|
* Arena stacking:
|
|
*
|
|
* kmem_arena
|
|
* kmem_va_arena
|
|
* kmem_va_meta_arena
|
|
* kmem_meta_arena
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.130 2012/09/03 15:55:42 matt Exp $");
|
|
|
|
#include "opt_uvmhist.h"
|
|
|
|
#include "opt_kmempages.h"
|
|
|
|
#ifndef NKMEMPAGES
|
|
#define NKMEMPAGES 0
|
|
#endif
|
|
|
|
/*
|
|
* Defaults for lower and upper-bounds for the kmem_arena page count.
|
|
* Can be overridden by kernel config options.
|
|
*/
|
|
#ifndef NKMEMPAGES_MIN
|
|
#define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
|
|
#endif
|
|
|
|
#ifndef NKMEMPAGES_MAX
|
|
#define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
|
|
#endif
|
|
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/vmem.h>
|
|
#include <sys/kmem.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
|
|
/*
|
|
* global data structures
|
|
*/
|
|
|
|
struct vm_map *kernel_map = NULL;
|
|
|
|
/*
|
|
* local data structues
|
|
*/
|
|
|
|
static struct vm_map kernel_map_store;
|
|
static struct vm_map_entry kernel_image_mapent_store;
|
|
static struct vm_map_entry kernel_kmem_mapent_store;
|
|
|
|
int nkmempages = 0;
|
|
vaddr_t kmembase;
|
|
vsize_t kmemsize;
|
|
|
|
vmem_t *kmem_arena;
|
|
vmem_t *kmem_va_arena;
|
|
|
|
/*
|
|
* kmeminit_nkmempages: calculate the size of kmem_arena.
|
|
*/
|
|
void
|
|
kmeminit_nkmempages(void)
|
|
{
|
|
int npages;
|
|
|
|
if (nkmempages != 0) {
|
|
/*
|
|
* It's already been set (by us being here before)
|
|
* bail out now;
|
|
*/
|
|
return;
|
|
}
|
|
|
|
#if defined(PMAP_MAP_POOLPAGE)
|
|
npages = (physmem / 4);
|
|
#else
|
|
npages = (physmem / 3) * 2;
|
|
#endif /* defined(PMAP_MAP_POOLPAGE) */
|
|
|
|
#ifndef NKMEMPAGES_MAX_UNLIMITED
|
|
if (npages > NKMEMPAGES_MAX)
|
|
npages = NKMEMPAGES_MAX;
|
|
#endif
|
|
|
|
if (npages < NKMEMPAGES_MIN)
|
|
npages = NKMEMPAGES_MIN;
|
|
|
|
nkmempages = npages;
|
|
}
|
|
|
|
/*
|
|
* uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
|
|
* KVM already allocated for text, data, bss, and static data structures).
|
|
*
|
|
* => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
|
|
* we assume that [vmin -> start] has already been allocated and that
|
|
* "end" is the end.
|
|
*/
|
|
|
|
void
|
|
uvm_km_bootstrap(vaddr_t start, vaddr_t end)
|
|
{
|
|
bool kmem_arena_small;
|
|
vaddr_t base = VM_MIN_KERNEL_ADDRESS;
|
|
struct uvm_map_args args;
|
|
int error;
|
|
|
|
UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
|
|
UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
|
|
start, end, 0,0);
|
|
|
|
kmeminit_nkmempages();
|
|
kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
|
|
kmem_arena_small = kmemsize < 64 * 1024 * 1024;
|
|
|
|
UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
|
|
|
|
/*
|
|
* next, init kernel memory objects.
|
|
*/
|
|
|
|
/* kernel_object: for pageable anonymous kernel memory */
|
|
uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
|
|
VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
|
|
|
|
/*
|
|
* init the map and reserve any space that might already
|
|
* have been allocated kernel space before installing.
|
|
*/
|
|
|
|
uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
|
|
kernel_map_store.pmap = pmap_kernel();
|
|
if (start != base) {
|
|
error = uvm_map_prepare(&kernel_map_store,
|
|
base, start - base,
|
|
NULL, UVM_UNKNOWN_OFFSET, 0,
|
|
UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
|
|
UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
|
|
if (!error) {
|
|
kernel_image_mapent_store.flags =
|
|
UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
|
|
error = uvm_map_enter(&kernel_map_store, &args,
|
|
&kernel_image_mapent_store);
|
|
}
|
|
|
|
if (error)
|
|
panic(
|
|
"uvm_km_bootstrap: could not reserve space for kernel");
|
|
|
|
kmembase = args.uma_start + args.uma_size;
|
|
} else {
|
|
kmembase = base;
|
|
}
|
|
|
|
error = uvm_map_prepare(&kernel_map_store,
|
|
kmembase, kmemsize,
|
|
NULL, UVM_UNKNOWN_OFFSET, 0,
|
|
UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
|
|
UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
|
|
if (!error) {
|
|
kernel_kmem_mapent_store.flags =
|
|
UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
|
|
error = uvm_map_enter(&kernel_map_store, &args,
|
|
&kernel_kmem_mapent_store);
|
|
}
|
|
|
|
if (error)
|
|
panic("uvm_km_bootstrap: could not reserve kernel kmem");
|
|
|
|
/*
|
|
* install!
|
|
*/
|
|
|
|
kernel_map = &kernel_map_store;
|
|
|
|
pool_subsystem_init();
|
|
vmem_bootstrap();
|
|
|
|
kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
|
|
NULL, NULL, NULL,
|
|
0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
|
|
|
|
vmem_init(kmem_arena);
|
|
|
|
UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
|
|
", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
|
|
|
|
kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
|
|
vmem_alloc, vmem_free, kmem_arena,
|
|
(kmem_arena_small ? 4 : 8) * PAGE_SIZE,
|
|
VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
|
|
|
|
UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
|
|
}
|
|
|
|
/*
|
|
* uvm_km_init: init the kernel maps virtual memory caches
|
|
* and start the pool/kmem allocator.
|
|
*/
|
|
void
|
|
uvm_km_init(void)
|
|
{
|
|
|
|
kmem_init();
|
|
|
|
kmeminit(); // killme
|
|
}
|
|
|
|
/*
|
|
* uvm_km_suballoc: allocate a submap in the kernel map. once a submap
|
|
* is allocated all references to that area of VM must go through it. this
|
|
* allows the locking of VAs in kernel_map to be broken up into regions.
|
|
*
|
|
* => if `fixed' is true, *vmin specifies where the region described
|
|
* pager_map => used to map "buf" structures into kernel space
|
|
* by the submap must start
|
|
* => if submap is non NULL we use that as the submap, otherwise we
|
|
* alloc a new map
|
|
*/
|
|
|
|
struct vm_map *
|
|
uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
|
|
vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
|
|
struct vm_map *submap)
|
|
{
|
|
int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
|
|
UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
|
|
|
|
KASSERT(vm_map_pmap(map) == pmap_kernel());
|
|
|
|
size = round_page(size); /* round up to pagesize */
|
|
|
|
/*
|
|
* first allocate a blank spot in the parent map
|
|
*/
|
|
|
|
if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
|
|
UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
|
|
UVM_ADV_RANDOM, mapflags)) != 0) {
|
|
panic("%s: unable to allocate space in parent map", __func__);
|
|
}
|
|
|
|
/*
|
|
* set VM bounds (vmin is filled in by uvm_map)
|
|
*/
|
|
|
|
*vmax = *vmin + size;
|
|
|
|
/*
|
|
* add references to pmap and create or init the submap
|
|
*/
|
|
|
|
pmap_reference(vm_map_pmap(map));
|
|
if (submap == NULL) {
|
|
submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
|
|
if (submap == NULL)
|
|
panic("uvm_km_suballoc: unable to create submap");
|
|
}
|
|
uvm_map_setup(submap, *vmin, *vmax, flags);
|
|
submap->pmap = vm_map_pmap(map);
|
|
|
|
/*
|
|
* now let uvm_map_submap plug in it...
|
|
*/
|
|
|
|
if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
|
|
panic("uvm_km_suballoc: submap allocation failed");
|
|
|
|
return(submap);
|
|
}
|
|
|
|
/*
|
|
* uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
|
|
*/
|
|
|
|
void
|
|
uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
|
|
{
|
|
struct uvm_object * const uobj = uvm_kernel_object;
|
|
const voff_t start = startva - vm_map_min(kernel_map);
|
|
const voff_t end = endva - vm_map_min(kernel_map);
|
|
struct vm_page *pg;
|
|
voff_t curoff, nextoff;
|
|
int swpgonlydelta = 0;
|
|
UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
|
|
|
|
KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
|
|
KASSERT(startva < endva);
|
|
KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
|
|
|
|
mutex_enter(uobj->vmobjlock);
|
|
pmap_remove(pmap_kernel(), startva, endva);
|
|
for (curoff = start; curoff < end; curoff = nextoff) {
|
|
nextoff = curoff + PAGE_SIZE;
|
|
pg = uvm_pagelookup(uobj, curoff);
|
|
if (pg != NULL && pg->flags & PG_BUSY) {
|
|
pg->flags |= PG_WANTED;
|
|
UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
|
|
"km_pgrm", 0);
|
|
mutex_enter(uobj->vmobjlock);
|
|
nextoff = curoff;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* free the swap slot, then the page.
|
|
*/
|
|
|
|
if (pg == NULL &&
|
|
uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
|
|
swpgonlydelta++;
|
|
}
|
|
uao_dropswap(uobj, curoff >> PAGE_SHIFT);
|
|
if (pg != NULL) {
|
|
mutex_enter(&uvm_pageqlock);
|
|
uvm_pagefree(pg);
|
|
mutex_exit(&uvm_pageqlock);
|
|
}
|
|
}
|
|
mutex_exit(uobj->vmobjlock);
|
|
|
|
if (swpgonlydelta > 0) {
|
|
mutex_enter(&uvm_swap_data_lock);
|
|
KASSERT(uvmexp.swpgonly >= swpgonlydelta);
|
|
uvmexp.swpgonly -= swpgonlydelta;
|
|
mutex_exit(&uvm_swap_data_lock);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
|
|
* regions.
|
|
*
|
|
* => when you unmap a part of anonymous kernel memory you want to toss
|
|
* the pages right away. (this is called from uvm_unmap_...).
|
|
* => none of the pages will ever be busy, and none of them will ever
|
|
* be on the active or inactive queues (because they have no object).
|
|
*/
|
|
|
|
void
|
|
uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
|
|
{
|
|
#define __PGRM_BATCH 16
|
|
struct vm_page *pg;
|
|
paddr_t pa[__PGRM_BATCH];
|
|
int npgrm, i;
|
|
vaddr_t va, batch_vastart;
|
|
|
|
UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
|
|
|
|
KASSERT(VM_MAP_IS_KERNEL(map));
|
|
KASSERTMSG(vm_map_min(map) <= start,
|
|
"vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
|
|
" (size=%#"PRIxVSIZE")",
|
|
vm_map_min(map), start, end - start);
|
|
KASSERT(start < end);
|
|
KASSERT(end <= vm_map_max(map));
|
|
|
|
for (va = start; va < end;) {
|
|
batch_vastart = va;
|
|
/* create a batch of at most __PGRM_BATCH pages to free */
|
|
for (i = 0;
|
|
i < __PGRM_BATCH && va < end;
|
|
va += PAGE_SIZE) {
|
|
if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
|
|
continue;
|
|
}
|
|
i++;
|
|
}
|
|
npgrm = i;
|
|
/* now remove the mappings */
|
|
pmap_kremove(batch_vastart, va - batch_vastart);
|
|
/* and free the pages */
|
|
for (i = 0; i < npgrm; i++) {
|
|
pg = PHYS_TO_VM_PAGE(pa[i]);
|
|
KASSERT(pg);
|
|
KASSERT(pg->uobject == NULL && pg->uanon == NULL);
|
|
KASSERT((pg->flags & PG_BUSY) == 0);
|
|
uvm_pagefree(pg);
|
|
}
|
|
}
|
|
#undef __PGRM_BATCH
|
|
}
|
|
|
|
#if defined(DEBUG)
|
|
void
|
|
uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
|
|
{
|
|
struct vm_page *pg;
|
|
vaddr_t va;
|
|
paddr_t pa;
|
|
UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
|
|
|
|
KDASSERT(VM_MAP_IS_KERNEL(map));
|
|
KDASSERT(vm_map_min(map) <= start);
|
|
KDASSERT(start < end);
|
|
KDASSERT(end <= vm_map_max(map));
|
|
|
|
for (va = start; va < end; va += PAGE_SIZE) {
|
|
if (pmap_extract(pmap_kernel(), va, &pa)) {
|
|
panic("uvm_km_check_empty: va %p has pa 0x%llx",
|
|
(void *)va, (long long)pa);
|
|
}
|
|
mutex_enter(uvm_kernel_object->vmobjlock);
|
|
pg = uvm_pagelookup(uvm_kernel_object,
|
|
va - vm_map_min(kernel_map));
|
|
mutex_exit(uvm_kernel_object->vmobjlock);
|
|
if (pg) {
|
|
panic("uvm_km_check_empty: "
|
|
"has page hashed at %p", (const void *)va);
|
|
}
|
|
}
|
|
}
|
|
#endif /* defined(DEBUG) */
|
|
|
|
/*
|
|
* uvm_km_alloc: allocate an area of kernel memory.
|
|
*
|
|
* => NOTE: we can return 0 even if we can wait if there is not enough
|
|
* free VM space in the map... caller should be prepared to handle
|
|
* this case.
|
|
* => we return KVA of memory allocated
|
|
*/
|
|
|
|
vaddr_t
|
|
uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
|
|
{
|
|
vaddr_t kva, loopva;
|
|
vaddr_t offset;
|
|
vsize_t loopsize;
|
|
struct vm_page *pg;
|
|
struct uvm_object *obj;
|
|
int pgaflags;
|
|
vm_prot_t prot;
|
|
UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
|
|
|
|
KASSERT(vm_map_pmap(map) == pmap_kernel());
|
|
KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
|
|
(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
|
|
(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
|
|
KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
|
|
KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
|
|
|
|
/*
|
|
* setup for call
|
|
*/
|
|
|
|
kva = vm_map_min(map); /* hint */
|
|
size = round_page(size);
|
|
obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
|
|
UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
|
|
map, obj, size, flags);
|
|
|
|
/*
|
|
* allocate some virtual space
|
|
*/
|
|
|
|
if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
|
|
align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
|
|
UVM_ADV_RANDOM,
|
|
(flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
|
|
| UVM_KMF_COLORMATCH)))) != 0)) {
|
|
UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* if all we wanted was VA, return now
|
|
*/
|
|
|
|
if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
|
|
UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
|
|
return(kva);
|
|
}
|
|
|
|
/*
|
|
* recover object offset from virtual address
|
|
*/
|
|
|
|
offset = kva - vm_map_min(kernel_map);
|
|
UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
|
|
|
|
/*
|
|
* now allocate and map in the memory... note that we are the only ones
|
|
* whom should ever get a handle on this area of VM.
|
|
*/
|
|
|
|
loopva = kva;
|
|
loopsize = size;
|
|
|
|
pgaflags = UVM_FLAG_COLORMATCH;
|
|
if (flags & UVM_KMF_NOWAIT)
|
|
pgaflags |= UVM_PGA_USERESERVE;
|
|
if (flags & UVM_KMF_ZERO)
|
|
pgaflags |= UVM_PGA_ZERO;
|
|
prot = VM_PROT_READ | VM_PROT_WRITE;
|
|
if (flags & UVM_KMF_EXEC)
|
|
prot |= VM_PROT_EXECUTE;
|
|
while (loopsize) {
|
|
KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
|
|
"loopva=%#"PRIxVADDR, loopva);
|
|
|
|
pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
|
|
#ifdef UVM_KM_VMFREELIST
|
|
UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
|
|
#else
|
|
UVM_PGA_STRAT_NORMAL, 0
|
|
#endif
|
|
);
|
|
|
|
/*
|
|
* out of memory?
|
|
*/
|
|
|
|
if (__predict_false(pg == NULL)) {
|
|
if ((flags & UVM_KMF_NOWAIT) ||
|
|
((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
|
|
/* free everything! */
|
|
uvm_km_free(map, kva, size,
|
|
flags & UVM_KMF_TYPEMASK);
|
|
return (0);
|
|
} else {
|
|
uvm_wait("km_getwait2"); /* sleep here */
|
|
continue;
|
|
}
|
|
}
|
|
|
|
pg->flags &= ~PG_BUSY; /* new page */
|
|
UVM_PAGE_OWN(pg, NULL);
|
|
|
|
/*
|
|
* map it in
|
|
*/
|
|
|
|
pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
|
|
prot, PMAP_KMPAGE);
|
|
loopva += PAGE_SIZE;
|
|
offset += PAGE_SIZE;
|
|
loopsize -= PAGE_SIZE;
|
|
}
|
|
|
|
pmap_update(pmap_kernel());
|
|
|
|
UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
|
|
return(kva);
|
|
}
|
|
|
|
/*
|
|
* uvm_km_free: free an area of kernel memory
|
|
*/
|
|
|
|
void
|
|
uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
|
|
{
|
|
UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
|
|
|
|
KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
|
|
(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
|
|
(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
|
|
KASSERT((addr & PAGE_MASK) == 0);
|
|
KASSERT(vm_map_pmap(map) == pmap_kernel());
|
|
|
|
size = round_page(size);
|
|
|
|
if (flags & UVM_KMF_PAGEABLE) {
|
|
uvm_km_pgremove(addr, addr + size);
|
|
} else if (flags & UVM_KMF_WIRED) {
|
|
/*
|
|
* Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
|
|
* remove it after. See comment below about KVA visibility.
|
|
*/
|
|
uvm_km_pgremove_intrsafe(map, addr, addr + size);
|
|
}
|
|
|
|
/*
|
|
* Note: uvm_unmap_remove() calls pmap_update() for us, before
|
|
* KVA becomes globally available.
|
|
*/
|
|
|
|
uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
|
|
}
|
|
|
|
/* Sanity; must specify both or none. */
|
|
#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
|
|
(!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
|
|
#error Must specify MAP and UNMAP together.
|
|
#endif
|
|
|
|
int
|
|
uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
|
|
vmem_addr_t *addr)
|
|
{
|
|
struct vm_page *pg;
|
|
vmem_addr_t va;
|
|
int rc;
|
|
vaddr_t loopva;
|
|
vsize_t loopsize;
|
|
|
|
size = round_page(size);
|
|
|
|
#if defined(PMAP_MAP_POOLPAGE)
|
|
if (size == PAGE_SIZE) {
|
|
again:
|
|
#ifdef PMAP_ALLOC_POOLPAGE
|
|
pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
|
|
0 : UVM_PGA_USERESERVE);
|
|
#else
|
|
pg = uvm_pagealloc(NULL, 0, NULL,
|
|
(flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
|
|
#endif /* PMAP_ALLOC_POOLPAGE */
|
|
if (__predict_false(pg == NULL)) {
|
|
if (flags & VM_SLEEP) {
|
|
uvm_wait("plpg");
|
|
goto again;
|
|
}
|
|
return ENOMEM;
|
|
}
|
|
va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
|
|
if (__predict_false(va == 0)) {
|
|
uvm_pagefree(pg);
|
|
return ENOMEM;
|
|
}
|
|
*addr = va;
|
|
return 0;
|
|
}
|
|
#endif /* PMAP_MAP_POOLPAGE */
|
|
|
|
rc = vmem_alloc(vm, size, flags, &va);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
#ifdef PMAP_GROWKERNEL
|
|
/*
|
|
* Since we just set kernel_map, the check in uvm_map_prepare to grow the
|
|
* kernel's VA space never happened so we must do it here. If the kernel
|
|
* pmap can't map the requested space, then allocate more resources for it.
|
|
*/
|
|
if (uvm_maxkaddr < va + size) {
|
|
uvm_maxkaddr = pmap_growkernel(va + size);
|
|
if (uvm_maxkaddr < va + size)
|
|
panic("%s: pmap_growkernel(%#"PRIxVADDR") failed",
|
|
__func__, va + size);
|
|
}
|
|
#endif
|
|
|
|
loopva = va;
|
|
loopsize = size;
|
|
|
|
while (loopsize) {
|
|
#ifdef DIAGNOSTIC
|
|
paddr_t pa;
|
|
#endif
|
|
KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
|
|
"loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
|
|
" pa=%#"PRIxPADDR" vmem=%p",
|
|
loopva, loopsize, pa, vm);
|
|
|
|
pg = uvm_pagealloc(NULL, loopva, NULL,
|
|
UVM_FLAG_COLORMATCH
|
|
| ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
|
|
if (__predict_false(pg == NULL)) {
|
|
if (flags & VM_SLEEP) {
|
|
uvm_wait("plpg");
|
|
continue;
|
|
} else {
|
|
uvm_km_pgremove_intrsafe(kernel_map, va,
|
|
va + size);
|
|
vmem_free(vm, va, size);
|
|
return ENOMEM;
|
|
}
|
|
}
|
|
|
|
pg->flags &= ~PG_BUSY; /* new page */
|
|
UVM_PAGE_OWN(pg, NULL);
|
|
pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
|
|
VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
|
|
|
|
loopva += PAGE_SIZE;
|
|
loopsize -= PAGE_SIZE;
|
|
}
|
|
pmap_update(pmap_kernel());
|
|
|
|
*addr = va;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
|
|
{
|
|
|
|
size = round_page(size);
|
|
#if defined(PMAP_UNMAP_POOLPAGE)
|
|
if (size == PAGE_SIZE) {
|
|
paddr_t pa;
|
|
|
|
pa = PMAP_UNMAP_POOLPAGE(addr);
|
|
uvm_pagefree(PHYS_TO_VM_PAGE(pa));
|
|
return;
|
|
}
|
|
#endif /* PMAP_UNMAP_POOLPAGE */
|
|
uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
|
|
pmap_update(pmap_kernel());
|
|
|
|
vmem_free(vm, addr, size);
|
|
}
|
|
|
|
bool
|
|
uvm_km_va_starved_p(void)
|
|
{
|
|
vmem_size_t total;
|
|
vmem_size_t free;
|
|
|
|
total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
|
|
free = vmem_size(kmem_arena, VMEM_FREE);
|
|
|
|
return (free < (total / 10));
|
|
}
|