NetBSD/sys/dev/nand/nandemulator.c
2011-06-28 10:32:45 +00:00

811 lines
19 KiB
C

/* $NetBSD: nandemulator.c,v 1.5 2011/06/28 10:32:45 ahoka Exp $ */
/*-
* Copyright (c) 2011 Department of Software Engineering,
* University of Szeged, Hungary
* Copyright (c) 2011 Adam Hoka <ahoka@NetBSD.org>
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by the Department of Software Engineering, University of Szeged, Hungary
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nandemulator.c,v 1.5 2011/06/28 10:32:45 ahoka Exp $");
#include <sys/param.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/kmem.h>
#include <sys/kernel.h>
#include "nandemulator.h"
#include <dev/nand/nand.h>
#include <dev/nand/onfi.h>
#include <dev/nand/nand_crc.h>
extern struct cfdriver nandemulator_cd;
void nandemulatorattach(int n);
static int nandemulator_match(device_t, cfdata_t, void *);
static void nandemulator_attach(device_t, device_t, void *);
static int nandemulator_detach(device_t, int);
static void nandemulator_device_reset(device_t);
static void nandemulator_command(device_t, uint8_t);
static void nandemulator_address(device_t, uint8_t);
static void nandemulator_busy(device_t);
static void nandemulator_read_1(device_t, uint8_t *);
static void nandemulator_write_1(device_t, uint8_t);
static void nandemulator_read_2(device_t, uint16_t *);
static void nandemulator_write_2(device_t, uint16_t);
static void nandemulator_read_buf_1(device_t, void *, size_t);
static void nandemulator_read_buf_2(device_t, void *, size_t);
static void nandemulator_write_buf_1(device_t, const void *, size_t);
static void nandemulator_write_buf_2(device_t, const void *, size_t);
static size_t nandemulator_address_to_page(device_t);
static size_t nandemulator_page_to_backend_offset(device_t, size_t);
static size_t nandemulator_column_address_to_subpage(device_t);
/*
#define NANDEMULATOR_DEBUG 1
#ifdef NANDEMULATOR_DEBUG
#warning debug enabled
#define DPRINTF(x) if (nandemulatordebug) printf x
#define DPRINTFN(n,x) if (nandemulatordebug>(n)) printf x
#else
#error no debug
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#ifdef NANDEMULATOR_DEBUG
int nandemulatordebug = NANDEMULATOR_DEBUG;
#endif
*/
extern int nanddebug;
enum {
NANDEMULATOR_8BIT,
NANDEMULATOR_16BIT
};
struct nandemulator_softc {
device_t sc_dev;
device_t sc_nanddev;
int sc_buswidth;
struct nand_interface sc_nand_if;
uint8_t sc_command;
size_t sc_io_len;
uint8_t *sc_io_pointer;
uint64_t sc_address;
uint8_t *sc_backend;
size_t sc_backend_size;
size_t sc_device_size;
bool sc_register_writable;
uint8_t sc_status_register;
uint8_t sc_ids[2];
uint8_t sc_onfi[4];
size_t sc_page_size;
size_t sc_block_size;
size_t sc_spare_size;
size_t sc_lun_size;
uint8_t sc_row_cycles;
uint8_t sc_column_cycles;
uint64_t sc_row_mask;
int sc_address_counter;
struct onfi_parameter_page *sc_parameter_page;
};
CFATTACH_DECL_NEW(nandemulator, sizeof(struct nandemulator_softc),
nandemulator_match, nandemulator_attach, nandemulator_detach, NULL);
void
nandemulatorattach(int n)
{
int i, err;
cfdata_t cf;
aprint_debug("nandemulator: requested %d units\n", n);
err = config_cfattach_attach(nandemulator_cd.cd_name,
&nandemulator_ca);
if (err) {
aprint_error("%s: couldn't register cfattach: %d\n",
nandemulator_cd.cd_name, err);
config_cfdriver_detach(&nandemulator_cd);
return;
}
for (i = 0; i < n; i++) {
cf = kmem_alloc(sizeof(struct cfdata), KM_NOSLEEP);
if (cf == NULL) {
aprint_error("%s: couldn't allocate cfdata\n",
nandemulator_cd.cd_name);
continue;
}
cf->cf_name = nandemulator_cd.cd_name;
cf->cf_atname = nandemulator_cd.cd_name;
cf->cf_unit = i;
cf->cf_fstate = FSTATE_STAR;
(void)config_attach_pseudo(cf);
}
}
/* ARGSUSED */
static int
nandemulator_match(device_t parent, cfdata_t match, void *aux)
{
/* pseudo device, always attaches */
return 1;
}
static void
nandemulator_attach(device_t parent, device_t self, void *aux)
{
struct nandemulator_softc *sc = device_private(self);
int i;
aprint_normal_dev(self, "NAND emulator\n");
sc->sc_dev = self;
nand_init_interface(&sc->sc_nand_if);
sc->sc_nand_if.command = &nandemulator_command;
sc->sc_nand_if.address = &nandemulator_address;
sc->sc_nand_if.read_buf_1 = &nandemulator_read_buf_1;
sc->sc_nand_if.read_buf_2 = &nandemulator_read_buf_2;
sc->sc_nand_if.read_1 = &nandemulator_read_1;
sc->sc_nand_if.read_2 = &nandemulator_read_2;
sc->sc_nand_if.write_buf_1 = &nandemulator_write_buf_1;
sc->sc_nand_if.write_buf_2 = &nandemulator_write_buf_2;
sc->sc_nand_if.write_1 = &nandemulator_write_1;
sc->sc_nand_if.write_2 = &nandemulator_write_2;
sc->sc_nand_if.busy = &nandemulator_busy;
sc->sc_nand_if.ecc.necc_code_size = 3;
sc->sc_nand_if.ecc.necc_block_size = 256;
if (!pmf_device_register1(sc->sc_dev, NULL, NULL, NULL))
aprint_error_dev(sc->sc_dev,
"couldn't establish power handler\n");
sc->sc_buswidth = NANDEMULATOR_16BIT; /* 16bit for now */
/* hardcode these now, make it configurable later */
sc->sc_device_size = 32 * 1024 * 1024; /* 32MB */
sc->sc_page_size = 2048;
sc->sc_block_size = 64;
sc->sc_lun_size =
sc->sc_device_size / (sc->sc_page_size * sc->sc_block_size);
KASSERT(sc->sc_device_size %
(sc->sc_page_size * sc->sc_block_size) == 0);
sc->sc_spare_size = 64;
sc->sc_column_cycles = 2;
sc->sc_row_cycles = 3;
/* init the emulator data structures */
sc->sc_backend_size =
sc->sc_device_size +
sc->sc_device_size / sc->sc_page_size * sc->sc_spare_size;
sc->sc_backend = kmem_alloc(sc->sc_backend_size, KM_SLEEP);
memset(sc->sc_backend, 0xff, sc->sc_backend_size);
sc->sc_parameter_page =
kmem_zalloc(sizeof(struct onfi_parameter_page) * 4, KM_SLEEP);
struct onfi_parameter_page *opp;
uint8_t sig[4] = { 'O', 'N', 'F', 'I' };
for (i = 0; i < 4; i++) {
opp = &sc->sc_parameter_page[i];
opp->param_signature = *(uint32_t *)sig;
opp->param_pagesize = sc->sc_page_size;
opp->param_blocksize = sc->sc_block_size;
opp->param_sparesize = sc->sc_spare_size;
opp->param_lunsize = sc->sc_lun_size;
opp->param_numluns = 1;
opp->param_manufacturer_id = 0x00;
memcpy(opp->param_manufacturer,
"NETBSD", strlen("NETBSD"));
memcpy(opp->param_model,
"NANDEMULATOR", strlen("NANDEMULATOR"));
opp->param_features = ONFI_FEATURE_16BIT;
/* the lower 4 bits contain the row address cycles
* the upper 4 bits contain the column address cycles
*/
opp->param_addr_cycles = sc->sc_row_cycles;
opp->param_addr_cycles |= (sc->sc_column_cycles << 4);
opp->param_integrity_crc = nand_crc16((uint8_t *)opp, 254);
}
sc->sc_ids[0] = 0x00;
sc->sc_ids[1] = 0x00;
sc->sc_onfi[0] = 'O';
sc->sc_onfi[1] = 'N';
sc->sc_onfi[2] = 'F';
sc->sc_onfi[3] = 'I';
sc->sc_row_mask = 0x00;
for (i = 0; i < sc->sc_row_cycles; i++) {
sc->sc_row_mask <<= 8;
sc->sc_row_mask |= 0xff;
}
nandemulator_device_reset(self);
sc->sc_nanddev = nand_attach_mi(&sc->sc_nand_if, sc->sc_dev);
}
static int
nandemulator_detach(device_t self, int flags)
{
struct nandemulator_softc *sc = device_private(self);
int ret = 0;
aprint_normal_dev(sc->sc_dev, "detaching emulator\n");
pmf_device_deregister(sc->sc_dev);
if (sc->sc_nanddev != NULL)
ret = config_detach(sc->sc_nanddev, flags);
kmem_free(sc->sc_backend, sc->sc_backend_size);
kmem_free(sc->sc_parameter_page,
sizeof(struct onfi_parameter_page) * 4);
return ret;
}
/**
* bring the emulated device to a known state
*/
static void
nandemulator_device_reset(device_t self)
{
struct nandemulator_softc *sc = device_private(self);
DPRINTF(("device reset\n"));
sc->sc_command = 0;
sc->sc_register_writable = false;
sc->sc_io_len = 0;
sc->sc_io_pointer = NULL;
sc->sc_address = 0;
sc->sc_address_counter = 0;
sc->sc_status_register = ONFI_STATUS_RDY | ONFI_STATUS_WP;
}
static void
nandemulator_address_chip(device_t self)
{
struct nandemulator_softc *sc = device_private(self);
size_t page, offset;
KASSERT(sc->sc_address_counter ==
sc->sc_column_cycles + sc->sc_row_cycles);
if (sc->sc_address_counter !=
sc->sc_column_cycles + sc->sc_row_cycles) {
aprint_error_dev(self, "incorrect number of address cycles\n");
aprint_error_dev(self, "cc: %d, rc: %d, ac: %d\n",
sc->sc_column_cycles, sc->sc_row_cycles,
sc->sc_address_counter);
}
page = nandemulator_address_to_page(self);
offset = sc->sc_page_size * page;
DPRINTF(("READ/PROGRAM; page: 0x%jx (row addr: 0x%jx)\n",
(uintmax_t )page,
(uintmax_t )offset));
KASSERT(offset < sc->sc_device_size);
if (offset >= sc->sc_device_size) {
aprint_error_dev(self, "address > device size!\n");
sc->sc_io_len = 0;
} else {
size_t addr =
nandemulator_page_to_backend_offset(self, page);
size_t pageoff =
nandemulator_column_address_to_subpage(self);
DPRINTF(("subpage: 0x%jx\n", (uintmax_t )pageoff));
KASSERT(pageoff <
sc->sc_page_size + sc->sc_spare_size);
KASSERT(addr < sc->sc_backend_size);
sc->sc_io_pointer = sc->sc_backend + addr + pageoff;
sc->sc_io_len =
sc->sc_page_size + sc->sc_spare_size - pageoff;
}
}
static void
nandemulator_command(device_t self, uint8_t command)
{
struct nandemulator_softc *sc = device_private(self);
size_t offset, page;
sc->sc_command = command;
sc->sc_register_writable = false;
DPRINTF(("nandemulator command: 0x%hhx\n", command));
switch (command) {
case ONFI_READ_STATUS:
sc->sc_io_pointer = &sc->sc_status_register;
sc->sc_io_len = 1;
break;
case ONFI_RESET:
nandemulator_device_reset(self);
break;
case ONFI_PAGE_PROGRAM:
sc->sc_register_writable = true;
case ONFI_READ:
case ONFI_BLOCK_ERASE:
sc->sc_address_counter = 0;
case ONFI_READ_ID:
case ONFI_READ_PARAMETER_PAGE:
sc->sc_io_len = 0;
sc->sc_address = 0;
break;
case ONFI_PAGE_PROGRAM_START:
/* XXX the program should only happen here */
break;
case ONFI_READ_START:
nandemulator_address_chip(self);
break;
case ONFI_BLOCK_ERASE_START:
page = nandemulator_address_to_page(self);
offset = sc->sc_page_size * page;
KASSERT(offset %
(sc->sc_block_size * sc->sc_page_size) == 0);
KASSERT(offset < sc->sc_device_size);
if (offset >= sc->sc_device_size) {
aprint_error_dev(self, "address > device size!\n");
} else {
size_t addr =
nandemulator_page_to_backend_offset(self, page);
size_t blocklen =
sc->sc_block_size *
(sc->sc_page_size + sc->sc_spare_size);
KASSERT(addr < sc->sc_backend_size);
uint8_t *block = sc->sc_backend + addr;
DPRINTF(("erasing block at 0x%jx\n",
(uintmax_t )offset));
memset(block, 0xff, blocklen);
}
sc->sc_io_len = 0;
break;
default:
aprint_error_dev(self,
"invalid nand command (0x%hhx)\n", command);
KASSERT(false);
sc->sc_io_len = 0;
}
};
static void
nandemulator_address(device_t self, uint8_t address)
{
struct nandemulator_softc *sc = device_private(self);
DPRINTF(("nandemulator_address: %hhx\n", address));
/**
* we have to handle read id/parameter page here,
* as we can read right after giving the address.
*/
switch (sc->sc_command) {
case ONFI_READ_ID:
if (address == 0x00) {
sc->sc_io_len = 2;
sc->sc_io_pointer = sc->sc_ids;
} else if (address == 0x20) {
sc->sc_io_len = 4;
sc->sc_io_pointer = sc->sc_onfi;
} else {
sc->sc_io_len = 0;
}
break;
case ONFI_READ_PARAMETER_PAGE:
if (address == 0x00) {
sc->sc_io_len = sizeof(struct onfi_parameter_page) * 4;
sc->sc_io_pointer = (uint8_t *)sc->sc_parameter_page;
} else {
sc->sc_io_len = 0;
}
break;
case ONFI_PAGE_PROGRAM:
sc->sc_address <<= 8;
sc->sc_address |= address;
sc->sc_address_counter++;
if (sc->sc_address_counter ==
sc->sc_column_cycles + sc->sc_row_cycles) {
nandemulator_address_chip(self);
}
break;
default:
sc->sc_address <<= 8;
sc->sc_address |= address;
sc->sc_address_counter++;
}
};
static void
nandemulator_busy(device_t self)
{
#ifdef NANDEMULATOR_DELAYS
struct nandemulator_softc *sc = device_private(self);
/* do some delay depending on command */
switch (sc->sc_command) {
case ONFI_PAGE_PROGRAM_START:
case ONFI_BLOCK_ERASE_START:
DELAY(10);
break;
case ONFI_READ_START:
default:
DELAY(1);
}
#endif
}
static void
nandemulator_read_1(device_t self, uint8_t *data)
{
struct nandemulator_softc *sc = device_private(self);
KASSERT(sc->sc_io_len > 0);
if (sc->sc_io_len > 0) {
*data = *sc->sc_io_pointer;
sc->sc_io_pointer++;
sc->sc_io_len--;
} else {
aprint_error_dev(self, "reading byte from invalid location\n");
*data = 0xff;
}
}
static void
nandemulator_write_1(device_t self, uint8_t data)
{
struct nandemulator_softc *sc = device_private(self);
KASSERT(sc->sc_register_writable);
if (!sc->sc_register_writable) {
aprint_error_dev(self,
"trying to write read only location without effect\n");
return;
}
KASSERT(sc->sc_io_len > 0);
if (sc->sc_io_len > 0) {
*sc->sc_io_pointer = data;
sc->sc_io_pointer++;
sc->sc_io_len--;
} else {
aprint_error_dev(self, "write to invalid location\n");
}
}
static void
nandemulator_read_2(device_t self, uint16_t *data)
{
struct nandemulator_softc *sc = device_private(self);
KASSERT(sc->sc_buswidth == NANDEMULATOR_16BIT);
if (sc->sc_buswidth != NANDEMULATOR_16BIT) {
aprint_error_dev(self,
"trying to read a word on an 8bit chip\n");
return;
}
KASSERT(sc->sc_io_len > 1);
if (sc->sc_io_len > 1) {
*data = *(uint16_t *)sc->sc_io_pointer;
sc->sc_io_pointer += 2;
sc->sc_io_len -= 2;
} else {
aprint_error_dev(self, "reading word from invalid location\n");
*data = 0xffff;
}
}
static void
nandemulator_write_2(device_t self, uint16_t data)
{
struct nandemulator_softc *sc = device_private(self);
KASSERT(sc->sc_register_writable);
if (!sc->sc_register_writable) {
aprint_error_dev(self,
"trying to write read only location without effect\n");
return;
}
KASSERT(sc->sc_buswidth == NANDEMULATOR_16BIT);
if (sc->sc_buswidth != NANDEMULATOR_16BIT) {
aprint_error_dev(self,
"trying to write a word to an 8bit chip");
return;
}
KASSERT(sc->sc_io_len > 1);
if (sc->sc_io_len > 1) {
*(uint16_t *)sc->sc_io_pointer = data;
sc->sc_io_pointer += 2;
sc->sc_io_len -= 2;
} else {
aprint_error_dev(self, "writing to invalid location");
}
}
static void
nandemulator_read_buf_1(device_t self, void *buf, size_t len)
{
uint8_t *addr;
KASSERT(buf != NULL);
KASSERT(len >= 1);
addr = buf;
while (len > 0) {
nandemulator_read_1(self, addr);
addr++, len--;
}
}
static void
nandemulator_read_buf_2(device_t self, void *buf, size_t len)
{
uint16_t *addr;
KASSERT(buf != NULL);
KASSERT(len >= 2);
KASSERT(!(len & 0x01));
addr = buf;
len /= 2;
while (len > 0) {
nandemulator_read_2(self, addr);
addr++, len--;
}
}
static void
nandemulator_write_buf_1(device_t self, const void *buf, size_t len)
{
const uint8_t *addr;
KASSERT(buf != NULL);
KASSERT(len >= 1);
addr = buf;
while (len > 0) {
nandemulator_write_1(self, *addr);
addr++, len--;
}
}
static void
nandemulator_write_buf_2(device_t self, const void *buf, size_t len)
{
const uint16_t *addr;
KASSERT(buf != NULL);
KASSERT(len >= 2);
KASSERT(!(len & 0x01));
addr = buf;
len /= 2;
while (len > 0) {
nandemulator_write_2(self, *addr);
addr++, len--;
}
}
static size_t
nandemulator_address_to_page(device_t self)
{
struct nandemulator_softc *sc = device_private(self);
uint64_t address, offset;
int i;
address = htole64(sc->sc_address);
address &= sc->sc_row_mask;
offset = 0;
for (i = 0; i < sc->sc_row_cycles; i++) {
offset <<= 8;
offset |= (address & 0xff);
address >>= 8;
}
return le64toh(offset);
}
static size_t
nandemulator_column_address_to_subpage(device_t self)
{
struct nandemulator_softc *sc = device_private(self);
uint64_t address, offset;
int i;
address = htole64(sc->sc_address);
address >>= (8 * sc->sc_row_cycles);
offset = 0;
for (i = 0; i < sc->sc_column_cycles; i++) {
offset <<= 8;
offset |= (address & 0xff);
address >>= 8;
}
if (sc->sc_buswidth == NANDEMULATOR_16BIT)
return (size_t )le64toh(offset << 1);
else
return (size_t )le64toh(offset);
}
static size_t
nandemulator_page_to_backend_offset(device_t self, size_t page)
{
struct nandemulator_softc *sc = device_private(self);
return (sc->sc_page_size + sc->sc_spare_size) * page;
}
#ifdef _MODULE
MODULE(MODULE_CLASS_DRIVER, nandemulator, "nand");
static const struct cfiattrdata nandbuscf_iattrdata = {
"nandbus", 0, { { NULL, NULL, 0 }, }
};
static const struct cfiattrdata * const nandemulator_attrs[] = {
&nandbuscf_iattrdata, NULL
};
CFDRIVER_DECL(nandemulator, DV_DULL, nandemulator_attrs);
extern struct cfattach nandemulator_ca;
static int nandemulatorloc[] = { -1, -1 };
static struct cfdata nandemulator_cfdata[] = {
{
.cf_name = "nandemulator",
.cf_atname = "nandemulator",
.cf_unit = 0,
.cf_fstate = FSTATE_STAR,
.cf_loc = nandemulatorloc,
.cf_flags = 0,
.cf_pspec = NULL,
},
{ NULL, NULL, 0, 0, NULL, 0, NULL }
};
static int
nandemulator_modcmd(modcmd_t cmd, void *arg)
{
int error;
switch (cmd) {
case MODULE_CMD_INIT:
error = config_cfdriver_attach(&nandemulator_cd);
if (error) {
return error;
}
error = config_cfattach_attach(nandemulator_cd.cd_name,
&nandemulator_ca);
if (error) {
config_cfdriver_detach(&nandemulator_cd);
aprint_error("%s: unable to register cfattach\n",
nandemulator_cd.cd_name);
return error;
}
error = config_cfdata_attach(nandemulator_cfdata, 1);
if (error) {
config_cfattach_detach(nandemulator_cd.cd_name,
&nandemulator_ca);
config_cfdriver_detach(&nandemulator_cd);
aprint_error("%s: unable to register cfdata\n",
nandemulator_cd.cd_name);
return error;
}
(void)config_attach_pseudo(nandemulator_cfdata);
return 0;
case MODULE_CMD_FINI:
error = config_cfdata_detach(nandemulator_cfdata);
if (error) {
return error;
}
config_cfattach_detach(nandemulator_cd.cd_name,
&nandemulator_ca);
config_cfdriver_detach(&nandemulator_cd);
return 0;
case MODULE_CMD_AUTOUNLOAD:
/* prevent auto-unload */
return EBUSY;
default:
return ENOTTY;
}
}
#endif