NetBSD/sys/kern/subr_interrupt.c
chs fd34ea77eb remove checks for failure after memory allocation calls that cannot fail:
kmem_alloc() with KM_SLEEP
  kmem_zalloc() with KM_SLEEP
  percpu_alloc()
  pserialize_create()
  psref_class_create()

all of these paths include an assertion that the allocation has not failed,
so callers should not assert that again.
2017-06-01 02:45:05 +00:00

511 lines
12 KiB
C

/* $NetBSD: subr_interrupt.c,v 1.2 2017/06/01 02:45:13 chs Exp $ */
/*
* Copyright (c) 2015 Internet Initiative Japan Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_interrupt.c,v 1.2 2017/06/01 02:45:13 chs Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/cpu.h>
#include <sys/interrupt.h>
#include <sys/intr.h>
#include <sys/kcpuset.h>
#include <sys/kmem.h>
#include <sys/proc.h>
#include <sys/xcall.h>
#include <sys/sysctl.h>
#include <sys/conf.h>
#include <sys/intrio.h>
#include <sys/kauth.h>
#include <machine/limits.h>
#ifdef INTR_DEBUG
#define DPRINTF(msg) printf msg
#else
#define DPRINTF(msg)
#endif
static struct intrio_set kintrio_set = { "\0", NULL, 0 };
#define UNSET_NOINTR_SHIELD 0
#define SET_NOINTR_SHIELD 1
static void
interrupt_shield_xcall(void *arg1, void *arg2)
{
struct cpu_info *ci;
struct schedstate_percpu *spc;
int s, shield;
ci = arg1;
shield = (int)(intptr_t)arg2;
spc = &ci->ci_schedstate;
s = splsched();
if (shield == UNSET_NOINTR_SHIELD)
spc->spc_flags &= ~SPCF_NOINTR;
else if (shield == SET_NOINTR_SHIELD)
spc->spc_flags |= SPCF_NOINTR;
splx(s);
}
/*
* Change SPCF_NOINTR flag of schedstate_percpu->spc_flags.
*/
static int
interrupt_shield(u_int cpu_idx, int shield)
{
struct cpu_info *ci;
struct schedstate_percpu *spc;
KASSERT(mutex_owned(&cpu_lock));
ci = cpu_lookup(cpu_idx);
if (ci == NULL)
return EINVAL;
spc = &ci->ci_schedstate;
if (shield == UNSET_NOINTR_SHIELD) {
if ((spc->spc_flags & SPCF_NOINTR) == 0)
return 0;
} else if (shield == SET_NOINTR_SHIELD) {
if ((spc->spc_flags & SPCF_NOINTR) != 0)
return 0;
}
if (ci == curcpu() || !mp_online) {
interrupt_shield_xcall(ci, (void *)(intptr_t)shield);
} else {
uint64_t where;
where = xc_unicast(0, interrupt_shield_xcall, ci,
(void *)(intptr_t)shield, ci);
xc_wait(where);
}
spc->spc_lastmod = time_second;
return 0;
}
/*
* Move all assigned interrupts from "cpu_idx" to the other cpu as possible.
* The destination cpu is the lowest cpuid of available cpus.
* If there are no available cpus, give up to move interrupts.
*/
static int
interrupt_avert_intr(u_int cpu_idx)
{
kcpuset_t *cpuset;
struct intrids_handler *ii_handler;
intrid_t *ids;
int error, i, nids;
kcpuset_create(&cpuset, true);
kcpuset_set(cpuset, cpu_idx);
ii_handler = interrupt_construct_intrids(cpuset);
if (ii_handler == NULL) {
error = ENOMEM;
goto out;
}
nids = ii_handler->iih_nids;
if (nids == 0) {
error = 0;
goto destruct_out;
}
interrupt_get_available(cpuset);
kcpuset_clear(cpuset, cpu_idx);
if (kcpuset_iszero(cpuset)) {
DPRINTF(("%s: no available cpu\n", __func__));
error = ENOENT;
goto destruct_out;
}
ids = ii_handler->iih_intrids;
for (i = 0; i < nids; i++) {
error = interrupt_distribute_handler(ids[i], cpuset, NULL);
if (error)
break;
}
destruct_out:
interrupt_destruct_intrids(ii_handler);
out:
kcpuset_destroy(cpuset);
return error;
}
/*
* Return actual intrio_list_line size.
* intrio_list_line size is variable by ncpu.
*/
static size_t
interrupt_intrio_list_line_size(void)
{
return sizeof(struct intrio_list_line) +
sizeof(struct intrio_list_line_cpu) * (ncpu - 1);
}
/*
* Return the size of interrupts list data on success.
* Reterun 0 on failed.
*/
static size_t
interrupt_intrio_list_size(void)
{
struct intrids_handler *ii_handler;
size_t ilsize;
ilsize = 0;
/* buffer header */
ilsize += sizeof(struct intrio_list);
/* il_line body */
ii_handler = interrupt_construct_intrids(kcpuset_running);
if (ii_handler == NULL)
return 0;
ilsize += interrupt_intrio_list_line_size() * (ii_handler->iih_nids);
interrupt_destruct_intrids(ii_handler);
return ilsize;
}
/*
* Set intrctl list data to "il", and return list structure bytes.
* If error occured, return <0.
* If "data" == NULL, simply return list structure bytes.
*/
static int
interrupt_intrio_list(struct intrio_list *il, int length)
{
struct intrio_list_line *illine;
kcpuset_t *assigned, *avail;
struct intrids_handler *ii_handler;
intrid_t *ids;
size_t ilsize;
u_int cpu_idx;
int nids, intr_idx, ret, line_size;
ilsize = interrupt_intrio_list_size();
if (ilsize == 0)
return -ENOMEM;
if (il == NULL)
return ilsize;
if (length < ilsize)
return -ENOMEM;
illine = (struct intrio_list_line *)
((char *)il + sizeof(struct intrio_list));
il->il_lineoffset = (off_t)((uintptr_t)illine - (uintptr_t)il);
kcpuset_create(&avail, true);
interrupt_get_available(avail);
kcpuset_create(&assigned, true);
ii_handler = interrupt_construct_intrids(kcpuset_running);
if (ii_handler == NULL) {
DPRINTF(("%s: interrupt_construct_intrids() failed\n",
__func__));
ret = -ENOMEM;
goto out;
}
line_size = interrupt_intrio_list_line_size();
/* ensure interrupts are not added after interrupt_intrio_list_size(). */
nids = ii_handler->iih_nids;
ids = ii_handler->iih_intrids;
if (ilsize < sizeof(struct intrio_list) + line_size * nids) {
DPRINTF(("%s: interrupts are added during execution.\n",
__func__));
ret = -ENOMEM;
goto destruct_out;
}
for (intr_idx = 0; intr_idx < nids; intr_idx++) {
char devname[INTRDEVNAMEBUF];
strncpy(illine->ill_intrid, ids[intr_idx], INTRIDBUF);
interrupt_get_devname(ids[intr_idx], devname, sizeof(devname));
strncpy(illine->ill_xname, devname, INTRDEVNAMEBUF);
interrupt_get_assigned(ids[intr_idx], assigned);
for (cpu_idx = 0; cpu_idx < ncpu; cpu_idx++) {
struct intrio_list_line_cpu *illcpu =
&illine->ill_cpu[cpu_idx];
illcpu->illc_assigned =
kcpuset_isset(assigned, cpu_idx) ? true : false;
illcpu->illc_count =
interrupt_get_count(ids[intr_idx], cpu_idx);
}
illine = (struct intrio_list_line *)
((char *)illine + line_size);
}
ret = ilsize;
il->il_version = INTRIO_LIST_VERSION;
il->il_ncpus = ncpu;
il->il_nintrs = nids;
il->il_linesize = line_size;
il->il_bufsize = ilsize;
destruct_out:
interrupt_destruct_intrids(ii_handler);
out:
kcpuset_destroy(assigned);
kcpuset_destroy(avail);
return ret;
}
/*
* "intrctl list" entry
*/
static int
interrupt_intrio_list_sysctl(SYSCTLFN_ARGS)
{
int ret, error;
void *buf;
if (oldlenp == NULL)
return EINVAL;
/*
* If oldp == NULL, the sysctl(8) caller process want to get the size of
* intrctl list data only.
*/
if (oldp == NULL) {
ret = interrupt_intrio_list(NULL, 0);
if (ret < 0)
return -ret;
*oldlenp = ret;
return 0;
}
/*
* If oldp != NULL, the sysctl(8) caller process want to get both the size
* and the contents of intrctl list data.
*/
if (*oldlenp == 0)
return ENOMEM;
buf = kmem_zalloc(*oldlenp, KM_SLEEP);
ret = interrupt_intrio_list(buf, *oldlenp);
if (ret < 0) {
error = -ret;
goto out;
}
error = copyout(buf, oldp, *oldlenp);
out:
kmem_free(buf, *oldlenp);
return error;
}
/*
* "intrctl affinity" entry
*/
static int
interrupt_set_affinity_sysctl(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct intrio_set *iset;
cpuset_t *ucpuset;
kcpuset_t *kcpuset;
int error;
error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_INTR,
KAUTH_REQ_SYSTEM_INTR_AFFINITY, NULL, NULL, NULL);
if (error)
return EPERM;
node = *rnode;
iset = (struct intrio_set *)node.sysctl_data;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error != 0 || newp == NULL)
return error;
ucpuset = iset->cpuset;
kcpuset_create(&kcpuset, true);
error = kcpuset_copyin(ucpuset, kcpuset, iset->cpuset_size);
if (error)
goto out;
if (kcpuset_iszero(kcpuset)) {
error = EINVAL;
goto out;
}
error = interrupt_distribute_handler(iset->intrid, kcpuset, NULL);
out:
kcpuset_destroy(kcpuset);
return error;
}
/*
* "intrctl intr" entry
*/
static int
interrupt_intr_sysctl(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct intrio_set *iset;
cpuset_t *ucpuset;
kcpuset_t *kcpuset;
int error;
u_int cpu_idx;
error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_CPU,
KAUTH_REQ_SYSTEM_CPU_SETSTATE, NULL, NULL, NULL);
if (error)
return EPERM;
node = *rnode;
iset = (struct intrio_set *)node.sysctl_data;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error != 0 || newp == NULL)
return error;
ucpuset = iset->cpuset;
kcpuset_create(&kcpuset, true);
error = kcpuset_copyin(ucpuset, kcpuset, iset->cpuset_size);
if (error)
goto out;
if (kcpuset_iszero(kcpuset)) {
error = EINVAL;
goto out;
}
cpu_idx = kcpuset_ffs(kcpuset) - 1; /* support one CPU only */
mutex_enter(&cpu_lock);
error = interrupt_shield(cpu_idx, UNSET_NOINTR_SHIELD);
mutex_exit(&cpu_lock);
out:
kcpuset_destroy(kcpuset);
return error;
}
/*
* "intrctl nointr" entry
*/
static int
interrupt_nointr_sysctl(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct intrio_set *iset;
cpuset_t *ucpuset;
kcpuset_t *kcpuset;
int error;
u_int cpu_idx;
error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_CPU,
KAUTH_REQ_SYSTEM_CPU_SETSTATE, NULL, NULL, NULL);
if (error)
return EPERM;
node = *rnode;
iset = (struct intrio_set *)node.sysctl_data;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error != 0 || newp == NULL)
return error;
ucpuset = iset->cpuset;
kcpuset_create(&kcpuset, true);
error = kcpuset_copyin(ucpuset, kcpuset, iset->cpuset_size);
if (error)
goto out;
if (kcpuset_iszero(kcpuset)) {
error = EINVAL;
goto out;
}
cpu_idx = kcpuset_ffs(kcpuset) - 1; /* support one CPU only */
mutex_enter(&cpu_lock);
error = interrupt_shield(cpu_idx, SET_NOINTR_SHIELD);
mutex_exit(&cpu_lock);
if (error)
goto out;
error = interrupt_avert_intr(cpu_idx);
out:
kcpuset_destroy(kcpuset);
return error;
}
SYSCTL_SETUP(sysctl_interrupt_setup, "sysctl interrupt setup")
{
const struct sysctlnode *node = NULL;
sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT, CTLTYPE_NODE,
"intr", SYSCTL_DESCR("Interrupt options"),
NULL, 0, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT, CTLTYPE_STRUCT,
"list", SYSCTL_DESCR("intrctl list"),
interrupt_intrio_list_sysctl, 0, NULL,
0, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_STRUCT,
"affinity", SYSCTL_DESCR("set affinity"),
interrupt_set_affinity_sysctl, 0, &kintrio_set,
sizeof(kintrio_set), CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_STRUCT,
"intr", SYSCTL_DESCR("set intr"),
interrupt_intr_sysctl, 0, &kintrio_set,
sizeof(kintrio_set), CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_STRUCT,
"nointr", SYSCTL_DESCR("set nointr"),
interrupt_nointr_sysctl, 0, &kintrio_set,
sizeof(kintrio_set), CTL_CREATE, CTL_EOL);
}