d7746f2ee3
as specified by _lwp_create(2) - Reset the signal stack for threads created with _lwp_create(2)
2748 lines
69 KiB
C
2748 lines
69 KiB
C
/* $NetBSD: kern_exec.c,v 1.442 2017/04/21 15:10:34 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2008 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (C) 1993, 1994, 1996 Christopher G. Demetriou
|
|
* Copyright (C) 1992 Wolfgang Solfrank.
|
|
* Copyright (C) 1992 TooLs GmbH.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by TooLs GmbH.
|
|
* 4. The name of TooLs GmbH may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_exec.c,v 1.442 2017/04/21 15:10:34 christos Exp $");
|
|
|
|
#include "opt_exec.h"
|
|
#include "opt_execfmt.h"
|
|
#include "opt_ktrace.h"
|
|
#include "opt_modular.h"
|
|
#include "opt_syscall_debug.h"
|
|
#include "veriexec.h"
|
|
#include "opt_pax.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/acct.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/ktrace.h>
|
|
#include <sys/uidinfo.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/ras.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/syscall.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/lwpctl.h>
|
|
#include <sys/pax.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/module.h>
|
|
#include <sys/syscallvar.h>
|
|
#include <sys/syscallargs.h>
|
|
#if NVERIEXEC > 0
|
|
#include <sys/verified_exec.h>
|
|
#endif /* NVERIEXEC > 0 */
|
|
#include <sys/sdt.h>
|
|
#include <sys/spawn.h>
|
|
#include <sys/prot.h>
|
|
#include <sys/cprng.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <machine/reg.h>
|
|
|
|
#include <compat/common/compat_util.h>
|
|
|
|
#ifndef MD_TOPDOWN_INIT
|
|
#ifdef __USE_TOPDOWN_VM
|
|
#define MD_TOPDOWN_INIT(epp) (epp)->ep_flags |= EXEC_TOPDOWN_VM
|
|
#else
|
|
#define MD_TOPDOWN_INIT(epp)
|
|
#endif
|
|
#endif
|
|
|
|
struct execve_data;
|
|
|
|
extern int user_va0_disable;
|
|
|
|
static size_t calcargs(struct execve_data * restrict, const size_t);
|
|
static size_t calcstack(struct execve_data * restrict, const size_t);
|
|
static int copyoutargs(struct execve_data * restrict, struct lwp *,
|
|
char * const);
|
|
static int copyoutpsstrs(struct execve_data * restrict, struct proc *);
|
|
static int copyinargs(struct execve_data * restrict, char * const *,
|
|
char * const *, execve_fetch_element_t, char **);
|
|
static int copyinargstrs(struct execve_data * restrict, char * const *,
|
|
execve_fetch_element_t, char **, size_t *, void (*)(const void *, size_t));
|
|
static int exec_sigcode_map(struct proc *, const struct emul *);
|
|
|
|
#if defined(DEBUG) && !defined(DEBUG_EXEC)
|
|
#define DEBUG_EXEC
|
|
#endif
|
|
#ifdef DEBUG_EXEC
|
|
#define DPRINTF(a) printf a
|
|
#define COPYPRINTF(s, a, b) printf("%s, %d: copyout%s @%p %zu\n", __func__, \
|
|
__LINE__, (s), (a), (b))
|
|
static void dump_vmcmds(const struct exec_package * const, size_t, int);
|
|
#define DUMPVMCMDS(p, x, e) do { dump_vmcmds((p), (x), (e)); } while (0)
|
|
#else
|
|
#define DPRINTF(a)
|
|
#define COPYPRINTF(s, a, b)
|
|
#define DUMPVMCMDS(p, x, e) do {} while (0)
|
|
#endif /* DEBUG_EXEC */
|
|
|
|
/*
|
|
* DTrace SDT provider definitions
|
|
*/
|
|
SDT_PROVIDER_DECLARE(proc);
|
|
SDT_PROBE_DEFINE1(proc, kernel, , exec, "char *");
|
|
SDT_PROBE_DEFINE1(proc, kernel, , exec__success, "char *");
|
|
SDT_PROBE_DEFINE1(proc, kernel, , exec__failure, "int");
|
|
|
|
/*
|
|
* Exec function switch:
|
|
*
|
|
* Note that each makecmds function is responsible for loading the
|
|
* exec package with the necessary functions for any exec-type-specific
|
|
* handling.
|
|
*
|
|
* Functions for specific exec types should be defined in their own
|
|
* header file.
|
|
*/
|
|
static const struct execsw **execsw = NULL;
|
|
static int nexecs;
|
|
|
|
u_int exec_maxhdrsz; /* must not be static - used by netbsd32 */
|
|
|
|
/* list of dynamically loaded execsw entries */
|
|
static LIST_HEAD(execlist_head, exec_entry) ex_head =
|
|
LIST_HEAD_INITIALIZER(ex_head);
|
|
struct exec_entry {
|
|
LIST_ENTRY(exec_entry) ex_list;
|
|
SLIST_ENTRY(exec_entry) ex_slist;
|
|
const struct execsw *ex_sw;
|
|
};
|
|
|
|
#ifndef __HAVE_SYSCALL_INTERN
|
|
void syscall(void);
|
|
#endif
|
|
|
|
/* NetBSD autoloadable syscalls */
|
|
#ifdef MODULAR
|
|
#include <kern/syscalls_autoload.c>
|
|
#endif
|
|
|
|
/* NetBSD emul struct */
|
|
struct emul emul_netbsd = {
|
|
.e_name = "netbsd",
|
|
#ifdef EMUL_NATIVEROOT
|
|
.e_path = EMUL_NATIVEROOT,
|
|
#else
|
|
.e_path = NULL,
|
|
#endif
|
|
#ifndef __HAVE_MINIMAL_EMUL
|
|
.e_flags = EMUL_HAS_SYS___syscall,
|
|
.e_errno = NULL,
|
|
.e_nosys = SYS_syscall,
|
|
.e_nsysent = SYS_NSYSENT,
|
|
#endif
|
|
#ifdef MODULAR
|
|
.e_sc_autoload = netbsd_syscalls_autoload,
|
|
#endif
|
|
.e_sysent = sysent,
|
|
#ifdef SYSCALL_DEBUG
|
|
.e_syscallnames = syscallnames,
|
|
#else
|
|
.e_syscallnames = NULL,
|
|
#endif
|
|
.e_sendsig = sendsig,
|
|
.e_trapsignal = trapsignal,
|
|
.e_tracesig = NULL,
|
|
.e_sigcode = NULL,
|
|
.e_esigcode = NULL,
|
|
.e_sigobject = NULL,
|
|
.e_setregs = setregs,
|
|
.e_proc_exec = NULL,
|
|
.e_proc_fork = NULL,
|
|
.e_proc_exit = NULL,
|
|
.e_lwp_fork = NULL,
|
|
.e_lwp_exit = NULL,
|
|
#ifdef __HAVE_SYSCALL_INTERN
|
|
.e_syscall_intern = syscall_intern,
|
|
#else
|
|
.e_syscall = syscall,
|
|
#endif
|
|
.e_sysctlovly = NULL,
|
|
.e_fault = NULL,
|
|
.e_vm_default_addr = uvm_default_mapaddr,
|
|
.e_usertrap = NULL,
|
|
.e_ucsize = sizeof(ucontext_t),
|
|
.e_startlwp = startlwp
|
|
};
|
|
|
|
/*
|
|
* Exec lock. Used to control access to execsw[] structures.
|
|
* This must not be static so that netbsd32 can access it, too.
|
|
*/
|
|
krwlock_t exec_lock;
|
|
|
|
static kmutex_t sigobject_lock;
|
|
|
|
/*
|
|
* Data used between a loadvm and execve part of an "exec" operation
|
|
*/
|
|
struct execve_data {
|
|
struct exec_package ed_pack;
|
|
struct pathbuf *ed_pathbuf;
|
|
struct vattr ed_attr;
|
|
struct ps_strings ed_arginfo;
|
|
char *ed_argp;
|
|
const char *ed_pathstring;
|
|
char *ed_resolvedpathbuf;
|
|
size_t ed_ps_strings_sz;
|
|
int ed_szsigcode;
|
|
size_t ed_argslen;
|
|
long ed_argc;
|
|
long ed_envc;
|
|
};
|
|
|
|
/*
|
|
* data passed from parent lwp to child during a posix_spawn()
|
|
*/
|
|
struct spawn_exec_data {
|
|
struct execve_data sed_exec;
|
|
struct posix_spawn_file_actions
|
|
*sed_actions;
|
|
struct posix_spawnattr *sed_attrs;
|
|
struct proc *sed_parent;
|
|
kcondvar_t sed_cv_child_ready;
|
|
kmutex_t sed_mtx_child;
|
|
int sed_error;
|
|
volatile uint32_t sed_refcnt;
|
|
};
|
|
|
|
static void *
|
|
exec_pool_alloc(struct pool *pp, int flags)
|
|
{
|
|
|
|
return (void *)uvm_km_alloc(kernel_map, NCARGS, 0,
|
|
UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
|
|
}
|
|
|
|
static void
|
|
exec_pool_free(struct pool *pp, void *addr)
|
|
{
|
|
|
|
uvm_km_free(kernel_map, (vaddr_t)addr, NCARGS, UVM_KMF_PAGEABLE);
|
|
}
|
|
|
|
static struct pool exec_pool;
|
|
|
|
static struct pool_allocator exec_palloc = {
|
|
.pa_alloc = exec_pool_alloc,
|
|
.pa_free = exec_pool_free,
|
|
.pa_pagesz = NCARGS
|
|
};
|
|
|
|
/*
|
|
* check exec:
|
|
* given an "executable" described in the exec package's namei info,
|
|
* see what we can do with it.
|
|
*
|
|
* ON ENTRY:
|
|
* exec package with appropriate namei info
|
|
* lwp pointer of exec'ing lwp
|
|
* NO SELF-LOCKED VNODES
|
|
*
|
|
* ON EXIT:
|
|
* error: nothing held, etc. exec header still allocated.
|
|
* ok: filled exec package, executable's vnode (unlocked).
|
|
*
|
|
* EXEC SWITCH ENTRY:
|
|
* Locked vnode to check, exec package, proc.
|
|
*
|
|
* EXEC SWITCH EXIT:
|
|
* ok: return 0, filled exec package, executable's vnode (unlocked).
|
|
* error: destructive:
|
|
* everything deallocated execept exec header.
|
|
* non-destructive:
|
|
* error code, executable's vnode (unlocked),
|
|
* exec header unmodified.
|
|
*/
|
|
int
|
|
/*ARGSUSED*/
|
|
check_exec(struct lwp *l, struct exec_package *epp, struct pathbuf *pb)
|
|
{
|
|
int error, i;
|
|
struct vnode *vp;
|
|
struct nameidata nd;
|
|
size_t resid;
|
|
|
|
NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
|
|
|
|
/* first get the vnode */
|
|
if ((error = namei(&nd)) != 0)
|
|
return error;
|
|
epp->ep_vp = vp = nd.ni_vp;
|
|
/* normally this can't fail */
|
|
error = copystr(nd.ni_pnbuf, epp->ep_resolvedname, PATH_MAX, NULL);
|
|
KASSERT(error == 0);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* paranoia (take this out once namei stuff stabilizes) */
|
|
memset(nd.ni_pnbuf, '~', PATH_MAX);
|
|
#endif
|
|
|
|
/* check access and type */
|
|
if (vp->v_type != VREG) {
|
|
error = EACCES;
|
|
goto bad1;
|
|
}
|
|
if ((error = VOP_ACCESS(vp, VEXEC, l->l_cred)) != 0)
|
|
goto bad1;
|
|
|
|
/* get attributes */
|
|
if ((error = VOP_GETATTR(vp, epp->ep_vap, l->l_cred)) != 0)
|
|
goto bad1;
|
|
|
|
/* Check mount point */
|
|
if (vp->v_mount->mnt_flag & MNT_NOEXEC) {
|
|
error = EACCES;
|
|
goto bad1;
|
|
}
|
|
if (vp->v_mount->mnt_flag & MNT_NOSUID)
|
|
epp->ep_vap->va_mode &= ~(S_ISUID | S_ISGID);
|
|
|
|
/* try to open it */
|
|
if ((error = VOP_OPEN(vp, FREAD, l->l_cred)) != 0)
|
|
goto bad1;
|
|
|
|
/* unlock vp, since we need it unlocked from here on out. */
|
|
VOP_UNLOCK(vp);
|
|
|
|
#if NVERIEXEC > 0
|
|
error = veriexec_verify(l, vp, epp->ep_resolvedname,
|
|
epp->ep_flags & EXEC_INDIR ? VERIEXEC_INDIRECT : VERIEXEC_DIRECT,
|
|
NULL);
|
|
if (error)
|
|
goto bad2;
|
|
#endif /* NVERIEXEC > 0 */
|
|
|
|
#ifdef PAX_SEGVGUARD
|
|
error = pax_segvguard(l, vp, epp->ep_resolvedname, false);
|
|
if (error)
|
|
goto bad2;
|
|
#endif /* PAX_SEGVGUARD */
|
|
|
|
/* now we have the file, get the exec header */
|
|
error = vn_rdwr(UIO_READ, vp, epp->ep_hdr, epp->ep_hdrlen, 0,
|
|
UIO_SYSSPACE, 0, l->l_cred, &resid, NULL);
|
|
if (error)
|
|
goto bad2;
|
|
epp->ep_hdrvalid = epp->ep_hdrlen - resid;
|
|
|
|
/*
|
|
* Set up default address space limits. Can be overridden
|
|
* by individual exec packages.
|
|
*/
|
|
epp->ep_vm_minaddr = exec_vm_minaddr(VM_MIN_ADDRESS);
|
|
epp->ep_vm_maxaddr = VM_MAXUSER_ADDRESS;
|
|
|
|
/*
|
|
* set up the vmcmds for creation of the process
|
|
* address space
|
|
*/
|
|
error = ENOEXEC;
|
|
for (i = 0; i < nexecs; i++) {
|
|
int newerror;
|
|
|
|
epp->ep_esch = execsw[i];
|
|
newerror = (*execsw[i]->es_makecmds)(l, epp);
|
|
|
|
if (!newerror) {
|
|
/* Seems ok: check that entry point is not too high */
|
|
if (epp->ep_entry > epp->ep_vm_maxaddr) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("%s: rejecting %p due to "
|
|
"too high entry address (> %p)\n",
|
|
__func__, (void *)epp->ep_entry,
|
|
(void *)epp->ep_vm_maxaddr);
|
|
#endif
|
|
error = ENOEXEC;
|
|
break;
|
|
}
|
|
/* Seems ok: check that entry point is not too low */
|
|
if (epp->ep_entry < epp->ep_vm_minaddr) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("%s: rejecting %p due to "
|
|
"too low entry address (< %p)\n",
|
|
__func__, (void *)epp->ep_entry,
|
|
(void *)epp->ep_vm_minaddr);
|
|
#endif
|
|
error = ENOEXEC;
|
|
break;
|
|
}
|
|
|
|
/* check limits */
|
|
if ((epp->ep_tsize > MAXTSIZ) ||
|
|
(epp->ep_dsize > (u_quad_t)l->l_proc->p_rlimit
|
|
[RLIMIT_DATA].rlim_cur)) {
|
|
#ifdef DIAGNOSTIC
|
|
printf("%s: rejecting due to "
|
|
"limits (t=%llu > %llu || d=%llu > %llu)\n",
|
|
__func__,
|
|
(unsigned long long)epp->ep_tsize,
|
|
(unsigned long long)MAXTSIZ,
|
|
(unsigned long long)epp->ep_dsize,
|
|
(unsigned long long)
|
|
l->l_proc->p_rlimit[RLIMIT_DATA].rlim_cur);
|
|
#endif
|
|
error = ENOMEM;
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reset all the fields that may have been modified by the
|
|
* loader.
|
|
*/
|
|
KASSERT(epp->ep_emul_arg == NULL);
|
|
if (epp->ep_emul_root != NULL) {
|
|
vrele(epp->ep_emul_root);
|
|
epp->ep_emul_root = NULL;
|
|
}
|
|
if (epp->ep_interp != NULL) {
|
|
vrele(epp->ep_interp);
|
|
epp->ep_interp = NULL;
|
|
}
|
|
epp->ep_pax_flags = 0;
|
|
|
|
/* make sure the first "interesting" error code is saved. */
|
|
if (error == ENOEXEC)
|
|
error = newerror;
|
|
|
|
if (epp->ep_flags & EXEC_DESTR)
|
|
/* Error from "#!" code, tidied up by recursive call */
|
|
return error;
|
|
}
|
|
|
|
/* not found, error */
|
|
|
|
/*
|
|
* free any vmspace-creation commands,
|
|
* and release their references
|
|
*/
|
|
kill_vmcmds(&epp->ep_vmcmds);
|
|
|
|
bad2:
|
|
/*
|
|
* close and release the vnode, restore the old one, free the
|
|
* pathname buf, and punt.
|
|
*/
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
VOP_CLOSE(vp, FREAD, l->l_cred);
|
|
vput(vp);
|
|
return error;
|
|
|
|
bad1:
|
|
/*
|
|
* free the namei pathname buffer, and put the vnode
|
|
* (which we don't yet have open).
|
|
*/
|
|
vput(vp); /* was still locked */
|
|
return error;
|
|
}
|
|
|
|
#ifdef __MACHINE_STACK_GROWS_UP
|
|
#define STACK_PTHREADSPACE NBPG
|
|
#else
|
|
#define STACK_PTHREADSPACE 0
|
|
#endif
|
|
|
|
static int
|
|
execve_fetch_element(char * const *array, size_t index, char **value)
|
|
{
|
|
return copyin(array + index, value, sizeof(*value));
|
|
}
|
|
|
|
/*
|
|
* exec system call
|
|
*/
|
|
int
|
|
sys_execve(struct lwp *l, const struct sys_execve_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(const char *) path;
|
|
syscallarg(char * const *) argp;
|
|
syscallarg(char * const *) envp;
|
|
} */
|
|
|
|
return execve1(l, SCARG(uap, path), SCARG(uap, argp),
|
|
SCARG(uap, envp), execve_fetch_element);
|
|
}
|
|
|
|
int
|
|
sys_fexecve(struct lwp *l, const struct sys_fexecve_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) fd;
|
|
syscallarg(char * const *) argp;
|
|
syscallarg(char * const *) envp;
|
|
} */
|
|
|
|
return ENOSYS;
|
|
}
|
|
|
|
/*
|
|
* Load modules to try and execute an image that we do not understand.
|
|
* If no execsw entries are present, we load those likely to be needed
|
|
* in order to run native images only. Otherwise, we autoload all
|
|
* possible modules that could let us run the binary. XXX lame
|
|
*/
|
|
static void
|
|
exec_autoload(void)
|
|
{
|
|
#ifdef MODULAR
|
|
static const char * const native[] = {
|
|
"exec_elf32",
|
|
"exec_elf64",
|
|
"exec_script",
|
|
NULL
|
|
};
|
|
static const char * const compat[] = {
|
|
"exec_elf32",
|
|
"exec_elf64",
|
|
"exec_script",
|
|
"exec_aout",
|
|
"exec_coff",
|
|
"exec_ecoff",
|
|
"compat_aoutm68k",
|
|
"compat_freebsd",
|
|
"compat_ibcs2",
|
|
"compat_linux",
|
|
"compat_linux32",
|
|
"compat_netbsd32",
|
|
"compat_sunos",
|
|
"compat_sunos32",
|
|
"compat_svr4",
|
|
"compat_svr4_32",
|
|
"compat_ultrix",
|
|
NULL
|
|
};
|
|
char const * const *list;
|
|
int i;
|
|
|
|
list = (nexecs == 0 ? native : compat);
|
|
for (i = 0; list[i] != NULL; i++) {
|
|
if (module_autoload(list[i], MODULE_CLASS_EXEC) != 0) {
|
|
continue;
|
|
}
|
|
yield();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
makepathbuf(struct lwp *l, const char *upath, struct pathbuf **pbp,
|
|
size_t *offs)
|
|
{
|
|
char *path, *bp;
|
|
size_t len, tlen;
|
|
int error;
|
|
struct cwdinfo *cwdi;
|
|
|
|
path = PNBUF_GET();
|
|
error = copyinstr(upath, path, MAXPATHLEN, &len);
|
|
if (error) {
|
|
PNBUF_PUT(path);
|
|
DPRINTF(("%s: copyin path @%p %d\n", __func__, upath, error));
|
|
return error;
|
|
}
|
|
|
|
if (path[0] == '/') {
|
|
*offs = 0;
|
|
goto out;
|
|
}
|
|
|
|
len++;
|
|
if (len + 1 >= MAXPATHLEN)
|
|
goto out;
|
|
bp = path + MAXPATHLEN - len;
|
|
memmove(bp, path, len);
|
|
*(--bp) = '/';
|
|
|
|
cwdi = l->l_proc->p_cwdi;
|
|
rw_enter(&cwdi->cwdi_lock, RW_READER);
|
|
error = getcwd_common(cwdi->cwdi_cdir, NULL, &bp, path, MAXPATHLEN / 2,
|
|
GETCWD_CHECK_ACCESS, l);
|
|
rw_exit(&cwdi->cwdi_lock);
|
|
|
|
if (error) {
|
|
DPRINTF(("%s: getcwd_common path %s %d\n", __func__, path,
|
|
error));
|
|
goto out;
|
|
}
|
|
tlen = path + MAXPATHLEN - bp;
|
|
|
|
memmove(path, bp, tlen);
|
|
path[tlen] = '\0';
|
|
*offs = tlen - len;
|
|
out:
|
|
*pbp = pathbuf_assimilate(path);
|
|
return 0;
|
|
}
|
|
|
|
vaddr_t
|
|
exec_vm_minaddr(vaddr_t va_min)
|
|
{
|
|
/*
|
|
* Increase va_min if we don't want NULL to be mappable by the
|
|
* process.
|
|
*/
|
|
#define VM_MIN_GUARD PAGE_SIZE
|
|
if (user_va0_disable && (va_min < VM_MIN_GUARD))
|
|
return VM_MIN_GUARD;
|
|
return va_min;
|
|
}
|
|
|
|
static int
|
|
execve_loadvm(struct lwp *l, const char *path, char * const *args,
|
|
char * const *envs, execve_fetch_element_t fetch_element,
|
|
struct execve_data * restrict data)
|
|
{
|
|
struct exec_package * const epp = &data->ed_pack;
|
|
int error;
|
|
struct proc *p;
|
|
char *dp;
|
|
u_int modgen;
|
|
size_t offs = 0; // XXX: GCC
|
|
|
|
KASSERT(data != NULL);
|
|
|
|
p = l->l_proc;
|
|
modgen = 0;
|
|
|
|
SDT_PROBE(proc, kernel, , exec, path, 0, 0, 0, 0);
|
|
|
|
/*
|
|
* Check if we have exceeded our number of processes limit.
|
|
* This is so that we handle the case where a root daemon
|
|
* forked, ran setuid to become the desired user and is trying
|
|
* to exec. The obvious place to do the reference counting check
|
|
* is setuid(), but we don't do the reference counting check there
|
|
* like other OS's do because then all the programs that use setuid()
|
|
* must be modified to check the return code of setuid() and exit().
|
|
* It is dangerous to make setuid() fail, because it fails open and
|
|
* the program will continue to run as root. If we make it succeed
|
|
* and return an error code, again we are not enforcing the limit.
|
|
* The best place to enforce the limit is here, when the process tries
|
|
* to execute a new image, because eventually the process will need
|
|
* to call exec in order to do something useful.
|
|
*/
|
|
retry:
|
|
if (p->p_flag & PK_SUGID) {
|
|
if (kauth_authorize_process(l->l_cred, KAUTH_PROCESS_RLIMIT,
|
|
p, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
|
|
&p->p_rlimit[RLIMIT_NPROC],
|
|
KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
|
|
chgproccnt(kauth_cred_getuid(l->l_cred), 0) >
|
|
p->p_rlimit[RLIMIT_NPROC].rlim_cur)
|
|
return EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Drain existing references and forbid new ones. The process
|
|
* should be left alone until we're done here. This is necessary
|
|
* to avoid race conditions - e.g. in ptrace() - that might allow
|
|
* a local user to illicitly obtain elevated privileges.
|
|
*/
|
|
rw_enter(&p->p_reflock, RW_WRITER);
|
|
|
|
/*
|
|
* Init the namei data to point the file user's program name.
|
|
* This is done here rather than in check_exec(), so that it's
|
|
* possible to override this settings if any of makecmd/probe
|
|
* functions call check_exec() recursively - for example,
|
|
* see exec_script_makecmds().
|
|
*/
|
|
if ((error = makepathbuf(l, path, &data->ed_pathbuf, &offs)) != 0)
|
|
goto clrflg;
|
|
data->ed_pathstring = pathbuf_stringcopy_get(data->ed_pathbuf);
|
|
data->ed_resolvedpathbuf = PNBUF_GET();
|
|
|
|
/*
|
|
* initialize the fields of the exec package.
|
|
*/
|
|
epp->ep_kname = data->ed_pathstring + offs;
|
|
epp->ep_resolvedname = data->ed_resolvedpathbuf;
|
|
epp->ep_hdr = kmem_alloc(exec_maxhdrsz, KM_SLEEP);
|
|
epp->ep_hdrlen = exec_maxhdrsz;
|
|
epp->ep_hdrvalid = 0;
|
|
epp->ep_emul_arg = NULL;
|
|
epp->ep_emul_arg_free = NULL;
|
|
memset(&epp->ep_vmcmds, 0, sizeof(epp->ep_vmcmds));
|
|
epp->ep_vap = &data->ed_attr;
|
|
epp->ep_flags = (p->p_flag & PK_32) ? EXEC_FROM32 : 0;
|
|
MD_TOPDOWN_INIT(epp);
|
|
epp->ep_emul_root = NULL;
|
|
epp->ep_interp = NULL;
|
|
epp->ep_esch = NULL;
|
|
epp->ep_pax_flags = 0;
|
|
memset(epp->ep_machine_arch, 0, sizeof(epp->ep_machine_arch));
|
|
|
|
rw_enter(&exec_lock, RW_READER);
|
|
|
|
/* see if we can run it. */
|
|
if ((error = check_exec(l, epp, data->ed_pathbuf)) != 0) {
|
|
if (error != ENOENT && error != EACCES) {
|
|
DPRINTF(("%s: check exec failed %d\n",
|
|
__func__, error));
|
|
}
|
|
goto freehdr;
|
|
}
|
|
|
|
/* allocate an argument buffer */
|
|
data->ed_argp = pool_get(&exec_pool, PR_WAITOK);
|
|
KASSERT(data->ed_argp != NULL);
|
|
dp = data->ed_argp;
|
|
|
|
if ((error = copyinargs(data, args, envs, fetch_element, &dp)) != 0) {
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Calculate the new stack size.
|
|
*/
|
|
|
|
#ifdef __MACHINE_STACK_GROWS_UP
|
|
/*
|
|
* copyargs() fills argc/argv/envp from the lower address even on
|
|
* __MACHINE_STACK_GROWS_UP machines. Reserve a few words just below the SP
|
|
* so that _rtld() use it.
|
|
*/
|
|
#define RTLD_GAP 32
|
|
#else
|
|
#define RTLD_GAP 0
|
|
#endif
|
|
|
|
const size_t argenvstrlen = (char *)ALIGN(dp) - data->ed_argp;
|
|
|
|
data->ed_argslen = calcargs(data, argenvstrlen);
|
|
|
|
const size_t len = calcstack(data, pax_aslr_stack_gap(epp) + RTLD_GAP);
|
|
|
|
if (len > epp->ep_ssize) {
|
|
/* in effect, compare to initial limit */
|
|
DPRINTF(("%s: stack limit exceeded %zu\n", __func__, len));
|
|
error = ENOMEM;
|
|
goto bad;
|
|
}
|
|
/* adjust "active stack depth" for process VSZ */
|
|
epp->ep_ssize = len;
|
|
|
|
return 0;
|
|
|
|
bad:
|
|
/* free the vmspace-creation commands, and release their references */
|
|
kill_vmcmds(&epp->ep_vmcmds);
|
|
/* kill any opened file descriptor, if necessary */
|
|
if (epp->ep_flags & EXEC_HASFD) {
|
|
epp->ep_flags &= ~EXEC_HASFD;
|
|
fd_close(epp->ep_fd);
|
|
}
|
|
/* close and put the exec'd file */
|
|
vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
|
|
VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
|
|
vput(epp->ep_vp);
|
|
pool_put(&exec_pool, data->ed_argp);
|
|
|
|
freehdr:
|
|
kmem_free(epp->ep_hdr, epp->ep_hdrlen);
|
|
if (epp->ep_emul_root != NULL)
|
|
vrele(epp->ep_emul_root);
|
|
if (epp->ep_interp != NULL)
|
|
vrele(epp->ep_interp);
|
|
|
|
rw_exit(&exec_lock);
|
|
|
|
pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
|
|
pathbuf_destroy(data->ed_pathbuf);
|
|
PNBUF_PUT(data->ed_resolvedpathbuf);
|
|
|
|
clrflg:
|
|
rw_exit(&p->p_reflock);
|
|
|
|
if (modgen != module_gen && error == ENOEXEC) {
|
|
modgen = module_gen;
|
|
exec_autoload();
|
|
goto retry;
|
|
}
|
|
|
|
SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
execve_dovmcmds(struct lwp *l, struct execve_data * restrict data)
|
|
{
|
|
struct exec_package * const epp = &data->ed_pack;
|
|
struct proc *p = l->l_proc;
|
|
struct exec_vmcmd *base_vcp;
|
|
int error = 0;
|
|
size_t i;
|
|
|
|
/* record proc's vnode, for use by procfs and others */
|
|
if (p->p_textvp)
|
|
vrele(p->p_textvp);
|
|
vref(epp->ep_vp);
|
|
p->p_textvp = epp->ep_vp;
|
|
|
|
/* create the new process's VM space by running the vmcmds */
|
|
KASSERTMSG(epp->ep_vmcmds.evs_used != 0, "%s: no vmcmds", __func__);
|
|
|
|
#ifdef TRACE_EXEC
|
|
DUMPVMCMDS(epp, 0, 0);
|
|
#endif
|
|
|
|
base_vcp = NULL;
|
|
|
|
for (i = 0; i < epp->ep_vmcmds.evs_used && !error; i++) {
|
|
struct exec_vmcmd *vcp;
|
|
|
|
vcp = &epp->ep_vmcmds.evs_cmds[i];
|
|
if (vcp->ev_flags & VMCMD_RELATIVE) {
|
|
KASSERTMSG(base_vcp != NULL,
|
|
"%s: relative vmcmd with no base", __func__);
|
|
KASSERTMSG((vcp->ev_flags & VMCMD_BASE) == 0,
|
|
"%s: illegal base & relative vmcmd", __func__);
|
|
vcp->ev_addr += base_vcp->ev_addr;
|
|
}
|
|
error = (*vcp->ev_proc)(l, vcp);
|
|
if (error)
|
|
DUMPVMCMDS(epp, i, error);
|
|
if (vcp->ev_flags & VMCMD_BASE)
|
|
base_vcp = vcp;
|
|
}
|
|
|
|
/* free the vmspace-creation commands, and release their references */
|
|
kill_vmcmds(&epp->ep_vmcmds);
|
|
|
|
vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
|
|
VOP_CLOSE(epp->ep_vp, FREAD, l->l_cred);
|
|
vput(epp->ep_vp);
|
|
|
|
/* if an error happened, deallocate and punt */
|
|
if (error != 0) {
|
|
DPRINTF(("%s: vmcmd %zu failed: %d\n", __func__, i - 1, error));
|
|
}
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
execve_free_data(struct execve_data *data)
|
|
{
|
|
struct exec_package * const epp = &data->ed_pack;
|
|
|
|
/* free the vmspace-creation commands, and release their references */
|
|
kill_vmcmds(&epp->ep_vmcmds);
|
|
/* kill any opened file descriptor, if necessary */
|
|
if (epp->ep_flags & EXEC_HASFD) {
|
|
epp->ep_flags &= ~EXEC_HASFD;
|
|
fd_close(epp->ep_fd);
|
|
}
|
|
|
|
/* close and put the exec'd file */
|
|
vn_lock(epp->ep_vp, LK_EXCLUSIVE | LK_RETRY);
|
|
VOP_CLOSE(epp->ep_vp, FREAD, curlwp->l_cred);
|
|
vput(epp->ep_vp);
|
|
pool_put(&exec_pool, data->ed_argp);
|
|
|
|
kmem_free(epp->ep_hdr, epp->ep_hdrlen);
|
|
if (epp->ep_emul_root != NULL)
|
|
vrele(epp->ep_emul_root);
|
|
if (epp->ep_interp != NULL)
|
|
vrele(epp->ep_interp);
|
|
|
|
pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
|
|
pathbuf_destroy(data->ed_pathbuf);
|
|
PNBUF_PUT(data->ed_resolvedpathbuf);
|
|
}
|
|
|
|
static void
|
|
pathexec(struct exec_package *epp, struct lwp *l, const char *pathstring)
|
|
{
|
|
const char *commandname;
|
|
size_t commandlen;
|
|
char *path;
|
|
struct proc *p = l->l_proc;
|
|
|
|
/* set command name & other accounting info */
|
|
commandname = strrchr(epp->ep_resolvedname, '/');
|
|
if (commandname != NULL) {
|
|
commandname++;
|
|
} else {
|
|
commandname = epp->ep_resolvedname;
|
|
}
|
|
commandlen = min(strlen(commandname), MAXCOMLEN);
|
|
(void)memcpy(p->p_comm, commandname, commandlen);
|
|
p->p_comm[commandlen] = '\0';
|
|
|
|
|
|
/*
|
|
* If the path starts with /, we don't need to do any work.
|
|
* This handles the majority of the cases.
|
|
* In the future perhaps we could canonicalize it?
|
|
*/
|
|
path = PNBUF_GET();
|
|
if (pathstring[0] == '/') {
|
|
(void)strlcpy(path, pathstring, MAXPATHLEN);
|
|
epp->ep_path = path;
|
|
}
|
|
#ifdef notyet
|
|
/*
|
|
* Although this works most of the time [since the entry was just
|
|
* entered in the cache] we don't use it because it will fail for
|
|
* entries that are not placed in the cache because their name is
|
|
* longer than NCHNAMLEN and it is not the cleanest interface,
|
|
* because there could be races. When the namei cache is re-written,
|
|
* this can be changed to use the appropriate function.
|
|
*/
|
|
else if (!(error = vnode_to_path(path, MAXPATHLEN, p->p_textvp, l, p)))
|
|
epp->ep_path = path;
|
|
#endif
|
|
else {
|
|
#ifdef notyet
|
|
printf("Cannot get path for pid %d [%s] (error %d)\n",
|
|
(int)p->p_pid, p->p_comm, error);
|
|
#endif
|
|
PNBUF_PUT(path);
|
|
epp->ep_path = NULL;
|
|
}
|
|
}
|
|
|
|
/* XXX elsewhere */
|
|
static int
|
|
credexec(struct lwp *l, struct vattr *attr)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
int error;
|
|
|
|
/*
|
|
* Deal with set[ug]id. MNT_NOSUID has already been used to disable
|
|
* s[ug]id. It's OK to check for PSL_TRACED here as we have blocked
|
|
* out additional references on the process for the moment.
|
|
*/
|
|
if ((p->p_slflag & PSL_TRACED) == 0 &&
|
|
|
|
(((attr->va_mode & S_ISUID) != 0 &&
|
|
kauth_cred_geteuid(l->l_cred) != attr->va_uid) ||
|
|
|
|
((attr->va_mode & S_ISGID) != 0 &&
|
|
kauth_cred_getegid(l->l_cred) != attr->va_gid))) {
|
|
/*
|
|
* Mark the process as SUGID before we do
|
|
* anything that might block.
|
|
*/
|
|
proc_crmod_enter();
|
|
proc_crmod_leave(NULL, NULL, true);
|
|
|
|
/* Make sure file descriptors 0..2 are in use. */
|
|
if ((error = fd_checkstd()) != 0) {
|
|
DPRINTF(("%s: fdcheckstd failed %d\n",
|
|
__func__, error));
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Copy the credential so other references don't see our
|
|
* changes.
|
|
*/
|
|
l->l_cred = kauth_cred_copy(l->l_cred);
|
|
#ifdef KTRACE
|
|
/*
|
|
* If the persistent trace flag isn't set, turn off.
|
|
*/
|
|
if (p->p_tracep) {
|
|
mutex_enter(&ktrace_lock);
|
|
if (!(p->p_traceflag & KTRFAC_PERSISTENT))
|
|
ktrderef(p);
|
|
mutex_exit(&ktrace_lock);
|
|
}
|
|
#endif
|
|
if (attr->va_mode & S_ISUID)
|
|
kauth_cred_seteuid(l->l_cred, attr->va_uid);
|
|
if (attr->va_mode & S_ISGID)
|
|
kauth_cred_setegid(l->l_cred, attr->va_gid);
|
|
} else {
|
|
if (kauth_cred_geteuid(l->l_cred) ==
|
|
kauth_cred_getuid(l->l_cred) &&
|
|
kauth_cred_getegid(l->l_cred) ==
|
|
kauth_cred_getgid(l->l_cred))
|
|
p->p_flag &= ~PK_SUGID;
|
|
}
|
|
|
|
/*
|
|
* Copy the credential so other references don't see our changes.
|
|
* Test to see if this is necessary first, since in the common case
|
|
* we won't need a private reference.
|
|
*/
|
|
if (kauth_cred_geteuid(l->l_cred) != kauth_cred_getsvuid(l->l_cred) ||
|
|
kauth_cred_getegid(l->l_cred) != kauth_cred_getsvgid(l->l_cred)) {
|
|
l->l_cred = kauth_cred_copy(l->l_cred);
|
|
kauth_cred_setsvuid(l->l_cred, kauth_cred_geteuid(l->l_cred));
|
|
kauth_cred_setsvgid(l->l_cred, kauth_cred_getegid(l->l_cred));
|
|
}
|
|
|
|
/* Update the master credentials. */
|
|
if (l->l_cred != p->p_cred) {
|
|
kauth_cred_t ocred;
|
|
|
|
kauth_cred_hold(l->l_cred);
|
|
mutex_enter(p->p_lock);
|
|
ocred = p->p_cred;
|
|
p->p_cred = l->l_cred;
|
|
mutex_exit(p->p_lock);
|
|
kauth_cred_free(ocred);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
emulexec(struct lwp *l, struct exec_package *epp)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
|
|
/* The emulation root will usually have been found when we looked
|
|
* for the elf interpreter (or similar), if not look now. */
|
|
if (epp->ep_esch->es_emul->e_path != NULL &&
|
|
epp->ep_emul_root == NULL)
|
|
emul_find_root(l, epp);
|
|
|
|
/* Any old emulation root got removed by fdcloseexec */
|
|
rw_enter(&p->p_cwdi->cwdi_lock, RW_WRITER);
|
|
p->p_cwdi->cwdi_edir = epp->ep_emul_root;
|
|
rw_exit(&p->p_cwdi->cwdi_lock);
|
|
epp->ep_emul_root = NULL;
|
|
if (epp->ep_interp != NULL)
|
|
vrele(epp->ep_interp);
|
|
|
|
/*
|
|
* Call emulation specific exec hook. This can setup per-process
|
|
* p->p_emuldata or do any other per-process stuff an emulation needs.
|
|
*
|
|
* If we are executing process of different emulation than the
|
|
* original forked process, call e_proc_exit() of the old emulation
|
|
* first, then e_proc_exec() of new emulation. If the emulation is
|
|
* same, the exec hook code should deallocate any old emulation
|
|
* resources held previously by this process.
|
|
*/
|
|
if (p->p_emul && p->p_emul->e_proc_exit
|
|
&& p->p_emul != epp->ep_esch->es_emul)
|
|
(*p->p_emul->e_proc_exit)(p);
|
|
|
|
/*
|
|
* This is now LWP 1.
|
|
*/
|
|
/* XXX elsewhere */
|
|
mutex_enter(p->p_lock);
|
|
p->p_nlwpid = 1;
|
|
l->l_lid = 1;
|
|
mutex_exit(p->p_lock);
|
|
|
|
/*
|
|
* Call exec hook. Emulation code may NOT store reference to anything
|
|
* from &pack.
|
|
*/
|
|
if (epp->ep_esch->es_emul->e_proc_exec)
|
|
(*epp->ep_esch->es_emul->e_proc_exec)(p, epp);
|
|
|
|
/* update p_emul, the old value is no longer needed */
|
|
p->p_emul = epp->ep_esch->es_emul;
|
|
|
|
/* ...and the same for p_execsw */
|
|
p->p_execsw = epp->ep_esch;
|
|
|
|
#ifdef __HAVE_SYSCALL_INTERN
|
|
(*p->p_emul->e_syscall_intern)(p);
|
|
#endif
|
|
ktremul();
|
|
}
|
|
|
|
static int
|
|
execve_runproc(struct lwp *l, struct execve_data * restrict data,
|
|
bool no_local_exec_lock, bool is_spawn)
|
|
{
|
|
struct exec_package * const epp = &data->ed_pack;
|
|
int error = 0;
|
|
struct proc *p;
|
|
|
|
/*
|
|
* In case of a posix_spawn operation, the child doing the exec
|
|
* might not hold the reader lock on exec_lock, but the parent
|
|
* will do this instead.
|
|
*/
|
|
KASSERT(no_local_exec_lock || rw_lock_held(&exec_lock));
|
|
KASSERT(!no_local_exec_lock || is_spawn);
|
|
KASSERT(data != NULL);
|
|
|
|
p = l->l_proc;
|
|
|
|
/* Get rid of other LWPs. */
|
|
if (p->p_nlwps > 1) {
|
|
mutex_enter(p->p_lock);
|
|
exit_lwps(l);
|
|
mutex_exit(p->p_lock);
|
|
}
|
|
KDASSERT(p->p_nlwps == 1);
|
|
|
|
/* Destroy any lwpctl info. */
|
|
if (p->p_lwpctl != NULL)
|
|
lwp_ctl_exit();
|
|
|
|
/* Remove POSIX timers */
|
|
timers_free(p, TIMERS_POSIX);
|
|
|
|
/* Set the PaX flags. */
|
|
pax_set_flags(epp, p);
|
|
|
|
/*
|
|
* Do whatever is necessary to prepare the address space
|
|
* for remapping. Note that this might replace the current
|
|
* vmspace with another!
|
|
*/
|
|
if (is_spawn)
|
|
uvmspace_spawn(l, epp->ep_vm_minaddr,
|
|
epp->ep_vm_maxaddr,
|
|
epp->ep_flags & EXEC_TOPDOWN_VM);
|
|
else
|
|
uvmspace_exec(l, epp->ep_vm_minaddr,
|
|
epp->ep_vm_maxaddr,
|
|
epp->ep_flags & EXEC_TOPDOWN_VM);
|
|
|
|
struct vmspace *vm;
|
|
vm = p->p_vmspace;
|
|
vm->vm_taddr = (void *)epp->ep_taddr;
|
|
vm->vm_tsize = btoc(epp->ep_tsize);
|
|
vm->vm_daddr = (void*)epp->ep_daddr;
|
|
vm->vm_dsize = btoc(epp->ep_dsize);
|
|
vm->vm_ssize = btoc(epp->ep_ssize);
|
|
vm->vm_issize = 0;
|
|
vm->vm_maxsaddr = (void *)epp->ep_maxsaddr;
|
|
vm->vm_minsaddr = (void *)epp->ep_minsaddr;
|
|
|
|
pax_aslr_init_vm(l, vm, epp);
|
|
|
|
/* Now map address space. */
|
|
error = execve_dovmcmds(l, data);
|
|
if (error != 0)
|
|
goto exec_abort;
|
|
|
|
pathexec(epp, l, data->ed_pathstring);
|
|
|
|
char * const newstack = STACK_GROW(vm->vm_minsaddr, epp->ep_ssize);
|
|
|
|
error = copyoutargs(data, l, newstack);
|
|
if (error != 0)
|
|
goto exec_abort;
|
|
|
|
cwdexec(p);
|
|
fd_closeexec(); /* handle close on exec */
|
|
|
|
if (__predict_false(ktrace_on))
|
|
fd_ktrexecfd();
|
|
|
|
execsigs(p); /* reset caught signals */
|
|
|
|
mutex_enter(p->p_lock);
|
|
l->l_ctxlink = NULL; /* reset ucontext link */
|
|
p->p_acflag &= ~AFORK;
|
|
p->p_flag |= PK_EXEC;
|
|
mutex_exit(p->p_lock);
|
|
|
|
/*
|
|
* Stop profiling.
|
|
*/
|
|
if ((p->p_stflag & PST_PROFIL) != 0) {
|
|
mutex_spin_enter(&p->p_stmutex);
|
|
stopprofclock(p);
|
|
mutex_spin_exit(&p->p_stmutex);
|
|
}
|
|
|
|
/*
|
|
* It's OK to test PL_PPWAIT unlocked here, as other LWPs have
|
|
* exited and exec()/exit() are the only places it will be cleared.
|
|
*/
|
|
if ((p->p_lflag & PL_PPWAIT) != 0) {
|
|
mutex_enter(proc_lock);
|
|
l->l_lwpctl = NULL; /* was on loan from blocked parent */
|
|
p->p_lflag &= ~PL_PPWAIT;
|
|
cv_broadcast(&p->p_pptr->p_waitcv);
|
|
mutex_exit(proc_lock);
|
|
}
|
|
|
|
error = credexec(l, &data->ed_attr);
|
|
if (error)
|
|
goto exec_abort;
|
|
|
|
#if defined(__HAVE_RAS)
|
|
/*
|
|
* Remove all RASs from the address space.
|
|
*/
|
|
ras_purgeall();
|
|
#endif
|
|
|
|
doexechooks(p);
|
|
|
|
/*
|
|
* Set initial SP at the top of the stack.
|
|
*
|
|
* Note that on machines where stack grows up (e.g. hppa), SP points to
|
|
* the end of arg/env strings. Userland guesses the address of argc
|
|
* via ps_strings::ps_argvstr.
|
|
*/
|
|
|
|
/* Setup new registers and do misc. setup. */
|
|
(*epp->ep_esch->es_emul->e_setregs)(l, epp, (vaddr_t)newstack);
|
|
if (epp->ep_esch->es_setregs)
|
|
(*epp->ep_esch->es_setregs)(l, epp, (vaddr_t)newstack);
|
|
|
|
/* Provide a consistent LWP private setting */
|
|
(void)lwp_setprivate(l, NULL);
|
|
|
|
/* Discard all PCU state; need to start fresh */
|
|
pcu_discard_all(l);
|
|
|
|
/* map the process's signal trampoline code */
|
|
if ((error = exec_sigcode_map(p, epp->ep_esch->es_emul)) != 0) {
|
|
DPRINTF(("%s: map sigcode failed %d\n", __func__, error));
|
|
goto exec_abort;
|
|
}
|
|
|
|
pool_put(&exec_pool, data->ed_argp);
|
|
|
|
/* notify others that we exec'd */
|
|
KNOTE(&p->p_klist, NOTE_EXEC);
|
|
|
|
kmem_free(epp->ep_hdr, epp->ep_hdrlen);
|
|
|
|
SDT_PROBE(proc, kernel, , exec__success, epp->ep_kname, 0, 0, 0, 0);
|
|
|
|
emulexec(l, epp);
|
|
|
|
/* Allow new references from the debugger/procfs. */
|
|
rw_exit(&p->p_reflock);
|
|
if (!no_local_exec_lock)
|
|
rw_exit(&exec_lock);
|
|
|
|
mutex_enter(proc_lock);
|
|
|
|
if ((p->p_slflag & (PSL_TRACED|PSL_SYSCALL)) == PSL_TRACED) {
|
|
ksiginfo_t ksi;
|
|
|
|
KSI_INIT_EMPTY(&ksi);
|
|
ksi.ksi_signo = SIGTRAP;
|
|
ksi.ksi_code = TRAP_EXEC;
|
|
ksi.ksi_lid = l->l_lid;
|
|
kpsignal(p, &ksi, NULL);
|
|
}
|
|
|
|
if (p->p_sflag & PS_STOPEXEC) {
|
|
ksiginfoq_t kq;
|
|
|
|
KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
|
|
p->p_pptr->p_nstopchild++;
|
|
p->p_waited = 0;
|
|
mutex_enter(p->p_lock);
|
|
ksiginfo_queue_init(&kq);
|
|
sigclearall(p, &contsigmask, &kq);
|
|
lwp_lock(l);
|
|
l->l_stat = LSSTOP;
|
|
p->p_stat = SSTOP;
|
|
p->p_nrlwps--;
|
|
lwp_unlock(l);
|
|
mutex_exit(p->p_lock);
|
|
mutex_exit(proc_lock);
|
|
lwp_lock(l);
|
|
mi_switch(l);
|
|
ksiginfo_queue_drain(&kq);
|
|
KERNEL_LOCK(l->l_biglocks, l);
|
|
} else {
|
|
mutex_exit(proc_lock);
|
|
}
|
|
|
|
pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
|
|
pathbuf_destroy(data->ed_pathbuf);
|
|
PNBUF_PUT(data->ed_resolvedpathbuf);
|
|
#ifdef TRACE_EXEC
|
|
DPRINTF(("%s finished\n", __func__));
|
|
#endif
|
|
return EJUSTRETURN;
|
|
|
|
exec_abort:
|
|
SDT_PROBE(proc, kernel, , exec__failure, error, 0, 0, 0, 0);
|
|
rw_exit(&p->p_reflock);
|
|
if (!no_local_exec_lock)
|
|
rw_exit(&exec_lock);
|
|
|
|
pathbuf_stringcopy_put(data->ed_pathbuf, data->ed_pathstring);
|
|
pathbuf_destroy(data->ed_pathbuf);
|
|
PNBUF_PUT(data->ed_resolvedpathbuf);
|
|
|
|
/*
|
|
* the old process doesn't exist anymore. exit gracefully.
|
|
* get rid of the (new) address space we have created, if any, get rid
|
|
* of our namei data and vnode, and exit noting failure
|
|
*/
|
|
uvm_deallocate(&vm->vm_map, VM_MIN_ADDRESS,
|
|
VM_MAXUSER_ADDRESS - VM_MIN_ADDRESS);
|
|
|
|
exec_free_emul_arg(epp);
|
|
pool_put(&exec_pool, data->ed_argp);
|
|
kmem_free(epp->ep_hdr, epp->ep_hdrlen);
|
|
if (epp->ep_emul_root != NULL)
|
|
vrele(epp->ep_emul_root);
|
|
if (epp->ep_interp != NULL)
|
|
vrele(epp->ep_interp);
|
|
|
|
/* Acquire the sched-state mutex (exit1() will release it). */
|
|
if (!is_spawn) {
|
|
mutex_enter(p->p_lock);
|
|
exit1(l, error, SIGABRT);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
execve1(struct lwp *l, const char *path, char * const *args,
|
|
char * const *envs, execve_fetch_element_t fetch_element)
|
|
{
|
|
struct execve_data data;
|
|
int error;
|
|
|
|
error = execve_loadvm(l, path, args, envs, fetch_element, &data);
|
|
if (error)
|
|
return error;
|
|
error = execve_runproc(l, &data, false, false);
|
|
return error;
|
|
}
|
|
|
|
static size_t
|
|
fromptrsz(const struct exec_package *epp)
|
|
{
|
|
return (epp->ep_flags & EXEC_FROM32) ? sizeof(int) : sizeof(char *);
|
|
}
|
|
|
|
static size_t
|
|
ptrsz(const struct exec_package *epp)
|
|
{
|
|
return (epp->ep_flags & EXEC_32) ? sizeof(int) : sizeof(char *);
|
|
}
|
|
|
|
static size_t
|
|
calcargs(struct execve_data * restrict data, const size_t argenvstrlen)
|
|
{
|
|
struct exec_package * const epp = &data->ed_pack;
|
|
|
|
const size_t nargenvptrs =
|
|
1 + /* long argc */
|
|
data->ed_argc + /* char *argv[] */
|
|
1 + /* \0 */
|
|
data->ed_envc + /* char *env[] */
|
|
1; /* \0 */
|
|
|
|
return (nargenvptrs * ptrsz(epp)) /* pointers */
|
|
+ argenvstrlen /* strings */
|
|
+ epp->ep_esch->es_arglen; /* auxinfo */
|
|
}
|
|
|
|
static size_t
|
|
calcstack(struct execve_data * restrict data, const size_t gaplen)
|
|
{
|
|
struct exec_package * const epp = &data->ed_pack;
|
|
|
|
data->ed_szsigcode = epp->ep_esch->es_emul->e_esigcode -
|
|
epp->ep_esch->es_emul->e_sigcode;
|
|
|
|
data->ed_ps_strings_sz = (epp->ep_flags & EXEC_32) ?
|
|
sizeof(struct ps_strings32) : sizeof(struct ps_strings);
|
|
|
|
const size_t sigcode_psstr_sz =
|
|
data->ed_szsigcode + /* sigcode */
|
|
data->ed_ps_strings_sz + /* ps_strings */
|
|
STACK_PTHREADSPACE; /* pthread space */
|
|
|
|
const size_t stacklen =
|
|
data->ed_argslen +
|
|
gaplen +
|
|
sigcode_psstr_sz;
|
|
|
|
/* make the stack "safely" aligned */
|
|
return STACK_LEN_ALIGN(stacklen, STACK_ALIGNBYTES);
|
|
}
|
|
|
|
static int
|
|
copyoutargs(struct execve_data * restrict data, struct lwp *l,
|
|
char * const newstack)
|
|
{
|
|
struct exec_package * const epp = &data->ed_pack;
|
|
struct proc *p = l->l_proc;
|
|
int error;
|
|
|
|
/* remember information about the process */
|
|
data->ed_arginfo.ps_nargvstr = data->ed_argc;
|
|
data->ed_arginfo.ps_nenvstr = data->ed_envc;
|
|
|
|
/*
|
|
* Allocate the stack address passed to the newly execve()'ed process.
|
|
*
|
|
* The new stack address will be set to the SP (stack pointer) register
|
|
* in setregs().
|
|
*/
|
|
|
|
char *newargs = STACK_ALLOC(
|
|
STACK_SHRINK(newstack, data->ed_argslen), data->ed_argslen);
|
|
|
|
error = (*epp->ep_esch->es_copyargs)(l, epp,
|
|
&data->ed_arginfo, &newargs, data->ed_argp);
|
|
|
|
if (epp->ep_path) {
|
|
PNBUF_PUT(epp->ep_path);
|
|
epp->ep_path = NULL;
|
|
}
|
|
if (error) {
|
|
DPRINTF(("%s: copyargs failed %d\n", __func__, error));
|
|
return error;
|
|
}
|
|
|
|
error = copyoutpsstrs(data, p);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
copyoutpsstrs(struct execve_data * restrict data, struct proc *p)
|
|
{
|
|
struct exec_package * const epp = &data->ed_pack;
|
|
struct ps_strings32 arginfo32;
|
|
void *aip;
|
|
int error;
|
|
|
|
/* fill process ps_strings info */
|
|
p->p_psstrp = (vaddr_t)STACK_ALLOC(STACK_GROW(epp->ep_minsaddr,
|
|
STACK_PTHREADSPACE), data->ed_ps_strings_sz);
|
|
|
|
if (epp->ep_flags & EXEC_32) {
|
|
aip = &arginfo32;
|
|
arginfo32.ps_argvstr = (vaddr_t)data->ed_arginfo.ps_argvstr;
|
|
arginfo32.ps_nargvstr = data->ed_arginfo.ps_nargvstr;
|
|
arginfo32.ps_envstr = (vaddr_t)data->ed_arginfo.ps_envstr;
|
|
arginfo32.ps_nenvstr = data->ed_arginfo.ps_nenvstr;
|
|
} else
|
|
aip = &data->ed_arginfo;
|
|
|
|
/* copy out the process's ps_strings structure */
|
|
if ((error = copyout(aip, (void *)p->p_psstrp, data->ed_ps_strings_sz))
|
|
!= 0) {
|
|
DPRINTF(("%s: ps_strings copyout %p->%p size %zu failed\n",
|
|
__func__, aip, (void *)p->p_psstrp, data->ed_ps_strings_sz));
|
|
return error;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
copyinargs(struct execve_data * restrict data, char * const *args,
|
|
char * const *envs, execve_fetch_element_t fetch_element, char **dpp)
|
|
{
|
|
struct exec_package * const epp = &data->ed_pack;
|
|
char *dp;
|
|
size_t i;
|
|
int error;
|
|
|
|
dp = *dpp;
|
|
|
|
data->ed_argc = 0;
|
|
|
|
/* copy the fake args list, if there's one, freeing it as we go */
|
|
if (epp->ep_flags & EXEC_HASARGL) {
|
|
struct exec_fakearg *fa = epp->ep_fa;
|
|
|
|
while (fa->fa_arg != NULL) {
|
|
const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
|
|
size_t len;
|
|
|
|
len = strlcpy(dp, fa->fa_arg, maxlen);
|
|
/* Count NUL into len. */
|
|
if (len < maxlen)
|
|
len++;
|
|
else {
|
|
while (fa->fa_arg != NULL) {
|
|
kmem_free(fa->fa_arg, fa->fa_len);
|
|
fa++;
|
|
}
|
|
kmem_free(epp->ep_fa, epp->ep_fa_len);
|
|
epp->ep_flags &= ~EXEC_HASARGL;
|
|
return E2BIG;
|
|
}
|
|
ktrexecarg(fa->fa_arg, len - 1);
|
|
dp += len;
|
|
|
|
kmem_free(fa->fa_arg, fa->fa_len);
|
|
fa++;
|
|
data->ed_argc++;
|
|
}
|
|
kmem_free(epp->ep_fa, epp->ep_fa_len);
|
|
epp->ep_flags &= ~EXEC_HASARGL;
|
|
}
|
|
|
|
/*
|
|
* Read and count argument strings from user.
|
|
*/
|
|
|
|
if (args == NULL) {
|
|
DPRINTF(("%s: null args\n", __func__));
|
|
return EINVAL;
|
|
}
|
|
if (epp->ep_flags & EXEC_SKIPARG)
|
|
args = (const void *)((const char *)args + fromptrsz(epp));
|
|
i = 0;
|
|
error = copyinargstrs(data, args, fetch_element, &dp, &i, ktr_execarg);
|
|
if (error != 0) {
|
|
DPRINTF(("%s: copyin arg %d\n", __func__, error));
|
|
return error;
|
|
}
|
|
data->ed_argc += i;
|
|
|
|
/*
|
|
* Read and count environment strings from user.
|
|
*/
|
|
|
|
data->ed_envc = 0;
|
|
/* environment need not be there */
|
|
if (envs == NULL)
|
|
goto done;
|
|
i = 0;
|
|
error = copyinargstrs(data, envs, fetch_element, &dp, &i, ktr_execenv);
|
|
if (error != 0) {
|
|
DPRINTF(("%s: copyin env %d\n", __func__, error));
|
|
return error;
|
|
}
|
|
data->ed_envc += i;
|
|
|
|
done:
|
|
*dpp = dp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
copyinargstrs(struct execve_data * restrict data, char * const *strs,
|
|
execve_fetch_element_t fetch_element, char **dpp, size_t *ip,
|
|
void (*ktr)(const void *, size_t))
|
|
{
|
|
char *dp, *sp;
|
|
size_t i;
|
|
int error;
|
|
|
|
dp = *dpp;
|
|
|
|
i = 0;
|
|
while (1) {
|
|
const size_t maxlen = ARG_MAX - (dp - data->ed_argp);
|
|
size_t len;
|
|
|
|
if ((error = (*fetch_element)(strs, i, &sp)) != 0) {
|
|
return error;
|
|
}
|
|
if (!sp)
|
|
break;
|
|
if ((error = copyinstr(sp, dp, maxlen, &len)) != 0) {
|
|
if (error == ENAMETOOLONG)
|
|
error = E2BIG;
|
|
return error;
|
|
}
|
|
if (__predict_false(ktrace_on))
|
|
(*ktr)(dp, len - 1);
|
|
dp += len;
|
|
i++;
|
|
}
|
|
|
|
*dpp = dp;
|
|
*ip = i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy argv and env strings from kernel buffer (argp) to the new stack.
|
|
* Those strings are located just after auxinfo.
|
|
*/
|
|
int
|
|
copyargs(struct lwp *l, struct exec_package *pack, struct ps_strings *arginfo,
|
|
char **stackp, void *argp)
|
|
{
|
|
char **cpp, *dp, *sp;
|
|
size_t len;
|
|
void *nullp;
|
|
long argc, envc;
|
|
int error;
|
|
|
|
cpp = (char **)*stackp;
|
|
nullp = NULL;
|
|
argc = arginfo->ps_nargvstr;
|
|
envc = arginfo->ps_nenvstr;
|
|
|
|
/* argc on stack is long */
|
|
CTASSERT(sizeof(*cpp) == sizeof(argc));
|
|
|
|
dp = (char *)(cpp +
|
|
1 + /* long argc */
|
|
argc + /* char *argv[] */
|
|
1 + /* \0 */
|
|
envc + /* char *env[] */
|
|
1) + /* \0 */
|
|
pack->ep_esch->es_arglen; /* auxinfo */
|
|
sp = argp;
|
|
|
|
if ((error = copyout(&argc, cpp++, sizeof(argc))) != 0) {
|
|
COPYPRINTF("", cpp - 1, sizeof(argc));
|
|
return error;
|
|
}
|
|
|
|
/* XXX don't copy them out, remap them! */
|
|
arginfo->ps_argvstr = cpp; /* remember location of argv for later */
|
|
|
|
for (; --argc >= 0; sp += len, dp += len) {
|
|
if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
|
|
COPYPRINTF("", cpp - 1, sizeof(dp));
|
|
return error;
|
|
}
|
|
if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
|
|
COPYPRINTF("str", dp, (size_t)ARG_MAX);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
|
|
COPYPRINTF("", cpp - 1, sizeof(nullp));
|
|
return error;
|
|
}
|
|
|
|
arginfo->ps_envstr = cpp; /* remember location of envp for later */
|
|
|
|
for (; --envc >= 0; sp += len, dp += len) {
|
|
if ((error = copyout(&dp, cpp++, sizeof(dp))) != 0) {
|
|
COPYPRINTF("", cpp - 1, sizeof(dp));
|
|
return error;
|
|
}
|
|
if ((error = copyoutstr(sp, dp, ARG_MAX, &len)) != 0) {
|
|
COPYPRINTF("str", dp, (size_t)ARG_MAX);
|
|
return error;
|
|
}
|
|
|
|
}
|
|
|
|
if ((error = copyout(&nullp, cpp++, sizeof(nullp))) != 0) {
|
|
COPYPRINTF("", cpp - 1, sizeof(nullp));
|
|
return error;
|
|
}
|
|
|
|
*stackp = (char *)cpp;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Add execsw[] entries.
|
|
*/
|
|
int
|
|
exec_add(struct execsw *esp, int count)
|
|
{
|
|
struct exec_entry *it;
|
|
int i;
|
|
|
|
if (count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Check for duplicates. */
|
|
rw_enter(&exec_lock, RW_WRITER);
|
|
for (i = 0; i < count; i++) {
|
|
LIST_FOREACH(it, &ex_head, ex_list) {
|
|
/* assume unique (makecmds, probe_func, emulation) */
|
|
if (it->ex_sw->es_makecmds == esp[i].es_makecmds &&
|
|
it->ex_sw->u.elf_probe_func ==
|
|
esp[i].u.elf_probe_func &&
|
|
it->ex_sw->es_emul == esp[i].es_emul) {
|
|
rw_exit(&exec_lock);
|
|
return EEXIST;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Allocate new entries. */
|
|
for (i = 0; i < count; i++) {
|
|
it = kmem_alloc(sizeof(*it), KM_SLEEP);
|
|
it->ex_sw = &esp[i];
|
|
LIST_INSERT_HEAD(&ex_head, it, ex_list);
|
|
}
|
|
|
|
/* update execsw[] */
|
|
exec_init(0);
|
|
rw_exit(&exec_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove execsw[] entry.
|
|
*/
|
|
int
|
|
exec_remove(struct execsw *esp, int count)
|
|
{
|
|
struct exec_entry *it, *next;
|
|
int i;
|
|
const struct proclist_desc *pd;
|
|
proc_t *p;
|
|
|
|
if (count == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Abort if any are busy. */
|
|
rw_enter(&exec_lock, RW_WRITER);
|
|
for (i = 0; i < count; i++) {
|
|
mutex_enter(proc_lock);
|
|
for (pd = proclists; pd->pd_list != NULL; pd++) {
|
|
PROCLIST_FOREACH(p, pd->pd_list) {
|
|
if (p->p_execsw == &esp[i]) {
|
|
mutex_exit(proc_lock);
|
|
rw_exit(&exec_lock);
|
|
return EBUSY;
|
|
}
|
|
}
|
|
}
|
|
mutex_exit(proc_lock);
|
|
}
|
|
|
|
/* None are busy, so remove them all. */
|
|
for (i = 0; i < count; i++) {
|
|
for (it = LIST_FIRST(&ex_head); it != NULL; it = next) {
|
|
next = LIST_NEXT(it, ex_list);
|
|
if (it->ex_sw == &esp[i]) {
|
|
LIST_REMOVE(it, ex_list);
|
|
kmem_free(it, sizeof(*it));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* update execsw[] */
|
|
exec_init(0);
|
|
rw_exit(&exec_lock);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize exec structures. If init_boot is true, also does necessary
|
|
* one-time initialization (it's called from main() that way).
|
|
* Once system is multiuser, this should be called with exec_lock held,
|
|
* i.e. via exec_{add|remove}().
|
|
*/
|
|
int
|
|
exec_init(int init_boot)
|
|
{
|
|
const struct execsw **sw;
|
|
struct exec_entry *ex;
|
|
SLIST_HEAD(,exec_entry) first;
|
|
SLIST_HEAD(,exec_entry) any;
|
|
SLIST_HEAD(,exec_entry) last;
|
|
int i, sz;
|
|
|
|
if (init_boot) {
|
|
/* do one-time initializations */
|
|
rw_init(&exec_lock);
|
|
mutex_init(&sigobject_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
pool_init(&exec_pool, NCARGS, 0, 0, PR_NOALIGN|PR_NOTOUCH,
|
|
"execargs", &exec_palloc, IPL_NONE);
|
|
pool_sethardlimit(&exec_pool, maxexec, "should not happen", 0);
|
|
} else {
|
|
KASSERT(rw_write_held(&exec_lock));
|
|
}
|
|
|
|
/* Sort each entry onto the appropriate queue. */
|
|
SLIST_INIT(&first);
|
|
SLIST_INIT(&any);
|
|
SLIST_INIT(&last);
|
|
sz = 0;
|
|
LIST_FOREACH(ex, &ex_head, ex_list) {
|
|
switch(ex->ex_sw->es_prio) {
|
|
case EXECSW_PRIO_FIRST:
|
|
SLIST_INSERT_HEAD(&first, ex, ex_slist);
|
|
break;
|
|
case EXECSW_PRIO_ANY:
|
|
SLIST_INSERT_HEAD(&any, ex, ex_slist);
|
|
break;
|
|
case EXECSW_PRIO_LAST:
|
|
SLIST_INSERT_HEAD(&last, ex, ex_slist);
|
|
break;
|
|
default:
|
|
panic("%s", __func__);
|
|
break;
|
|
}
|
|
sz++;
|
|
}
|
|
|
|
/*
|
|
* Create new execsw[]. Ensure we do not try a zero-sized
|
|
* allocation.
|
|
*/
|
|
sw = kmem_alloc(sz * sizeof(struct execsw *) + 1, KM_SLEEP);
|
|
i = 0;
|
|
SLIST_FOREACH(ex, &first, ex_slist) {
|
|
sw[i++] = ex->ex_sw;
|
|
}
|
|
SLIST_FOREACH(ex, &any, ex_slist) {
|
|
sw[i++] = ex->ex_sw;
|
|
}
|
|
SLIST_FOREACH(ex, &last, ex_slist) {
|
|
sw[i++] = ex->ex_sw;
|
|
}
|
|
|
|
/* Replace old execsw[] and free used memory. */
|
|
if (execsw != NULL) {
|
|
kmem_free(__UNCONST(execsw),
|
|
nexecs * sizeof(struct execsw *) + 1);
|
|
}
|
|
execsw = sw;
|
|
nexecs = sz;
|
|
|
|
/* Figure out the maximum size of an exec header. */
|
|
exec_maxhdrsz = sizeof(int);
|
|
for (i = 0; i < nexecs; i++) {
|
|
if (execsw[i]->es_hdrsz > exec_maxhdrsz)
|
|
exec_maxhdrsz = execsw[i]->es_hdrsz;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
exec_sigcode_map(struct proc *p, const struct emul *e)
|
|
{
|
|
vaddr_t va;
|
|
vsize_t sz;
|
|
int error;
|
|
struct uvm_object *uobj;
|
|
|
|
sz = (vaddr_t)e->e_esigcode - (vaddr_t)e->e_sigcode;
|
|
|
|
if (e->e_sigobject == NULL || sz == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If we don't have a sigobject for this emulation, create one.
|
|
*
|
|
* sigobject is an anonymous memory object (just like SYSV shared
|
|
* memory) that we keep a permanent reference to and that we map
|
|
* in all processes that need this sigcode. The creation is simple,
|
|
* we create an object, add a permanent reference to it, map it in
|
|
* kernel space, copy out the sigcode to it and unmap it.
|
|
* We map it with PROT_READ|PROT_EXEC into the process just
|
|
* the way sys_mmap() would map it.
|
|
*/
|
|
|
|
uobj = *e->e_sigobject;
|
|
if (uobj == NULL) {
|
|
mutex_enter(&sigobject_lock);
|
|
if ((uobj = *e->e_sigobject) == NULL) {
|
|
uobj = uao_create(sz, 0);
|
|
(*uobj->pgops->pgo_reference)(uobj);
|
|
va = vm_map_min(kernel_map);
|
|
if ((error = uvm_map(kernel_map, &va, round_page(sz),
|
|
uobj, 0, 0,
|
|
UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
|
|
UVM_INH_SHARE, UVM_ADV_RANDOM, 0)))) {
|
|
printf("kernel mapping failed %d\n", error);
|
|
(*uobj->pgops->pgo_detach)(uobj);
|
|
mutex_exit(&sigobject_lock);
|
|
return error;
|
|
}
|
|
memcpy((void *)va, e->e_sigcode, sz);
|
|
#ifdef PMAP_NEED_PROCWR
|
|
pmap_procwr(&proc0, va, sz);
|
|
#endif
|
|
uvm_unmap(kernel_map, va, va + round_page(sz));
|
|
*e->e_sigobject = uobj;
|
|
}
|
|
mutex_exit(&sigobject_lock);
|
|
}
|
|
|
|
/* Just a hint to uvm_map where to put it. */
|
|
va = e->e_vm_default_addr(p, (vaddr_t)p->p_vmspace->vm_daddr,
|
|
round_page(sz), p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
|
|
|
|
#ifdef __alpha__
|
|
/*
|
|
* Tru64 puts /sbin/loader at the end of user virtual memory,
|
|
* which causes the above calculation to put the sigcode at
|
|
* an invalid address. Put it just below the text instead.
|
|
*/
|
|
if (va == (vaddr_t)vm_map_max(&p->p_vmspace->vm_map)) {
|
|
va = (vaddr_t)p->p_vmspace->vm_taddr - round_page(sz);
|
|
}
|
|
#endif
|
|
|
|
(*uobj->pgops->pgo_reference)(uobj);
|
|
error = uvm_map(&p->p_vmspace->vm_map, &va, round_page(sz),
|
|
uobj, 0, 0,
|
|
UVM_MAPFLAG(UVM_PROT_RX, UVM_PROT_RX, UVM_INH_SHARE,
|
|
UVM_ADV_RANDOM, 0));
|
|
if (error) {
|
|
DPRINTF(("%s, %d: map %p "
|
|
"uvm_map %#"PRIxVSIZE"@%#"PRIxVADDR" failed %d\n",
|
|
__func__, __LINE__, &p->p_vmspace->vm_map, round_page(sz),
|
|
va, error));
|
|
(*uobj->pgops->pgo_detach)(uobj);
|
|
return error;
|
|
}
|
|
p->p_sigctx.ps_sigcode = (void *)va;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Release a refcount on spawn_exec_data and destroy memory, if this
|
|
* was the last one.
|
|
*/
|
|
static void
|
|
spawn_exec_data_release(struct spawn_exec_data *data)
|
|
{
|
|
if (atomic_dec_32_nv(&data->sed_refcnt) != 0)
|
|
return;
|
|
|
|
cv_destroy(&data->sed_cv_child_ready);
|
|
mutex_destroy(&data->sed_mtx_child);
|
|
|
|
if (data->sed_actions)
|
|
posix_spawn_fa_free(data->sed_actions,
|
|
data->sed_actions->len);
|
|
if (data->sed_attrs)
|
|
kmem_free(data->sed_attrs,
|
|
sizeof(*data->sed_attrs));
|
|
kmem_free(data, sizeof(*data));
|
|
}
|
|
|
|
/*
|
|
* A child lwp of a posix_spawn operation starts here and ends up in
|
|
* cpu_spawn_return, dealing with all filedescriptor and scheduler
|
|
* manipulations in between.
|
|
* The parent waits for the child, as it is not clear whether the child
|
|
* will be able to acquire its own exec_lock. If it can, the parent can
|
|
* be released early and continue running in parallel. If not (or if the
|
|
* magic debug flag is passed in the scheduler attribute struct), the
|
|
* child rides on the parent's exec lock until it is ready to return to
|
|
* to userland - and only then releases the parent. This method loses
|
|
* concurrency, but improves error reporting.
|
|
*/
|
|
static void
|
|
spawn_return(void *arg)
|
|
{
|
|
struct spawn_exec_data *spawn_data = arg;
|
|
struct lwp *l = curlwp;
|
|
int error, newfd;
|
|
int ostat;
|
|
size_t i;
|
|
const struct posix_spawn_file_actions_entry *fae;
|
|
pid_t ppid;
|
|
register_t retval;
|
|
bool have_reflock;
|
|
bool parent_is_waiting = true;
|
|
|
|
/*
|
|
* Check if we can release parent early.
|
|
* We either need to have no sed_attrs, or sed_attrs does not
|
|
* have POSIX_SPAWN_RETURNERROR or one of the flags, that require
|
|
* safe access to the parent proc (passed in sed_parent).
|
|
* We then try to get the exec_lock, and only if that works, we can
|
|
* release the parent here already.
|
|
*/
|
|
ppid = spawn_data->sed_parent->p_pid;
|
|
if ((!spawn_data->sed_attrs
|
|
|| (spawn_data->sed_attrs->sa_flags
|
|
& (POSIX_SPAWN_RETURNERROR|POSIX_SPAWN_SETPGROUP)) == 0)
|
|
&& rw_tryenter(&exec_lock, RW_READER)) {
|
|
parent_is_waiting = false;
|
|
mutex_enter(&spawn_data->sed_mtx_child);
|
|
cv_signal(&spawn_data->sed_cv_child_ready);
|
|
mutex_exit(&spawn_data->sed_mtx_child);
|
|
}
|
|
|
|
/* don't allow debugger access yet */
|
|
rw_enter(&l->l_proc->p_reflock, RW_WRITER);
|
|
have_reflock = true;
|
|
|
|
error = 0;
|
|
/* handle posix_spawn_file_actions */
|
|
if (spawn_data->sed_actions != NULL) {
|
|
for (i = 0; i < spawn_data->sed_actions->len; i++) {
|
|
fae = &spawn_data->sed_actions->fae[i];
|
|
switch (fae->fae_action) {
|
|
case FAE_OPEN:
|
|
if (fd_getfile(fae->fae_fildes) != NULL) {
|
|
error = fd_close(fae->fae_fildes);
|
|
if (error)
|
|
break;
|
|
}
|
|
error = fd_open(fae->fae_path, fae->fae_oflag,
|
|
fae->fae_mode, &newfd);
|
|
if (error)
|
|
break;
|
|
if (newfd != fae->fae_fildes) {
|
|
error = dodup(l, newfd,
|
|
fae->fae_fildes, 0, &retval);
|
|
if (fd_getfile(newfd) != NULL)
|
|
fd_close(newfd);
|
|
}
|
|
break;
|
|
case FAE_DUP2:
|
|
error = dodup(l, fae->fae_fildes,
|
|
fae->fae_newfildes, 0, &retval);
|
|
break;
|
|
case FAE_CLOSE:
|
|
if (fd_getfile(fae->fae_fildes) == NULL) {
|
|
error = EBADF;
|
|
break;
|
|
}
|
|
error = fd_close(fae->fae_fildes);
|
|
break;
|
|
}
|
|
if (error)
|
|
goto report_error;
|
|
}
|
|
}
|
|
|
|
/* handle posix_spawnattr */
|
|
if (spawn_data->sed_attrs != NULL) {
|
|
struct sigaction sigact;
|
|
sigact._sa_u._sa_handler = SIG_DFL;
|
|
sigact.sa_flags = 0;
|
|
|
|
/*
|
|
* set state to SSTOP so that this proc can be found by pid.
|
|
* see proc_enterprp, do_sched_setparam below
|
|
*/
|
|
mutex_enter(proc_lock);
|
|
/*
|
|
* p_stat should be SACTIVE, so we need to adjust the
|
|
* parent's p_nstopchild here. For safety, just make
|
|
* we're on the good side of SDEAD before we adjust.
|
|
*/
|
|
ostat = l->l_proc->p_stat;
|
|
KASSERT(ostat < SSTOP);
|
|
l->l_proc->p_stat = SSTOP;
|
|
l->l_proc->p_waited = 0;
|
|
l->l_proc->p_pptr->p_nstopchild++;
|
|
mutex_exit(proc_lock);
|
|
|
|
/* Set process group */
|
|
if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETPGROUP) {
|
|
pid_t mypid = l->l_proc->p_pid,
|
|
pgrp = spawn_data->sed_attrs->sa_pgroup;
|
|
|
|
if (pgrp == 0)
|
|
pgrp = mypid;
|
|
|
|
error = proc_enterpgrp(spawn_data->sed_parent,
|
|
mypid, pgrp, false);
|
|
if (error)
|
|
goto report_error_stopped;
|
|
}
|
|
|
|
/* Set scheduler policy */
|
|
if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSCHEDULER)
|
|
error = do_sched_setparam(l->l_proc->p_pid, 0,
|
|
spawn_data->sed_attrs->sa_schedpolicy,
|
|
&spawn_data->sed_attrs->sa_schedparam);
|
|
else if (spawn_data->sed_attrs->sa_flags
|
|
& POSIX_SPAWN_SETSCHEDPARAM) {
|
|
error = do_sched_setparam(ppid, 0,
|
|
SCHED_NONE, &spawn_data->sed_attrs->sa_schedparam);
|
|
}
|
|
if (error)
|
|
goto report_error_stopped;
|
|
|
|
/* Reset user ID's */
|
|
if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_RESETIDS) {
|
|
error = do_setresuid(l, -1,
|
|
kauth_cred_getgid(l->l_cred), -1,
|
|
ID_E_EQ_R | ID_E_EQ_S);
|
|
if (error)
|
|
goto report_error_stopped;
|
|
error = do_setresuid(l, -1,
|
|
kauth_cred_getuid(l->l_cred), -1,
|
|
ID_E_EQ_R | ID_E_EQ_S);
|
|
if (error)
|
|
goto report_error_stopped;
|
|
}
|
|
|
|
/* Set signal masks/defaults */
|
|
if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGMASK) {
|
|
mutex_enter(l->l_proc->p_lock);
|
|
error = sigprocmask1(l, SIG_SETMASK,
|
|
&spawn_data->sed_attrs->sa_sigmask, NULL);
|
|
mutex_exit(l->l_proc->p_lock);
|
|
if (error)
|
|
goto report_error_stopped;
|
|
}
|
|
|
|
if (spawn_data->sed_attrs->sa_flags & POSIX_SPAWN_SETSIGDEF) {
|
|
/*
|
|
* The following sigaction call is using a sigaction
|
|
* version 0 trampoline which is in the compatibility
|
|
* code only. This is not a problem because for SIG_DFL
|
|
* and SIG_IGN, the trampolines are now ignored. If they
|
|
* were not, this would be a problem because we are
|
|
* holding the exec_lock, and the compat code needs
|
|
* to do the same in order to replace the trampoline
|
|
* code of the process.
|
|
*/
|
|
for (i = 1; i <= NSIG; i++) {
|
|
if (sigismember(
|
|
&spawn_data->sed_attrs->sa_sigdefault, i))
|
|
sigaction1(l, i, &sigact, NULL, NULL,
|
|
0);
|
|
}
|
|
}
|
|
mutex_enter(proc_lock);
|
|
l->l_proc->p_stat = ostat;
|
|
l->l_proc->p_pptr->p_nstopchild--;
|
|
mutex_exit(proc_lock);
|
|
}
|
|
|
|
/* now do the real exec */
|
|
error = execve_runproc(l, &spawn_data->sed_exec, parent_is_waiting,
|
|
true);
|
|
have_reflock = false;
|
|
if (error == EJUSTRETURN)
|
|
error = 0;
|
|
else if (error)
|
|
goto report_error;
|
|
|
|
if (parent_is_waiting) {
|
|
mutex_enter(&spawn_data->sed_mtx_child);
|
|
cv_signal(&spawn_data->sed_cv_child_ready);
|
|
mutex_exit(&spawn_data->sed_mtx_child);
|
|
}
|
|
|
|
/* release our refcount on the data */
|
|
spawn_exec_data_release(spawn_data);
|
|
|
|
/* and finally: leave to userland for the first time */
|
|
cpu_spawn_return(l);
|
|
|
|
/* NOTREACHED */
|
|
return;
|
|
|
|
report_error_stopped:
|
|
mutex_enter(proc_lock);
|
|
l->l_proc->p_stat = ostat;
|
|
l->l_proc->p_pptr->p_nstopchild--;
|
|
mutex_exit(proc_lock);
|
|
report_error:
|
|
if (have_reflock) {
|
|
/*
|
|
* We have not passed through execve_runproc(),
|
|
* which would have released the p_reflock and also
|
|
* taken ownership of the sed_exec part of spawn_data,
|
|
* so release/free both here.
|
|
*/
|
|
rw_exit(&l->l_proc->p_reflock);
|
|
execve_free_data(&spawn_data->sed_exec);
|
|
}
|
|
|
|
if (parent_is_waiting) {
|
|
/* pass error to parent */
|
|
mutex_enter(&spawn_data->sed_mtx_child);
|
|
spawn_data->sed_error = error;
|
|
cv_signal(&spawn_data->sed_cv_child_ready);
|
|
mutex_exit(&spawn_data->sed_mtx_child);
|
|
} else {
|
|
rw_exit(&exec_lock);
|
|
}
|
|
|
|
/* release our refcount on the data */
|
|
spawn_exec_data_release(spawn_data);
|
|
|
|
/* done, exit */
|
|
mutex_enter(l->l_proc->p_lock);
|
|
/*
|
|
* Posix explicitly asks for an exit code of 127 if we report
|
|
* errors from the child process - so, unfortunately, there
|
|
* is no way to report a more exact error code.
|
|
* A NetBSD specific workaround is POSIX_SPAWN_RETURNERROR as
|
|
* flag bit in the attrp argument to posix_spawn(2), see above.
|
|
*/
|
|
exit1(l, 127, 0);
|
|
}
|
|
|
|
void
|
|
posix_spawn_fa_free(struct posix_spawn_file_actions *fa, size_t len)
|
|
{
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
struct posix_spawn_file_actions_entry *fae = &fa->fae[i];
|
|
if (fae->fae_action != FAE_OPEN)
|
|
continue;
|
|
kmem_free(fae->fae_path, strlen(fae->fae_path) + 1);
|
|
}
|
|
if (fa->len > 0)
|
|
kmem_free(fa->fae, sizeof(*fa->fae) * fa->len);
|
|
kmem_free(fa, sizeof(*fa));
|
|
}
|
|
|
|
static int
|
|
posix_spawn_fa_alloc(struct posix_spawn_file_actions **fap,
|
|
const struct posix_spawn_file_actions *ufa, rlim_t lim)
|
|
{
|
|
struct posix_spawn_file_actions *fa;
|
|
struct posix_spawn_file_actions_entry *fae;
|
|
char *pbuf = NULL;
|
|
int error;
|
|
size_t i = 0;
|
|
|
|
fa = kmem_alloc(sizeof(*fa), KM_SLEEP);
|
|
error = copyin(ufa, fa, sizeof(*fa));
|
|
if (error || fa->len == 0) {
|
|
kmem_free(fa, sizeof(*fa));
|
|
return error; /* 0 if not an error, and len == 0 */
|
|
}
|
|
|
|
if (fa->len > lim) {
|
|
kmem_free(fa, sizeof(*fa));
|
|
return EINVAL;
|
|
}
|
|
|
|
fa->size = fa->len;
|
|
size_t fal = fa->len * sizeof(*fae);
|
|
fae = fa->fae;
|
|
fa->fae = kmem_alloc(fal, KM_SLEEP);
|
|
error = copyin(fae, fa->fae, fal);
|
|
if (error)
|
|
goto out;
|
|
|
|
pbuf = PNBUF_GET();
|
|
for (; i < fa->len; i++) {
|
|
fae = &fa->fae[i];
|
|
if (fae->fae_action != FAE_OPEN)
|
|
continue;
|
|
error = copyinstr(fae->fae_path, pbuf, MAXPATHLEN, &fal);
|
|
if (error)
|
|
goto out;
|
|
fae->fae_path = kmem_alloc(fal, KM_SLEEP);
|
|
memcpy(fae->fae_path, pbuf, fal);
|
|
}
|
|
PNBUF_PUT(pbuf);
|
|
|
|
*fap = fa;
|
|
return 0;
|
|
out:
|
|
if (pbuf)
|
|
PNBUF_PUT(pbuf);
|
|
posix_spawn_fa_free(fa, i);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
check_posix_spawn(struct lwp *l1)
|
|
{
|
|
int error, tnprocs, count;
|
|
uid_t uid;
|
|
struct proc *p1;
|
|
|
|
p1 = l1->l_proc;
|
|
uid = kauth_cred_getuid(l1->l_cred);
|
|
tnprocs = atomic_inc_uint_nv(&nprocs);
|
|
|
|
/*
|
|
* Although process entries are dynamically created, we still keep
|
|
* a global limit on the maximum number we will create.
|
|
*/
|
|
if (__predict_false(tnprocs >= maxproc))
|
|
error = -1;
|
|
else
|
|
error = kauth_authorize_process(l1->l_cred,
|
|
KAUTH_PROCESS_FORK, p1, KAUTH_ARG(tnprocs), NULL, NULL);
|
|
|
|
if (error) {
|
|
atomic_dec_uint(&nprocs);
|
|
return EAGAIN;
|
|
}
|
|
|
|
/*
|
|
* Enforce limits.
|
|
*/
|
|
count = chgproccnt(uid, 1);
|
|
if (kauth_authorize_process(l1->l_cred, KAUTH_PROCESS_RLIMIT,
|
|
p1, KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
|
|
&p1->p_rlimit[RLIMIT_NPROC], KAUTH_ARG(RLIMIT_NPROC)) != 0 &&
|
|
__predict_false(count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur)) {
|
|
(void)chgproccnt(uid, -1);
|
|
atomic_dec_uint(&nprocs);
|
|
return EAGAIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
do_posix_spawn(struct lwp *l1, pid_t *pid_res, bool *child_ok, const char *path,
|
|
struct posix_spawn_file_actions *fa,
|
|
struct posix_spawnattr *sa,
|
|
char *const *argv, char *const *envp,
|
|
execve_fetch_element_t fetch)
|
|
{
|
|
|
|
struct proc *p1, *p2;
|
|
struct lwp *l2;
|
|
int error;
|
|
struct spawn_exec_data *spawn_data;
|
|
vaddr_t uaddr;
|
|
pid_t pid;
|
|
bool have_exec_lock = false;
|
|
|
|
p1 = l1->l_proc;
|
|
|
|
/* Allocate and init spawn_data */
|
|
spawn_data = kmem_zalloc(sizeof(*spawn_data), KM_SLEEP);
|
|
spawn_data->sed_refcnt = 1; /* only parent so far */
|
|
cv_init(&spawn_data->sed_cv_child_ready, "pspawn");
|
|
mutex_init(&spawn_data->sed_mtx_child, MUTEX_DEFAULT, IPL_NONE);
|
|
mutex_enter(&spawn_data->sed_mtx_child);
|
|
|
|
/*
|
|
* Do the first part of the exec now, collect state
|
|
* in spawn_data.
|
|
*/
|
|
error = execve_loadvm(l1, path, argv,
|
|
envp, fetch, &spawn_data->sed_exec);
|
|
if (error == EJUSTRETURN)
|
|
error = 0;
|
|
else if (error)
|
|
goto error_exit;
|
|
|
|
have_exec_lock = true;
|
|
|
|
/*
|
|
* Allocate virtual address space for the U-area now, while it
|
|
* is still easy to abort the fork operation if we're out of
|
|
* kernel virtual address space.
|
|
*/
|
|
uaddr = uvm_uarea_alloc();
|
|
if (__predict_false(uaddr == 0)) {
|
|
error = ENOMEM;
|
|
goto error_exit;
|
|
}
|
|
|
|
/*
|
|
* Allocate new proc. Borrow proc0 vmspace for it, we will
|
|
* replace it with its own before returning to userland
|
|
* in the child.
|
|
* This is a point of no return, we will have to go through
|
|
* the child proc to properly clean it up past this point.
|
|
*/
|
|
p2 = proc_alloc();
|
|
pid = p2->p_pid;
|
|
|
|
/*
|
|
* Make a proc table entry for the new process.
|
|
* Start by zeroing the section of proc that is zero-initialized,
|
|
* then copy the section that is copied directly from the parent.
|
|
*/
|
|
memset(&p2->p_startzero, 0,
|
|
(unsigned) ((char *)&p2->p_endzero - (char *)&p2->p_startzero));
|
|
memcpy(&p2->p_startcopy, &p1->p_startcopy,
|
|
(unsigned) ((char *)&p2->p_endcopy - (char *)&p2->p_startcopy));
|
|
p2->p_vmspace = proc0.p_vmspace;
|
|
|
|
TAILQ_INIT(&p2->p_sigpend.sp_info);
|
|
|
|
LIST_INIT(&p2->p_lwps);
|
|
LIST_INIT(&p2->p_sigwaiters);
|
|
|
|
/*
|
|
* Duplicate sub-structures as needed.
|
|
* Increase reference counts on shared objects.
|
|
* Inherit flags we want to keep. The flags related to SIGCHLD
|
|
* handling are important in order to keep a consistent behaviour
|
|
* for the child after the fork. If we are a 32-bit process, the
|
|
* child will be too.
|
|
*/
|
|
p2->p_flag =
|
|
p1->p_flag & (PK_SUGID | PK_NOCLDWAIT | PK_CLDSIGIGN | PK_32);
|
|
p2->p_emul = p1->p_emul;
|
|
p2->p_execsw = p1->p_execsw;
|
|
|
|
mutex_init(&p2->p_stmutex, MUTEX_DEFAULT, IPL_HIGH);
|
|
mutex_init(&p2->p_auxlock, MUTEX_DEFAULT, IPL_NONE);
|
|
rw_init(&p2->p_reflock);
|
|
cv_init(&p2->p_waitcv, "wait");
|
|
cv_init(&p2->p_lwpcv, "lwpwait");
|
|
|
|
p2->p_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
|
|
|
|
kauth_proc_fork(p1, p2);
|
|
|
|
p2->p_raslist = NULL;
|
|
p2->p_fd = fd_copy();
|
|
|
|
/* XXX racy */
|
|
p2->p_mqueue_cnt = p1->p_mqueue_cnt;
|
|
|
|
p2->p_cwdi = cwdinit();
|
|
|
|
/*
|
|
* Note: p_limit (rlimit stuff) is copy-on-write, so normally
|
|
* we just need increase pl_refcnt.
|
|
*/
|
|
if (!p1->p_limit->pl_writeable) {
|
|
lim_addref(p1->p_limit);
|
|
p2->p_limit = p1->p_limit;
|
|
} else {
|
|
p2->p_limit = lim_copy(p1->p_limit);
|
|
}
|
|
|
|
p2->p_lflag = 0;
|
|
p2->p_sflag = 0;
|
|
p2->p_slflag = 0;
|
|
p2->p_pptr = p1;
|
|
p2->p_ppid = p1->p_pid;
|
|
LIST_INIT(&p2->p_children);
|
|
|
|
p2->p_aio = NULL;
|
|
|
|
#ifdef KTRACE
|
|
/*
|
|
* Copy traceflag and tracefile if enabled.
|
|
* If not inherited, these were zeroed above.
|
|
*/
|
|
if (p1->p_traceflag & KTRFAC_INHERIT) {
|
|
mutex_enter(&ktrace_lock);
|
|
p2->p_traceflag = p1->p_traceflag;
|
|
if ((p2->p_tracep = p1->p_tracep) != NULL)
|
|
ktradref(p2);
|
|
mutex_exit(&ktrace_lock);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Create signal actions for the child process.
|
|
*/
|
|
p2->p_sigacts = sigactsinit(p1, 0);
|
|
mutex_enter(p1->p_lock);
|
|
p2->p_sflag |=
|
|
(p1->p_sflag & (PS_STOPFORK | PS_STOPEXEC | PS_NOCLDSTOP));
|
|
sched_proc_fork(p1, p2);
|
|
mutex_exit(p1->p_lock);
|
|
|
|
p2->p_stflag = p1->p_stflag;
|
|
|
|
/*
|
|
* p_stats.
|
|
* Copy parts of p_stats, and zero out the rest.
|
|
*/
|
|
p2->p_stats = pstatscopy(p1->p_stats);
|
|
|
|
/* copy over machdep flags to the new proc */
|
|
cpu_proc_fork(p1, p2);
|
|
|
|
/*
|
|
* Prepare remaining parts of spawn data
|
|
*/
|
|
spawn_data->sed_actions = fa;
|
|
spawn_data->sed_attrs = sa;
|
|
|
|
spawn_data->sed_parent = p1;
|
|
|
|
/* create LWP */
|
|
lwp_create(l1, p2, uaddr, 0, NULL, 0, spawn_return, spawn_data,
|
|
&l2, l1->l_class, &l1->l_sigmask, &l1->l_sigstk);
|
|
l2->l_ctxlink = NULL; /* reset ucontext link */
|
|
|
|
/*
|
|
* Copy the credential so other references don't see our changes.
|
|
* Test to see if this is necessary first, since in the common case
|
|
* we won't need a private reference.
|
|
*/
|
|
if (kauth_cred_geteuid(l2->l_cred) != kauth_cred_getsvuid(l2->l_cred) ||
|
|
kauth_cred_getegid(l2->l_cred) != kauth_cred_getsvgid(l2->l_cred)) {
|
|
l2->l_cred = kauth_cred_copy(l2->l_cred);
|
|
kauth_cred_setsvuid(l2->l_cred, kauth_cred_geteuid(l2->l_cred));
|
|
kauth_cred_setsvgid(l2->l_cred, kauth_cred_getegid(l2->l_cred));
|
|
}
|
|
|
|
/* Update the master credentials. */
|
|
if (l2->l_cred != p2->p_cred) {
|
|
kauth_cred_t ocred;
|
|
|
|
kauth_cred_hold(l2->l_cred);
|
|
mutex_enter(p2->p_lock);
|
|
ocred = p2->p_cred;
|
|
p2->p_cred = l2->l_cred;
|
|
mutex_exit(p2->p_lock);
|
|
kauth_cred_free(ocred);
|
|
}
|
|
|
|
*child_ok = true;
|
|
spawn_data->sed_refcnt = 2; /* child gets it as well */
|
|
#if 0
|
|
l2->l_nopreempt = 1; /* start it non-preemptable */
|
|
#endif
|
|
|
|
/*
|
|
* It's now safe for the scheduler and other processes to see the
|
|
* child process.
|
|
*/
|
|
mutex_enter(proc_lock);
|
|
|
|
if (p1->p_session->s_ttyvp != NULL && p1->p_lflag & PL_CONTROLT)
|
|
p2->p_lflag |= PL_CONTROLT;
|
|
|
|
LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
|
|
p2->p_exitsig = SIGCHLD; /* signal for parent on exit */
|
|
|
|
LIST_INSERT_AFTER(p1, p2, p_pglist);
|
|
LIST_INSERT_HEAD(&allproc, p2, p_list);
|
|
|
|
p2->p_trace_enabled = trace_is_enabled(p2);
|
|
#ifdef __HAVE_SYSCALL_INTERN
|
|
(*p2->p_emul->e_syscall_intern)(p2);
|
|
#endif
|
|
|
|
/*
|
|
* Make child runnable, set start time, and add to run queue except
|
|
* if the parent requested the child to start in SSTOP state.
|
|
*/
|
|
mutex_enter(p2->p_lock);
|
|
|
|
getmicrotime(&p2->p_stats->p_start);
|
|
|
|
lwp_lock(l2);
|
|
KASSERT(p2->p_nrlwps == 1);
|
|
p2->p_nrlwps = 1;
|
|
p2->p_stat = SACTIVE;
|
|
l2->l_stat = LSRUN;
|
|
sched_enqueue(l2, false);
|
|
lwp_unlock(l2);
|
|
|
|
mutex_exit(p2->p_lock);
|
|
mutex_exit(proc_lock);
|
|
|
|
cv_wait(&spawn_data->sed_cv_child_ready, &spawn_data->sed_mtx_child);
|
|
error = spawn_data->sed_error;
|
|
mutex_exit(&spawn_data->sed_mtx_child);
|
|
spawn_exec_data_release(spawn_data);
|
|
|
|
rw_exit(&p1->p_reflock);
|
|
rw_exit(&exec_lock);
|
|
have_exec_lock = false;
|
|
|
|
*pid_res = pid;
|
|
return error;
|
|
|
|
error_exit:
|
|
if (have_exec_lock) {
|
|
execve_free_data(&spawn_data->sed_exec);
|
|
rw_exit(&p1->p_reflock);
|
|
rw_exit(&exec_lock);
|
|
}
|
|
mutex_exit(&spawn_data->sed_mtx_child);
|
|
spawn_exec_data_release(spawn_data);
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
sys_posix_spawn(struct lwp *l1, const struct sys_posix_spawn_args *uap,
|
|
register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(pid_t *) pid;
|
|
syscallarg(const char *) path;
|
|
syscallarg(const struct posix_spawn_file_actions *) file_actions;
|
|
syscallarg(const struct posix_spawnattr *) attrp;
|
|
syscallarg(char *const *) argv;
|
|
syscallarg(char *const *) envp;
|
|
} */
|
|
|
|
int error;
|
|
struct posix_spawn_file_actions *fa = NULL;
|
|
struct posix_spawnattr *sa = NULL;
|
|
pid_t pid;
|
|
bool child_ok = false;
|
|
rlim_t max_fileactions;
|
|
proc_t *p = l1->l_proc;
|
|
|
|
error = check_posix_spawn(l1);
|
|
if (error) {
|
|
*retval = error;
|
|
return 0;
|
|
}
|
|
|
|
/* copy in file_actions struct */
|
|
if (SCARG(uap, file_actions) != NULL) {
|
|
max_fileactions = 2 * min(p->p_rlimit[RLIMIT_NOFILE].rlim_cur,
|
|
maxfiles);
|
|
error = posix_spawn_fa_alloc(&fa, SCARG(uap, file_actions),
|
|
max_fileactions);
|
|
if (error)
|
|
goto error_exit;
|
|
}
|
|
|
|
/* copyin posix_spawnattr struct */
|
|
if (SCARG(uap, attrp) != NULL) {
|
|
sa = kmem_alloc(sizeof(*sa), KM_SLEEP);
|
|
error = copyin(SCARG(uap, attrp), sa, sizeof(*sa));
|
|
if (error)
|
|
goto error_exit;
|
|
}
|
|
|
|
/*
|
|
* Do the spawn
|
|
*/
|
|
error = do_posix_spawn(l1, &pid, &child_ok, SCARG(uap, path), fa, sa,
|
|
SCARG(uap, argv), SCARG(uap, envp), execve_fetch_element);
|
|
if (error)
|
|
goto error_exit;
|
|
|
|
if (error == 0 && SCARG(uap, pid) != NULL)
|
|
error = copyout(&pid, SCARG(uap, pid), sizeof(pid));
|
|
|
|
*retval = error;
|
|
return 0;
|
|
|
|
error_exit:
|
|
if (!child_ok) {
|
|
(void)chgproccnt(kauth_cred_getuid(l1->l_cred), -1);
|
|
atomic_dec_uint(&nprocs);
|
|
|
|
if (sa)
|
|
kmem_free(sa, sizeof(*sa));
|
|
if (fa)
|
|
posix_spawn_fa_free(fa, fa->len);
|
|
}
|
|
|
|
*retval = error;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
exec_free_emul_arg(struct exec_package *epp)
|
|
{
|
|
if (epp->ep_emul_arg_free != NULL) {
|
|
KASSERT(epp->ep_emul_arg != NULL);
|
|
(*epp->ep_emul_arg_free)(epp->ep_emul_arg);
|
|
epp->ep_emul_arg_free = NULL;
|
|
epp->ep_emul_arg = NULL;
|
|
} else {
|
|
KASSERT(epp->ep_emul_arg == NULL);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_EXEC
|
|
static void
|
|
dump_vmcmds(const struct exec_package * const epp, size_t x, int error)
|
|
{
|
|
struct exec_vmcmd *vp = &epp->ep_vmcmds.evs_cmds[0];
|
|
size_t j;
|
|
|
|
if (error == 0)
|
|
DPRINTF(("vmcmds %u\n", epp->ep_vmcmds.evs_used));
|
|
else
|
|
DPRINTF(("vmcmds %zu/%u, error %d\n", x,
|
|
epp->ep_vmcmds.evs_used, error));
|
|
|
|
for (j = 0; j < epp->ep_vmcmds.evs_used; j++) {
|
|
DPRINTF(("vmcmd[%zu] = vmcmd_map_%s %#"
|
|
PRIxVADDR"/%#"PRIxVSIZE" fd@%#"
|
|
PRIxVSIZE" prot=0%o flags=%d\n", j,
|
|
vp[j].ev_proc == vmcmd_map_pagedvn ?
|
|
"pagedvn" :
|
|
vp[j].ev_proc == vmcmd_map_readvn ?
|
|
"readvn" :
|
|
vp[j].ev_proc == vmcmd_map_zero ?
|
|
"zero" : "*unknown*",
|
|
vp[j].ev_addr, vp[j].ev_len,
|
|
vp[j].ev_offset, vp[j].ev_prot,
|
|
vp[j].ev_flags));
|
|
if (error != 0 && j == x)
|
|
DPRINTF((" ^--- failed\n"));
|
|
}
|
|
}
|
|
#endif
|