NetBSD/sys/dev/isa/ess.c
mycroft e5f5e628d2 Pass the direction to the allocm and round_buffersize methods.
Some drivers need this to properly allocate DMAable memory.
1999-02-17 02:37:38 +00:00

2299 lines
53 KiB
C

/* $NetBSD: ess.c,v 1.30 1999/02/17 02:37:39 mycroft Exp $ */
/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
* and retain this copyright notice and list of conditions as
* they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Digital Equipment Corporation. Neither the "Digital Equipment
* Corporation" name nor any trademark or logo of Digital Equipment
* Corporation may be used to endorse or promote products derived
* from this software without the prior written permission of
* Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
* warranties, including but not limited to, any implied warranties
* of merchantability, fitness for a particular purpose, or
* non-infringement are disclaimed. In no event shall DIGITAL be
* liable for any damages whatsoever, and in particular, DIGITAL
* shall not be liable for special, indirect, consequential, or
* incidental damages or damages for lost profits, loss of
* revenue or loss of use, whether such damages arise in contract,
* negligence, tort, under statute, in equity, at law or otherwise,
* even if advised of the possibility of such damage.
*/
/*
**++
**
** ess.c
**
** FACILITY:
**
** DIGITAL Network Appliance Reference Design (DNARD)
**
** MODULE DESCRIPTION:
**
** This module contains the device driver for the ESS
** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
** used as a reference point when implementing this driver.
**
** AUTHORS:
**
** Blair Fidler Software Engineering Australia
** Gold Coast, Australia.
**
** CREATION DATE:
**
** March 10, 1997.
**
** MODIFICATION HISTORY:
**
** Heavily modified by Lennart Augustsson and Charles M. Hannum for
** bus_dma, changes to audio interface, and many bug fixes.
**--
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/bus.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/auconv.h>
#include <dev/mulaw.h>
#include <dev/isa/isavar.h>
#include <dev/isa/isadmavar.h>
#include <dev/isa/essvar.h>
#include <dev/isa/essreg.h>
#ifdef AUDIO_DEBUG
#define DPRINTF(x) if (essdebug) printf x
#define DPRINTFN(n,x) if (essdebug>(n)) printf x
int essdebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
#if 0
unsigned uuu;
#define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
#define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
#else
#define EREAD1(t, h, a) bus_space_read_1(t, h, a)
#define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
#endif
int ess_setup_sc __P((struct ess_softc *, int));
int ess_open __P((void *, int));
void ess_close __P((void *));
int ess_getdev __P((void *, struct audio_device *));
int ess_drain __P((void *));
int ess_query_encoding __P((void *, struct audio_encoding *));
int ess_set_params __P((void *, int, int, struct audio_params *,
struct audio_params *));
int ess_round_blocksize __P((void *, int));
int ess_trigger_output __P((void *, void *, void *, int, void (*)(void *),
void *, struct audio_params *));
int ess_trigger_input __P((void *, void *, void *, int, void (*)(void *),
void *, struct audio_params *));
int ess_halt_output __P((void *));
int ess_halt_input __P((void *));
int ess_intr_output __P((void *));
int ess_intr_input __P((void *));
int ess_speaker_ctl __P((void *, int));
int ess_getdev __P((void *, struct audio_device *));
int ess_set_port __P((void *, mixer_ctrl_t *));
int ess_get_port __P((void *, mixer_ctrl_t *));
void *ess_malloc __P((void *, int, size_t, int, int));
void ess_free __P((void *, void *, int));
size_t ess_round_buffersize __P((void *, int, size_t));
int ess_mappage __P((void *, void *, int, int));
int ess_query_devinfo __P((void *, mixer_devinfo_t *));
int ess_get_props __P((void *));
void ess_speaker_on __P((struct ess_softc *));
void ess_speaker_off __P((struct ess_softc *));
int ess_config_addr __P((struct ess_softc *));
void ess_config_irq __P((struct ess_softc *));
void ess_config_drq __P((struct ess_softc *));
void ess_setup __P((struct ess_softc *));
int ess_identify __P((struct ess_softc *));
int ess_reset __P((struct ess_softc *));
void ess_set_gain __P((struct ess_softc *, int, int));
int ess_set_in_ports __P((struct ess_softc *, int));
u_int ess_srtotc __P((u_int));
u_int ess_srtofc __P((u_int));
u_char ess_get_dsp_status __P((struct ess_softc *));
u_char ess_dsp_read_ready __P((struct ess_softc *));
u_char ess_dsp_write_ready __P((struct ess_softc *sc));
int ess_rdsp __P((struct ess_softc *));
int ess_wdsp __P((struct ess_softc *, u_char));
u_char ess_read_x_reg __P((struct ess_softc *, u_char));
int ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
u_char ess_read_mix_reg __P((struct ess_softc *, u_char));
void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
static char *essmodel[] = {
"unsupported",
"1888",
"1887",
"888"
};
struct audio_device ess_device = {
"ESS Technology",
"x",
"ess"
};
/*
* Define our interface to the higher level audio driver.
*/
struct audio_hw_if ess_hw_if = {
ess_open,
ess_close,
ess_drain,
ess_query_encoding,
ess_set_params,
ess_round_blocksize,
NULL,
NULL,
NULL,
NULL,
NULL,
ess_halt_output,
ess_halt_input,
ess_speaker_ctl,
ess_getdev,
NULL,
ess_set_port,
ess_get_port,
ess_query_devinfo,
ess_malloc,
ess_free,
ess_round_buffersize,
ess_mappage,
ess_get_props,
ess_trigger_output,
ess_trigger_input,
};
#ifdef AUDIO_DEBUG
void ess_printsc __P((struct ess_softc *));
void ess_dump_mixer __P((struct ess_softc *));
void
ess_printsc(sc)
struct ess_softc *sc;
{
int i;
printf("open %d iobase 0x%x outport %u inport %u speaker %s\n",
(int)sc->sc_open, sc->sc_iobase, sc->out_port,
sc->in_port, sc->spkr_state ? "on" : "off");
printf("play: dmachan %d irq %d nintr %lu intr %p arg %p\n",
sc->sc_out.drq, sc->sc_out.irq, sc->sc_out.nintr,
sc->sc_out.intr, sc->sc_out.arg);
printf("record: dmachan %d irq %d nintr %lu intr %p arg %p\n",
sc->sc_in.drq, sc->sc_in.irq, sc->sc_in.nintr,
sc->sc_in.intr, sc->sc_in.arg);
printf("gain:");
for (i = 0; i < ESS_NDEVS; i++)
printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
printf("\n");
}
void
ess_dump_mixer(sc)
struct ess_softc *sc;
{
printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x7C, ess_read_mix_reg(sc, 0x7C));
printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x1A, ess_read_mix_reg(sc, 0x1A));
printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x3E, ess_read_mix_reg(sc, 0x3E));
printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x36, ess_read_mix_reg(sc, 0x36));
printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x38, ess_read_mix_reg(sc, 0x38));
printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
0x3A, ess_read_mix_reg(sc, 0x3A));
printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
0x32, ess_read_mix_reg(sc, 0x32));
printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
0x3C, ess_read_mix_reg(sc, 0x3C));
printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x69, ess_read_mix_reg(sc, 0x69));
printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x68, ess_read_mix_reg(sc, 0x68));
printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x6E, ess_read_mix_reg(sc, 0x6E));
printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x6B, ess_read_mix_reg(sc, 0x6B));
printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x6A, ess_read_mix_reg(sc, 0x6A));
printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
0x6C, ess_read_mix_reg(sc, 0x6C));
printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
0xB4, ess_read_x_reg(sc, 0xB4));
printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
0x14, ess_read_mix_reg(sc, 0x14));
printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
0x1c, ess_read_mix_reg(sc, 0x1c),
0x7a, ess_read_mix_reg(sc, 0x7a));
}
#endif
/*
* Configure the ESS chip for the desired audio base address.
*/
int
ess_config_addr(sc)
struct ess_softc *sc;
{
int iobase = sc->sc_iobase;
bus_space_tag_t iot = sc->sc_iot;
/*
* Configure using the System Control Register method. This
* method is used when the AMODE line is tied high, which is
* the case for the Shark, but not for the evaluation board.
*/
bus_space_handle_t scr_access_ioh;
bus_space_handle_t scr_ioh;
u_short scr_value;
/*
* Set the SCR bit to enable audio.
*/
scr_value = ESS_SCR_AUDIO_ENABLE;
/*
* Set the SCR bits necessary to select the specified audio
* base address.
*/
switch(iobase) {
case 0x220:
scr_value |= ESS_SCR_AUDIO_220;
break;
case 0x230:
scr_value |= ESS_SCR_AUDIO_230;
break;
case 0x240:
scr_value |= ESS_SCR_AUDIO_240;
break;
case 0x250:
scr_value |= ESS_SCR_AUDIO_250;
break;
default:
printf("ess: configured iobase 0x%x invalid\n", iobase);
return (1);
break;
}
/*
* Get a mapping for the System Control Register (SCR) access
* registers and the SCR data registers.
*/
if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
0, &scr_access_ioh)) {
printf("ess: can't map SCR access registers\n");
return (1);
}
if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
0, &scr_ioh)) {
printf("ess: can't map SCR registers\n");
bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
return (1);
}
/* Unlock the SCR. */
EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
/* Write the base address information into SCR[0]. */
EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
/* Lock the SCR. */
EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
/* Unmap the SCR access ports and the SCR data ports. */
bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
return 0;
}
/*
* Configure the ESS chip for the desired IRQ and DMA channels.
* ESS ISA
* --------
* IRQA irq9
* IRQB irq5
* IRQC irq7
* IRQD irq10
* IRQE irq15
*
* DRQA drq0
* DRQB drq1
* DRQC drq3
* DRQD drq5
*/
void
ess_config_irq(sc)
struct ess_softc *sc;
{
int v;
DPRINTFN(2,("ess_config_irq\n"));
if (sc->sc_in.irq != sc->sc_out.irq) {
/* Configure Audio 1 (record) for the appropriate IRQ line. */
v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
switch(sc->sc_in.irq) {
case 5:
v |= ESS_IRQ_CTRL_INTRB;
break;
case 7:
v |= ESS_IRQ_CTRL_INTRC;
break;
case 9:
v |= ESS_IRQ_CTRL_INTRA;
break;
case 10:
v |= ESS_IRQ_CTRL_INTRD;
break;
#ifdef DIAGNOSTIC
default:
printf("ess: configured irq %d not supported for Audio 1\n",
sc->sc_in.irq);
return;
#endif
}
ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
/* irq2 is hardwired to 15 in this mode */
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
/* Use old method. */
ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
} else {
/* Use new method, both interrupts are the same. */
v = ESS_IS_SELECT_IRQ; /* enable intrs */
switch(sc->sc_out.irq) {
case 5:
v |= ESS_IS_INTRB;
break;
case 7:
v |= ESS_IS_INTRC;
break;
case 9:
v |= ESS_IS_INTRA;
break;
case 10:
v |= ESS_IS_INTRD;
break;
case 15:
v |= ESS_IS_INTRE;
break;
#ifdef DIAGNOSTIC
default:
printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
sc->sc_in.irq);
return;
#endif
}
/* Set the IRQ */
ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
}
}
void
ess_config_drq(sc)
struct ess_softc *sc;
{
int v;
DPRINTFN(2,("ess_config_drq\n"));
/* Configure Audio 1 (record) for DMA on the appropriate channel. */
v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
switch(sc->sc_in.drq) {
case 0:
v |= ESS_DRQ_CTRL_DRQA;
break;
case 1:
v |= ESS_DRQ_CTRL_DRQB;
break;
case 3:
v |= ESS_DRQ_CTRL_DRQC;
break;
#ifdef DIAGNOSTIC
default:
printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n",
sc->sc_in.drq);
return;
#endif
}
/* Set DRQ1 */
ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
/* Configure DRQ2 */
v = ESS_AUDIO2_CTRL3_DRQ_PD;
switch(sc->sc_out.drq) {
case 0:
v |= ESS_AUDIO2_CTRL3_DRQA;
break;
case 1:
v |= ESS_AUDIO2_CTRL3_DRQB;
break;
case 3:
v |= ESS_AUDIO2_CTRL3_DRQC;
break;
case 5:
v |= ESS_AUDIO2_CTRL3_DRQC;
break;
#ifdef DIAGNOSTIC
default:
printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n",
sc->sc_out.drq);
return;
#endif
}
ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
/* Enable DMA 2 */
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_DMA_ENABLE);
}
/*
* Set up registers after a reset.
*/
void
ess_setup(sc)
struct ess_softc *sc;
{
ess_config_irq(sc);
ess_config_drq(sc);
DPRINTFN(2,("ess_setup: done\n"));
}
/*
* Determine the model of ESS chip we are talking to. Currently we
* only support ES1888, ES1887 and ES888. The method of determining
* the chip is based on the information on page 27 of the ES1887 data
* sheet.
*
* This routine sets the values of sc->sc_model and sc->sc_version.
*/
int
ess_identify(sc)
struct ess_softc *sc;
{
u_char reg1;
u_char reg2;
u_char reg3;
sc->sc_model = ESS_UNSUPPORTED;
sc->sc_version = 0;
/*
* 1. Check legacy ID bytes. These should be 0x68 0x8n, where
* n >= 8 for an ES1887 or an ES888. Other values indicate
* earlier (unsupported) chips.
*/
ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
if ((reg1 = ess_rdsp(sc)) != 0x68) {
printf("ess: First ID byte wrong (0x%02x)\n", reg1);
return 1;
}
reg2 = ess_rdsp(sc);
if (((reg2 & 0xf0) != 0x80) ||
((reg2 & 0x0f) < 8)) {
printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
return 1;
}
/*
* Store the ID bytes as the version.
*/
sc->sc_version = (reg1 << 8) + reg2;
/*
* 2. Verify we can change bit 2 in mixer register 0x64. This
* should be possible on all supported chips.
*/
reg1 = ess_read_mix_reg(sc, 0x64);
reg2 = reg1 ^ 0x04; /* toggle bit 2 */
ess_write_mix_reg(sc, 0x64, reg2);
if (ess_read_mix_reg(sc, 0x64) != reg2) {
printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
return 1;
}
/*
* Restore the original value of mixer register 0x64.
*/
ess_write_mix_reg(sc, 0x64, reg1);
/*
* 3. Verify we can change the value of mixer register
* ESS_MREG_SAMPLE_RATE.
* This should be possible on all supported chips.
* It is not necessary to restore the value of this mixer register.
*/
reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
reg2 = reg1 ^ 0xff; /* toggle all bits */
ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
printf("ess: Hardware error (unable to change mixer register 0x70)\n");
return 1;
}
/*
* 4. Determine if we can change bit 5 in mixer register 0x64.
* This determines whether we have an ES1887:
*
* - can change indicates ES1887
* - can't change indicates ES1888 or ES888
*/
reg1 = ess_read_mix_reg(sc, 0x64);
reg2 = reg1 ^ 0x20; /* toggle bit 5 */
ess_write_mix_reg(sc, 0x64, reg2);
if (ess_read_mix_reg(sc, 0x64) == reg2) {
sc->sc_model = ESS_1887;
/*
* Restore the original value of mixer register 0x64.
*/
ess_write_mix_reg(sc, 0x64, reg1);
} else {
/*
* 5. Determine if we can change the value of mixer
* register 0x69 independently of mixer register
* 0x68. This determines which chip we have:
*
* - can modify idependently indicates ES888
* - register 0x69 is an alias of 0x68 indicates ES1888
*/
reg1 = ess_read_mix_reg(sc, 0x68);
reg2 = ess_read_mix_reg(sc, 0x69);
reg3 = reg2 ^ 0xff; /* toggle all bits */
/*
* Write different values to each register.
*/
ess_write_mix_reg(sc, 0x68, reg2);
ess_write_mix_reg(sc, 0x69, reg3);
if (ess_read_mix_reg(sc, 0x68) == reg2)
sc->sc_model = ESS_888;
else
sc->sc_model = ESS_1888;
/*
* Restore the original value of the registers.
*/
ess_write_mix_reg(sc, 0x68, reg1);
ess_write_mix_reg(sc, 0x69, reg2);
}
return 0;
}
int
ess_setup_sc(sc, doinit)
struct ess_softc *sc;
int doinit;
{
/* Reset the chip. */
if (ess_reset(sc) != 0) {
DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
return (1);
}
/* Identify the ESS chip, and check that it is supported. */
if (ess_identify(sc)) {
DPRINTF(("ess_setup_sc: couldn't identify\n"));
return (1);
}
return (0);
}
/*
* Probe for the ESS hardware.
*/
int
essmatch(sc)
struct ess_softc *sc;
{
if (!ESS_BASE_VALID(sc->sc_iobase)) {
printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
return (0);
}
/* Configure the ESS chip for the desired audio base address. */
if (ess_config_addr(sc))
return (0);
if (ess_setup_sc(sc, 1))
return (0);
if (sc->sc_model == ESS_UNSUPPORTED) {
DPRINTF(("ess: Unsupported model\n"));
return (0);
}
/* Check that requested DMA channels are valid and different. */
if (!ESS_DRQ1_VALID(sc->sc_in.drq)) {
printf("ess: record dma chan %d invalid\n", sc->sc_in.drq);
return (0);
}
if (!ESS_DRQ2_VALID(sc->sc_out.drq, sc->sc_model)) {
printf("ess: play dma chan %d invalid\n", sc->sc_out.drq);
return (0);
}
if (sc->sc_in.drq == sc->sc_out.drq) {
printf("ess: play and record dma chan both %d\n",
sc->sc_in.drq);
return (0);
}
if (sc->sc_model == ESS_1887) {
/*
* Either use the 1887 interrupt mode with all interrupts
* mapped to the same irq, or use the 1888 method with
* irq fixed at 15.
*/
if (sc->sc_in.irq == sc->sc_out.irq) {
if (!ESS_IRQ12_VALID(sc->sc_in.irq)) {
printf("ess: irq %d invalid\n", sc->sc_in.irq);
return (0);
}
goto irq_not1888;
}
} else {
/* Must use separate interrupts */
if (sc->sc_in.irq == sc->sc_out.irq) {
printf("ess: play and record irq both %d\n",
sc->sc_in.irq);
return (0);
}
}
/* Check that requested IRQ lines are valid and different. */
if (!ESS_IRQ1_VALID(sc->sc_in.irq)) {
printf("ess: record irq %d invalid\n", sc->sc_in.irq);
return (0);
}
if (!ESS_IRQ2_VALID(sc->sc_out.irq)) {
printf("ess: play irq %d invalid\n", sc->sc_out.irq);
return (0);
}
irq_not1888:
/* Check that the DRQs are free. */
if (!isa_drq_isfree(sc->sc_ic, sc->sc_in.drq) ||
!isa_drq_isfree(sc->sc_ic, sc->sc_out.drq))
return (0);
/* XXX should we check IRQs as well? */
return (1);
}
/*
* Attach hardware to driver, attach hardware driver to audio
* pseudo-device driver.
*/
void
essattach(sc)
struct ess_softc *sc;
{
struct audio_attach_args arg;
struct audio_params pparams, rparams;
int i;
u_int v;
if (ess_setup_sc(sc, 0)) {
printf("%s: setup failed\n", sc->sc_dev.dv_xname);
return;
}
sc->sc_out.ih = isa_intr_establish(sc->sc_ic, sc->sc_out.irq,
sc->sc_out.ist, IPL_AUDIO,
ess_intr_output, sc);
sc->sc_in.ih = isa_intr_establish(sc->sc_ic, sc->sc_in.irq,
sc->sc_in.ist, IPL_AUDIO,
ess_intr_input, sc);
/* Create our DMA maps. */
if (isa_dmamap_create(sc->sc_ic, sc->sc_in.drq,
MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
printf("%s: can't create map for drq %d\n",
sc->sc_dev.dv_xname, sc->sc_in.drq);
return;
}
if (isa_dmamap_create(sc->sc_ic, sc->sc_out.drq,
MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
printf("%s: can't create map for drq %d\n",
sc->sc_dev.dv_xname, sc->sc_out.drq);
return;
}
printf(" ESS Technology ES%s [version 0x%04x]\n",
essmodel[sc->sc_model], sc->sc_version);
/*
* Set record and play parameters to default values defined in
* generic audio driver.
*/
pparams = audio_default;
rparams = audio_default;
ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
/* Do a hardware reset on the mixer. */
ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
/*
* Set volume of Audio 1 to zero and disable Audio 1 DAC input
* to playback mixer, since playback is always through Audio 2.
*/
ess_write_mix_reg(sc, 0x14, 0);
ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
/*
* Set hardware record source to use output of the record
* mixer. We do the selection of record source in software by
* setting the gain of the unused sources to zero. (See
* ess_set_in_ports.)
*/
ess_set_mreg_bits(sc, 0x1c, 0x07);
ess_clear_mreg_bits(sc, 0x7a, 0x10);
ess_set_mreg_bits(sc, 0x7a, 0x08);
/*
* Set gain on each mixer device to a sensible value.
* Devices not normally used are turned off, and other devices
* are set to 50% volume.
*/
for (i = 0; i < ESS_NDEVS; i++) {
switch(i) {
case ESS_MIC_PLAY_VOL:
case ESS_LINE_PLAY_VOL:
case ESS_CD_PLAY_VOL:
case ESS_AUXB_PLAY_VOL:
case ESS_DAC_REC_VOL:
case ESS_LINE_REC_VOL:
case ESS_SYNTH_REC_VOL:
case ESS_CD_REC_VOL:
case ESS_AUXB_REC_VOL:
v = 0;
break;
default:
v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
break;
}
sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
ess_set_gain(sc, i, 1);
}
ess_setup(sc);
/* Disable the speaker until the device is opened. */
ess_speaker_off(sc);
sc->spkr_state = SPKR_OFF;
sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]);
sprintf(ess_device.version, "0x%04x", sc->sc_version);
audio_attach_mi(&ess_hw_if, sc, &sc->sc_dev);
arg.type = AUDIODEV_TYPE_OPL;
arg.hwif = 0;
arg.hdl = 0;
(void)config_found(&sc->sc_dev, &arg, audioprint);
#ifdef AUDIO_DEBUG
if (essdebug > 0)
ess_printsc(sc);
#endif
}
/*
* Various routines to interface to higher level audio driver
*/
int
ess_open(addr, flags)
void *addr;
int flags;
{
struct ess_softc *sc = addr;
DPRINTF(("ess_open: sc=%p\n", sc));
if (sc->sc_open != 0 || ess_reset(sc) != 0)
return ENXIO;
ess_setup(sc); /* because we did a reset */
sc->sc_open = 1;
DPRINTF(("ess_open: opened\n"));
return (0);
}
void
ess_close(addr)
void *addr;
{
struct ess_softc *sc = addr;
DPRINTF(("ess_close: sc=%p\n", sc));
sc->sc_open = 0;
ess_speaker_off(sc);
sc->spkr_state = SPKR_OFF;
ess_halt_output(sc);
ess_halt_input(sc);
sc->sc_in.intr = 0;
sc->sc_out.intr = 0;
DPRINTF(("ess_close: closed\n"));
}
/*
* Wait for FIFO to drain, and analog section to settle.
* XXX should check FIFO full bit.
*/
int
ess_drain(addr)
void *addr;
{
extern int hz; /* XXX */
tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
return (0);
}
/* XXX should use reference count */
int
ess_speaker_ctl(addr, newstate)
void *addr;
int newstate;
{
struct ess_softc *sc = addr;
if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
ess_speaker_on(sc);
sc->spkr_state = SPKR_ON;
}
if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
ess_speaker_off(sc);
sc->spkr_state = SPKR_OFF;
}
return (0);
}
int
ess_getdev(addr, retp)
void *addr;
struct audio_device *retp;
{
*retp = ess_device;
return (0);
}
int
ess_query_encoding(addr, fp)
void *addr;
struct audio_encoding *fp;
{
/*struct ess_softc *sc = addr;*/
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = 0;
return (0);
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = 0;
return (0);
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
return (0);
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = 0;
return (0);
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
default:
return EINVAL;
}
return (0);
}
int
ess_set_params(addr, setmode, usemode, play, rec)
void *addr;
int setmode, usemode;
struct audio_params *play, *rec;
{
struct ess_softc *sc = addr;
struct audio_params *p;
int mode;
int rate;
DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
/*
* The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
* full-duplex operation the sample rates must be the same for both
* channels. This appears to be false; the only bit in common is the
* clock source selection. However, we'll be conservative here.
* - mycroft
*/
if (play->sample_rate != rec->sample_rate &&
usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
if (setmode == AUMODE_PLAY) {
rec->sample_rate = play->sample_rate;
setmode |= AUMODE_RECORD;
} else if (setmode == AUMODE_RECORD) {
play->sample_rate = rec->sample_rate;
setmode |= AUMODE_PLAY;
} else
return (EINVAL);
}
for (mode = AUMODE_RECORD; mode != -1;
mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
if ((setmode & mode) == 0)
continue;
p = mode == AUMODE_PLAY ? play : rec;
if (p->sample_rate < ESS_MINRATE ||
p->sample_rate > ESS_MAXRATE ||
(p->precision != 8 && p->precision != 16) ||
(p->channels != 1 && p->channels != 2))
return (EINVAL);
p->factor = 1;
p->sw_code = 0;
switch (p->encoding) {
case AUDIO_ENCODING_SLINEAR_BE:
case AUDIO_ENCODING_ULINEAR_BE:
if (p->precision == 16)
p->sw_code = swap_bytes;
break;
case AUDIO_ENCODING_SLINEAR_LE:
case AUDIO_ENCODING_ULINEAR_LE:
break;
case AUDIO_ENCODING_ULAW:
if (mode == AUMODE_PLAY) {
p->factor = 2;
p->sw_code = mulaw_to_ulinear16;
} else
p->sw_code = ulinear8_to_mulaw;
break;
case AUDIO_ENCODING_ALAW:
if (mode == AUMODE_PLAY) {
p->factor = 2;
p->sw_code = alaw_to_ulinear16;
} else
p->sw_code = ulinear8_to_alaw;
break;
default:
return (EINVAL);
}
}
if (usemode == AUMODE_RECORD)
rate = rec->sample_rate;
else
rate = play->sample_rate;
ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
return (0);
}
int
ess_trigger_output(addr, start, end, blksize, intr, arg, param)
void *addr;
void *start, *end;
int blksize;
void (*intr) __P((void *));
void *arg;
struct audio_params *param;
{
struct ess_softc *sc = addr;
DPRINTFN(1, ("ess_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
addr, start, end, blksize, intr, arg));
#ifdef DIAGNOSTIC
if (param->channels == 2 && (blksize & 1)) {
DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
return EIO;
}
if (sc->sc_out.active)
panic("ess_trigger_output: already running");
#endif
sc->sc_out.active = 1;
sc->sc_out.intr = intr;
sc->sc_out.arg = arg;
if (param->precision * param->factor == 16)
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_FIFO_SIZE);
else
ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_FIFO_SIZE);
if (param->channels == 2)
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_CHANNELS);
else
ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_CHANNELS);
if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
param->encoding == AUDIO_ENCODING_SLINEAR_LE)
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_FIFO_SIGNED);
else
ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_FIFO_SIGNED);
isa_dmastart(sc->sc_ic, sc->sc_out.drq, start,
(char *)end - (char *)start, NULL,
DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
if (IS16BITDRQ(sc->sc_out.drq))
blksize >>= 1; /* use word count for 16 bit DMA */
/* Program transfer count registers with 2's complement of count. */
blksize = -blksize;
ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
if (IS16BITDRQ(sc->sc_out.drq))
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
ESS_AUDIO2_CTRL1_XFER_SIZE);
else
ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
ESS_AUDIO2_CTRL1_XFER_SIZE);
/* Use 8 bytes per output DMA. */
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
ESS_AUDIO2_CTRL1_DEMAND_8);
/* Start auto-init DMA */
ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
ESS_AUDIO2_CTRL1_DAC_ENABLE |
ESS_AUDIO2_CTRL1_FIFO_ENABLE |
ESS_AUDIO2_CTRL1_AUTO_INIT);
return (0);
}
int
ess_trigger_input(addr, start, end, blksize, intr, arg, param)
void *addr;
void *start, *end;
int blksize;
void (*intr) __P((void *));
void *arg;
struct audio_params *param;
{
struct ess_softc *sc = addr;
DPRINTFN(1, ("ess_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
addr, start, end, blksize, intr, arg));
#ifdef DIAGNOSTIC
if (param->channels == 2 && (blksize & 1)) {
DPRINTF(("stereo record odd bytes (%d)\n", blksize));
return EIO;
}
if (sc->sc_in.active)
panic("ess_trigger_input: already running");
#endif
sc->sc_in.active = 1;
sc->sc_in.intr = intr;
sc->sc_in.arg = arg;
if (param->precision * param->factor == 16)
ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
ESS_AUDIO1_CTRL1_FIFO_SIZE);
else
ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
ESS_AUDIO1_CTRL1_FIFO_SIZE);
if (param->channels == 2) {
ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
(ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
ESS_AUDIO_CTRL_STEREO) &~ ESS_AUDIO_CTRL_MONO);
ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
ESS_AUDIO1_CTRL1_FIFO_STEREO);
} else {
ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
(ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
ESS_AUDIO_CTRL_MONO) &~ ESS_AUDIO_CTRL_STEREO);
ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
ESS_AUDIO1_CTRL1_FIFO_STEREO);
}
if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
param->encoding == AUDIO_ENCODING_SLINEAR_LE)
ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
ESS_AUDIO1_CTRL1_FIFO_SIGNED);
else
ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
ESS_AUDIO1_CTRL1_FIFO_SIGNED);
/* REVISIT: Hack to enable Audio1 FIFO connection to CODEC. */
ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
ESS_AUDIO1_CTRL1_FIFO_CONNECT);
isa_dmastart(sc->sc_ic, sc->sc_in.drq, start,
(char *)end - (char *)start, NULL,
DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
if (IS16BITDRQ(sc->sc_in.drq))
blksize >>= 1; /* use word count for 16 bit DMA */
/* Program transfer count registers with 2's complement of count. */
blksize = -blksize;
ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
/* Use 4 bytes per input DMA. */
ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL,
ESS_DEMAND_CTRL_DEMAND_4);
/* Start auto-init DMA */
ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
ESS_AUDIO1_CTRL2_DMA_READ |
ESS_AUDIO1_CTRL2_ADC_ENABLE |
ESS_AUDIO1_CTRL2_FIFO_ENABLE |
ESS_AUDIO1_CTRL2_AUTO_INIT);
return (0);
}
int
ess_halt_output(addr)
void *addr;
{
struct ess_softc *sc = addr;
DPRINTF(("ess_halt_output: sc=%p\n", sc));
ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
ESS_AUDIO2_CTRL1_FIFO_ENABLE);
return (0);
}
int
ess_halt_input(addr)
void *addr;
{
struct ess_softc *sc = addr;
DPRINTF(("ess_halt_input: sc=%p\n", sc));
ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
ESS_AUDIO1_CTRL2_FIFO_ENABLE);
return (0);
}
int
ess_intr_output(arg)
void *arg;
{
struct ess_softc *sc = arg;
DPRINTFN(1,("ess_intr_output: intr=%p\n", sc->sc_out.intr));
/* clear interrupt on Audio channel 2 */
ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
ESS_AUDIO2_CTRL2_IRQ_LATCH);
sc->sc_out.nintr++;
if (sc->sc_out.intr != 0)
(*sc->sc_out.intr)(sc->sc_out.arg);
else
return (0);
return (1);
}
int
ess_intr_input(arg)
void *arg;
{
struct ess_softc *sc = arg;
u_char x;
DPRINTFN(1,("ess_intr_input: intr=%p\n", sc->sc_in.intr));
/* clear interrupt on Audio channel 1*/
x = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
sc->sc_in.nintr++;
if (sc->sc_in.intr != 0)
(*sc->sc_in.intr)(sc->sc_in.arg);
else
return (0);
return (1);
}
int
ess_round_blocksize(addr, blk)
void *addr;
int blk;
{
return (blk & -8); /* round for max DMA size */
}
int
ess_set_port(addr, cp)
void *addr;
mixer_ctrl_t *cp;
{
struct ess_softc *sc = addr;
int lgain, rgain;
DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
cp->dev, cp->un.value.num_channels));
switch (cp->dev) {
/*
* The following mixer ports are all stereo. If we get a
* single-channel gain value passed in, then we duplicate it
* to both left and right channels.
*/
case ESS_MASTER_VOL:
case ESS_DAC_PLAY_VOL:
case ESS_MIC_PLAY_VOL:
case ESS_LINE_PLAY_VOL:
case ESS_SYNTH_PLAY_VOL:
case ESS_CD_PLAY_VOL:
case ESS_AUXB_PLAY_VOL:
case ESS_DAC_REC_VOL:
case ESS_MIC_REC_VOL:
case ESS_LINE_REC_VOL:
case ESS_SYNTH_REC_VOL:
case ESS_CD_REC_VOL:
case ESS_AUXB_REC_VOL:
case ESS_RECORD_VOL:
if (cp->type != AUDIO_MIXER_VALUE)
return EINVAL;
switch (cp->un.value.num_channels) {
case 1:
lgain = rgain = ESS_4BIT_GAIN(
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
break;
case 2:
lgain = ESS_4BIT_GAIN(
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
rgain = ESS_4BIT_GAIN(
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
break;
default:
return EINVAL;
}
sc->gain[cp->dev][ESS_LEFT] = lgain;
sc->gain[cp->dev][ESS_RIGHT] = rgain;
ess_set_gain(sc, cp->dev, 1);
break;
/*
* The PC speaker port is mono. If we get a stereo gain value
* passed in, then we return EINVAL.
*/
case ESS_PCSPEAKER_VOL:
if (cp->un.value.num_channels != 1)
return EINVAL;
sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
ess_set_gain(sc, cp->dev, 1);
break;
case ESS_MIC_PREAMP:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
if (cp->un.ord)
/* Enable microphone preamp */
ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
ESS_PREAMP_CTRL_ENABLE);
else
/* Disable microphone preamp */
ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
ESS_PREAMP_CTRL_ENABLE);
break;
case ESS_RECORD_SOURCE:
if (cp->type == AUDIO_MIXER_SET)
return ess_set_in_ports(sc, cp->un.mask);
else
return EINVAL;
break;
case ESS_RECORD_MONITOR:
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
if (cp->un.ord)
/* Enable monitor */
ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
ESS_AUDIO_CTRL_MONITOR);
else
/* Disable monitor */
ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
ESS_AUDIO_CTRL_MONITOR);
break;
default:
return EINVAL;
}
return (0);
}
int
ess_get_port(addr, cp)
void *addr;
mixer_ctrl_t *cp;
{
struct ess_softc *sc = addr;
DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
switch (cp->dev) {
case ESS_DAC_PLAY_VOL:
case ESS_MIC_PLAY_VOL:
case ESS_LINE_PLAY_VOL:
case ESS_SYNTH_PLAY_VOL:
case ESS_CD_PLAY_VOL:
case ESS_AUXB_PLAY_VOL:
case ESS_MASTER_VOL:
case ESS_PCSPEAKER_VOL:
case ESS_DAC_REC_VOL:
case ESS_MIC_REC_VOL:
case ESS_LINE_REC_VOL:
case ESS_SYNTH_REC_VOL:
case ESS_CD_REC_VOL:
case ESS_AUXB_REC_VOL:
case ESS_RECORD_VOL:
if (cp->dev == ESS_PCSPEAKER_VOL &&
cp->un.value.num_channels != 1)
return EINVAL;
switch (cp->un.value.num_channels) {
case 1:
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
sc->gain[cp->dev][ESS_LEFT];
break;
case 2:
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
sc->gain[cp->dev][ESS_LEFT];
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
sc->gain[cp->dev][ESS_RIGHT];
break;
default:
return EINVAL;
}
break;
case ESS_MIC_PREAMP:
cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
break;
case ESS_RECORD_SOURCE:
cp->un.mask = sc->in_mask;
break;
case ESS_RECORD_MONITOR:
cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
break;
default:
return EINVAL;
}
return (0);
}
int
ess_query_devinfo(addr, dip)
void *addr;
mixer_devinfo_t *dip;
{
#ifdef AUDIO_DEBUG
struct ess_softc *sc = addr;
#endif
DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
sc->sc_model, dip->index));
/*
* REVISIT: There are some slight differences between the
* mixers on the different ESS chips, which can
* be sorted out using the chip model rather than a
* separate mixer model.
* This is currently coded assuming an ES1887; we
* need to work out which bits are not applicable to
* the other models (1888 and 888).
*/
switch (dip->index) {
case ESS_DAC_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNdac);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_MIC_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = ESS_MIC_PREAMP;
strcpy(dip->label.name, AudioNmicrophone);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_LINE_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNline);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_SYNTH_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNfmsynth);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_CD_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNcd);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_AUXB_PLAY_VOL:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "auxb");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_INPUT_CLASS:
dip->mixer_class = ESS_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCinputs);
dip->type = AUDIO_MIXER_CLASS;
return (0);
case ESS_MASTER_VOL:
dip->mixer_class = ESS_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmaster);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_PCSPEAKER_VOL:
dip->mixer_class = ESS_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "pc_speaker");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_OUTPUT_CLASS:
dip->mixer_class = ESS_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCoutputs);
dip->type = AUDIO_MIXER_CLASS;
return (0);
case ESS_DAC_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNdac);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_MIC_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmicrophone);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_LINE_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNline);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_SYNTH_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNfmsynth);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_CD_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNcd);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_AUXB_REC_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "auxb");
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_MIC_PREAMP:
dip->mixer_class = ESS_INPUT_CLASS;
dip->prev = ESS_MIC_PLAY_VOL;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNpreamp);
dip->type = AUDIO_MIXER_ENUM;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
return (0);
case ESS_RECORD_VOL:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNrecord);
dip->type = AUDIO_MIXER_VALUE;
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case ESS_RECORD_SOURCE:
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNsource);
dip->type = AUDIO_MIXER_SET;
dip->mixer_class = ESS_RECORD_CLASS;
dip->un.s.num_mem = 6;
strcpy(dip->un.s.member[0].label.name, AudioNdac);
dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
strcpy(dip->un.s.member[2].label.name, AudioNline);
dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
strcpy(dip->un.s.member[4].label.name, AudioNcd);
dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
strcpy(dip->un.s.member[5].label.name, "auxb");
dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
return (0);
case ESS_RECORD_CLASS:
dip->mixer_class = ESS_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCrecord);
dip->type = AUDIO_MIXER_CLASS;
return (0);
case ESS_RECORD_MONITOR:
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmonitor);
dip->type = AUDIO_MIXER_ENUM;
dip->mixer_class = ESS_MONITOR_CLASS;
dip->un.e.num_mem = 2;
strcpy(dip->un.e.member[0].label.name, AudioNoff);
dip->un.e.member[0].ord = 0;
strcpy(dip->un.e.member[1].label.name, AudioNon);
dip->un.e.member[1].ord = 1;
return (0);
case ESS_MONITOR_CLASS:
dip->mixer_class = ESS_MONITOR_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCmonitor);
dip->type = AUDIO_MIXER_CLASS;
return (0);
}
return (ENXIO);
}
void *
ess_malloc(addr, direction, size, pool, flags)
void *addr;
int direction;
size_t size;
int pool, flags;
{
struct ess_softc *sc = addr;
int drq;
if (direction == AUMODE_PLAY)
drq = sc->sc_out.drq;
else
drq = sc->sc_in.drq;
return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
}
void
ess_free(addr, ptr, pool)
void *addr;
void *ptr;
int pool;
{
isa_free(ptr, pool);
}
size_t
ess_round_buffersize(addr, direction, size)
void *addr;
int direction;
size_t size;
{
if (size > MAX_ISADMA)
size = MAX_ISADMA;
return (size);
}
int
ess_mappage(addr, mem, off, prot)
void *addr;
void *mem;
int off;
int prot;
{
return (isa_mappage(mem, off, prot));
}
int
ess_get_props(addr)
void *addr;
{
struct ess_softc *sc = addr;
return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
(sc->sc_in.drq != sc->sc_out.drq ? AUDIO_PROP_FULLDUPLEX : 0));
}
/* ============================================
* Generic functions for ess, not used by audio h/w i/f
* =============================================
*/
/*
* Reset the chip.
* Return non-zero if the chip isn't detected.
*/
int
ess_reset(sc)
struct ess_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
sc->sc_in.intr = 0;
if (sc->sc_in.active) {
isa_dmaabort(sc->sc_ic, sc->sc_in.drq);
sc->sc_in.active = 0;
}
sc->sc_out.intr = 0;
if (sc->sc_out.active) {
isa_dmaabort(sc->sc_ic, sc->sc_out.drq);
sc->sc_out.active = 0;
}
EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
delay(10000);
EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
if (ess_rdsp(sc) != ESS_MAGIC)
return (1);
/* Enable access to the ESS extension commands. */
ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
return (0);
}
void
ess_set_gain(sc, port, on)
struct ess_softc *sc;
int port;
int on;
{
int gain, left, right;
int mix;
int src;
int stereo;
/*
* Most gain controls are found in the mixer registers and
* are stereo. Any that are not, must set mix and stereo as
* required.
*/
mix = 1;
stereo = 1;
switch (port) {
case ESS_MASTER_VOL:
src = 0x32;
break;
case ESS_DAC_PLAY_VOL:
src = 0x7C;
break;
case ESS_MIC_PLAY_VOL:
src = 0x1A;
break;
case ESS_LINE_PLAY_VOL:
src = 0x3E;
break;
case ESS_SYNTH_PLAY_VOL:
src = 0x36;
break;
case ESS_CD_PLAY_VOL:
src = 0x38;
break;
case ESS_AUXB_PLAY_VOL:
src = 0x3A;
break;
case ESS_PCSPEAKER_VOL:
src = 0x3C;
stereo = 0;
break;
case ESS_DAC_REC_VOL:
src = 0x69;
break;
case ESS_MIC_REC_VOL:
src = 0x68;
break;
case ESS_LINE_REC_VOL:
src = 0x6E;
break;
case ESS_SYNTH_REC_VOL:
src = 0x6B;
break;
case ESS_CD_REC_VOL:
src = 0x6A;
break;
case ESS_AUXB_REC_VOL:
src = 0x6C;
break;
case ESS_RECORD_VOL:
src = 0xB4;
mix = 0;
break;
default:
return;
}
if (on) {
left = sc->gain[port][ESS_LEFT];
right = sc->gain[port][ESS_RIGHT];
} else {
left = right = 0;
}
if (stereo)
gain = ESS_STEREO_GAIN(left, right);
else
gain = ESS_MONO_GAIN(left);
if (mix)
ess_write_mix_reg(sc, src, gain);
else
ess_write_x_reg(sc, src, gain);
}
int
ess_set_in_ports(sc, mask)
struct ess_softc *sc;
int mask;
{
mixer_devinfo_t di;
int i;
int port;
int tmp;
DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
/*
* Get the device info for the record source control,
* including the list of available sources.
*/
di.index = ESS_RECORD_SOURCE;
if (ess_query_devinfo(sc, &di))
return EINVAL;
/*
* Set or disable the record volume control for each of the
* possible sources.
*/
for (i = 0; i < di.un.s.num_mem; i++)
{
/*
* Calculate the source port number from its mask.
*/
tmp = di.un.s.member[i].mask >> 1;
for (port = 0; tmp; port++) {
tmp >>= 1;
}
/*
* Set the source gain:
* to the current value if source is enabled
* to zero if source is disabled
*/
ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
}
sc->in_mask = mask;
/*
* We have to fake a single port since the upper layer expects
* one only. We choose the lowest numbered port that is enabled.
*/
for(i = 0; i < ESS_NPORT; i++) {
if (mask & (1 << i)) {
sc->in_port = i;
break;
}
}
return (0);
}
void
ess_speaker_on(sc)
struct ess_softc *sc;
{
/* Disable mute on left- and right-master volume. */
ess_clear_mreg_bits(sc, 0x60, 0x40);
ess_clear_mreg_bits(sc, 0x62, 0x40);
}
void
ess_speaker_off(sc)
struct ess_softc *sc;
{
/* Enable mute on left- and right-master volume. */
ess_set_mreg_bits(sc, 0x60, 0x40);
ess_set_mreg_bits(sc, 0x62, 0x40);
}
/*
* Calculate the time constant for the requested sampling rate.
*/
u_int
ess_srtotc(rate)
u_int rate;
{
u_int tc;
/* The following formulae are from the ESS data sheet. */
if (rate <= 22050)
tc = 128 - 397700L / rate;
else
tc = 256 - 795500L / rate;
return (tc);
}
/*
* Calculate the filter constant for the reuqested sampling rate.
*/
u_int
ess_srtofc(rate)
u_int rate;
{
/*
* The following formula is derived from the information in
* the ES1887 data sheet, based on a roll-off frequency of
* 87%.
*/
return (256 - 200279L / rate);
}
/*
* Return the status of the DSP.
*/
u_char
ess_get_dsp_status(sc)
struct ess_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
return (EREAD1(iot, ioh, ESS_DSP_RW_STATUS));
}
/*
* Return the read status of the DSP: 1 -> DSP ready for reading
* 0 -> DSP not ready for reading
*/
u_char
ess_dsp_read_ready(sc)
struct ess_softc *sc;
{
return (((ess_get_dsp_status(sc) & ESS_DSP_READ_MASK) ==
ESS_DSP_READ_READY) ? 1 : 0);
}
/*
* Return the write status of the DSP: 1 -> DSP ready for writing
* 0 -> DSP not ready for writing
*/
u_char
ess_dsp_write_ready(sc)
struct ess_softc *sc;
{
return (((ess_get_dsp_status(sc) & ESS_DSP_WRITE_MASK) ==
ESS_DSP_WRITE_READY) ? 1 : 0);
}
/*
* Read a byte from the DSP.
*/
int
ess_rdsp(sc)
struct ess_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
for (i = ESS_READ_TIMEOUT; i > 0; --i) {
if (ess_dsp_read_ready(sc)) {
i = EREAD1(iot, ioh, ESS_DSP_READ);
DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
return i;
} else
delay(10);
}
DPRINTF(("ess_rdsp: timed out\n"));
return (-1);
}
/*
* Write a byte to the DSP.
*/
int
ess_wdsp(sc, v)
struct ess_softc *sc;
u_char v;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
if (ess_dsp_write_ready(sc)) {
EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
return (0);
} else
delay(10);
}
DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
return (-1);
}
/*
* Write a value to one of the ESS extended registers.
*/
int
ess_write_x_reg(sc, reg, val)
struct ess_softc *sc;
u_char reg;
u_char val;
{
int error;
DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
if ((error = ess_wdsp(sc, reg)) == 0)
error = ess_wdsp(sc, val);
return error;
}
/*
* Read the value of one of the ESS extended registers.
*/
u_char
ess_read_x_reg(sc, reg)
struct ess_softc *sc;
u_char reg;
{
int error;
int val;
if ((error = ess_wdsp(sc, 0xC0)) == 0)
error = ess_wdsp(sc, reg);
if (error)
DPRINTF(("Error reading extended register 0x%02x\n", reg));
/* REVISIT: what if an error is returned above? */
val = ess_rdsp(sc);
DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
return val;
}
void
ess_clear_xreg_bits(sc, reg, mask)
struct ess_softc *sc;
u_char reg;
u_char mask;
{
if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
DPRINTF(("Error clearing bits in extended register 0x%02x\n",
reg));
}
void
ess_set_xreg_bits(sc, reg, mask)
struct ess_softc *sc;
u_char reg;
u_char mask;
{
if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
DPRINTF(("Error setting bits in extended register 0x%02x\n",
reg));
}
/*
* Write a value to one of the ESS mixer registers.
*/
void
ess_write_mix_reg(sc, reg, val)
struct ess_softc *sc;
u_char reg;
u_char val;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int s;
DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
s = splaudio();
EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
splx(s);
}
/*
* Read the value of one of the ESS mixer registers.
*/
u_char
ess_read_mix_reg(sc, reg)
struct ess_softc *sc;
u_char reg;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int s;
u_char val;
s = splaudio();
EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
splx(s);
DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
return val;
}
void
ess_clear_mreg_bits(sc, reg, mask)
struct ess_softc *sc;
u_char reg;
u_char mask;
{
ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
}
void
ess_set_mreg_bits(sc, reg, mask)
struct ess_softc *sc;
u_char reg;
u_char mask;
{
ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
}