NetBSD/sys/arch/powerpc/marvell/bus_dma.c
2003-07-15 02:54:31 +00:00

820 lines
19 KiB
C

/* $NetBSD: bus_dma.c,v 1.5 2003/07/15 02:54:45 lukem Exp $ */
/*-
* Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: bus_dma.c,v 1.5 2003/07/15 02:54:45 lukem Exp $");
#define DEBUG 1
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
#include <uvm/uvm.h>
#include <uvm/uvm_extern.h>
#define _POWERPC_BUS_DMA_PRIVATE
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/cpu.h> /* for CACHELINESIZE */
#ifdef DEBUG
int busdmadebug = 0;
# define DPRINTF(x) do { if (busdmadebug) printf x ; } while (0)
#else
# define DPRINTF(x)
#endif
static inline void
invaldcache(vaddr_t va, bus_size_t sz)
{
int off;
DPRINTF(("invaldcache: %#lx %ld\n", va, (long) sz));
KASSERT(sz != 0);
__asm __volatile("eieio;");
off = (u_int)va & (CACHELINESIZE - 1);
sz += off;
va -= off;
while ((int)sz > 0) {
__asm __volatile("dcbi 0, %0;" :: "r"(va));
va += CACHELINESIZE;
sz -= CACHELINESIZE;
}
__asm __volatile("sync;");
}
static inline void
flushdcache(vaddr_t va, bus_size_t sz)
{
int off;
DPRINTF(("flushdcache: %#lx %ld\n", va, (long) sz));
KASSERT(sz != 0);
__asm __volatile("eieio;");
off = (u_int)va & (CACHELINESIZE - 1);
sz += off;
va -= off;
while ((int)sz > CACHELINESIZE) {
__asm __volatile("dcbf 0, %0;" :: "r"(va));
va += CACHELINESIZE;
sz -= CACHELINESIZE;
}
/*
* eieio ensures the last cache line flushed is ordered last
* read-after-write ensures last cache line
* (and therefore all cache lines) made it to memory
*/
__asm __volatile("eieio; dcbf 0, %0;" :: "r"(va));
__asm __volatile("lwz %0,0(%0); sync;" : "+r"(va));
}
static inline void
storedcache(vaddr_t va, bus_size_t sz)
{
int off;
DPRINTF(("storedcache: %#lx %ld\n", va, (long) sz));
KASSERT(sz != 0);
__asm __volatile("eieio;");
off = (u_int)va & (CACHELINESIZE - 1);
sz += off;
va -= off;
while ((int)sz > 0) {
__asm __volatile("dcbst 0, %0;" :: "r"(va));
va += CACHELINESIZE;
sz -= CACHELINESIZE;
}
__asm __volatile("sync;");
}
int _bus_dmamap_load_buffer __P((bus_dma_tag_t, bus_dmamap_t, void *,
bus_size_t, struct proc *, int, paddr_t *, int *, int));
/*
* Common function for DMA map creation. May be called by bus-specific
* DMA map creation functions.
*/
int
_bus_dmamap_create(t, size, nsegments, maxsegsz, boundary, flags, dmamp)
bus_dma_tag_t t;
bus_size_t size;
int nsegments;
bus_size_t maxsegsz;
bus_size_t boundary;
int flags;
bus_dmamap_t *dmamp;
{
struct powerpc_bus_dmamap *map;
void *mapstore;
size_t mapsize;
/*
* Allocate and initialize the DMA map. The end of the map
* is a variable-sized array of segments, so we allocate enough
* room for them in one shot.
*
* Note we don't preserve the WAITOK or NOWAIT flags. Preservation
* of ALLOCNOW notifies others that we've reserved these resources,
* and they are not to be freed.
*
* The bus_dmamap_t includes one bus_dma_segment_t, hence
* the (nsegments - 1).
*/
mapsize = sizeof(struct powerpc_bus_dmamap) +
(sizeof(bus_dma_segment_t) * (nsegments - 1));
if ((mapstore = malloc(mapsize, M_DMAMAP,
(flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)) == NULL)
return (ENOMEM);
bzero(mapstore, mapsize);
map = (struct powerpc_bus_dmamap *)mapstore;
map->_dm_size = size;
map->_dm_segcnt = nsegments;
map->_dm_maxsegsz = maxsegsz;
map->_dm_boundary = boundary;
map->_dm_bounce_thresh = t->_bounce_thresh;
map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
map->dm_mapsize = 0; /* no valid mappings */
map->dm_nsegs = 0;
*dmamp = map;
return (0);
}
/*
* Common function for DMA map destruction. May be called by bus-specific
* DMA map destruction functions.
*/
void
_bus_dmamap_destroy(t, map)
bus_dma_tag_t t;
bus_dmamap_t map;
{
free(map, M_DMAMAP);
}
/*
* Utility function to load a linear buffer. lastaddrp holds state
* between invocations (for multiple-buffer loads). segp contains
* the starting segment on entrance, and the ending segment on exit.
* first indicates if this is the first invocation of this function.
*/
int
_bus_dmamap_load_buffer(t, map, buf, buflen, p, flags, lastaddrp, segp, first)
bus_dma_tag_t t;
bus_dmamap_t map;
void *buf;
bus_size_t buflen;
struct proc *p;
int flags;
paddr_t *lastaddrp;
int *segp;
int first;
{
bus_size_t sgsize;
bus_addr_t curaddr, lastaddr, baddr, bmask;
vaddr_t vaddr = (vaddr_t)buf;
int seg;
lastaddr = *lastaddrp;
bmask = ~(map->_dm_boundary - 1);
for (seg = *segp; buflen > 0 ; ) {
/*
* Get the physical address for this segment.
*/
KASSERT(p == NULL); /* we "never" use the p!=NULL case */
if (p != NULL)
(void) pmap_extract(p->p_vmspace->vm_map.pmap,
vaddr, (paddr_t *)&curaddr);
else
curaddr = vtophys(vaddr);
/*
* If we're beyond the bounce threshold, notify
* the caller.
*/
if (map->_dm_bounce_thresh != 0 &&
curaddr >= map->_dm_bounce_thresh)
return (EINVAL);
/*
* Compute the segment size, and adjust counts.
*/
sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET);
if (buflen < sgsize)
sgsize = buflen;
/*
* Make sure we don't cross any boundaries.
*/
if (map->_dm_boundary > 0) {
baddr = (curaddr + map->_dm_boundary) & bmask;
if (sgsize > (baddr - curaddr))
sgsize = (baddr - curaddr);
}
/*
* Insert chunk into a segment, coalescing with
* the previous segment if possible.
*/
if (first) {
map->dm_segs[seg].ds_addr = curaddr;
map->dm_segs[seg].ds_len = sgsize;
map->dm_segs[seg].ds_vaddr = vaddr;
first = 0;
} else {
if ((curaddr == lastaddr) &&
(vaddr == map->dm_segs[seg].ds_vaddr +
(curaddr - map->dm_segs[seg].ds_addr)) &&
((map->dm_segs[seg].ds_len + sgsize) <=
map->_dm_maxsegsz) &&
((map->_dm_boundary == 0) ||
((map->dm_segs[seg].ds_addr & bmask) ==
(curaddr & bmask)))) {
map->dm_segs[seg].ds_len += sgsize;
} else {
if (++seg >= map->_dm_segcnt) {
#ifdef DEBUG
panic("_bus_dmamap_load_buffer: "
"seg %d >= _dm_segcnt %d\n",
seg, map->_dm_segcnt);
#endif
break;
}
map->dm_segs[seg].ds_addr = curaddr;
map->dm_segs[seg].ds_len = sgsize;
map->dm_segs[seg].ds_vaddr = vaddr;
}
}
lastaddr = curaddr + sgsize;
vaddr += sgsize;
buflen -= sgsize;
}
*segp = seg;
*lastaddrp = lastaddr;
/*
* Did we fit?
*/
if (buflen != 0)
return (EFBIG); /* XXX better return value here? */
return (0);
}
/*
* Common function for loading a DMA map with a linear buffer. May
* be called by bus-specific DMA map load functions.
*/
int
_bus_dmamap_load(t, map, buf, buflen, p, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
void *buf;
bus_size_t buflen;
struct proc *p;
int flags;
{
paddr_t lastaddr;
int seg, error;
/*
* Make sure that on error condition we return "no valid mappings".
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
if (buflen > map->_dm_size)
return (EINVAL);
seg = 0;
error = _bus_dmamap_load_buffer(t, map, buf, buflen, p, flags,
&lastaddr, &seg, 1);
if (error == 0) {
map->dm_mapsize = buflen;
map->dm_nsegs = seg + 1;
}
return (error);
}
/*
* Like _bus_dmamap_load(), but for mbufs.
*/
int
_bus_dmamap_load_mbuf(t, map, m0, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
struct mbuf *m0;
int flags;
{
paddr_t lastaddr;
int seg, error, first;
struct mbuf *m;
/*
* Make sure that on error condition we return "no valid mappings."
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
#ifdef DIAGNOSTIC
if ((m0->m_flags & M_PKTHDR) == 0)
panic("_bus_dmamap_load_mbuf: no packet header");
#endif
if (m0->m_pkthdr.len > map->_dm_size)
return (EINVAL);
first = 1;
seg = 0;
error = 0;
for (m = m0; m != NULL && error == 0; m = m->m_next) {
error = _bus_dmamap_load_buffer(t, map, m->m_data, m->m_len,
NULL, flags, &lastaddr, &seg, first);
first = 0;
}
if (error == 0) {
map->dm_mapsize = m0->m_pkthdr.len;
map->dm_nsegs = seg + 1;
}
return (error);
}
/*
* Like _bus_dmamap_load(), but for uios.
*/
int
_bus_dmamap_load_uio(t, map, uio, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
struct uio *uio;
int flags;
{
paddr_t lastaddr;
int seg, i, error, first;
bus_size_t minlen, resid;
struct proc *p = NULL;
struct iovec *iov;
caddr_t addr;
/*
* Make sure that on error condition we return "no valid mappings."
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
resid = uio->uio_resid;
iov = uio->uio_iov;
if (uio->uio_segflg == UIO_USERSPACE) {
p = uio->uio_procp;
#ifdef DIAGNOSTIC
if (p == NULL)
panic("_bus_dmamap_load_uio: USERSPACE but no proc");
#endif
}
first = 1;
seg = 0;
error = 0;
for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
/*
* Now at the first iovec to load. Load each iovec
* until we have exhausted the residual count.
*/
minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
addr = (caddr_t)iov[i].iov_base;
error = _bus_dmamap_load_buffer(t, map, addr, minlen,
p, flags, &lastaddr, &seg, first);
first = 0;
resid -= minlen;
}
if (error == 0) {
map->dm_mapsize = uio->uio_resid;
map->dm_nsegs = seg + 1;
}
return (error);
}
/*
* Like _bus_dmamap_load(), but for raw memory.
*/
int
_bus_dmamap_load_raw(t, map, segs, nsegs, size, flags)
bus_dma_tag_t t;
bus_dmamap_t map;
bus_dma_segment_t *segs;
int nsegs;
bus_size_t size;
int flags;
{
panic("_bus_dmamap_load_raw: not implemented");
}
/*
* Common function for unloading a DMA map. May be called by
* chipset-specific DMA map unload functions.
*/
void
_bus_dmamap_unload(t, map)
bus_dma_tag_t t;
bus_dmamap_t map;
{
/*
* No resources to free; just mark the mappings as
* invalid.
*/
map->dm_mapsize = 0;
map->dm_nsegs = 0;
}
/*
* DMA map synchronization, provides software coherency
*/
void
_bus_dmamap_sync(t, map, offset, len, ops)
bus_dma_tag_t t;
bus_dmamap_t map;
bus_addr_t offset;
bus_size_t len;
int ops;
{
int i;
bus_size_t dslen;
bus_size_t minlen;
DPRINTF(("_bus_dmamap_sync %p %p %#lx %ld %#x\n",
t, map, (unsigned long) offset, (unsigned long) len, ops));
/*
* Mixing PRE and POST operations is not allowed.
*/
if (((ops & (BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)) != 0) &&
((ops & (BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)) != 0))
panic("_bus_dmamap_sync: mix PRE and POST");
#ifdef DIAGNOSTIC
if (offset >= map->dm_mapsize)
panic("_bus_dmamap_sync: bad offset %#lx (map size is %#lx)",
(unsigned long) offset, (unsigned long) map->dm_mapsize);
if (len == 0 || (offset + len) > map->dm_mapsize)
panic("_bus_dmamap_sync: bad length");
#endif
switch(ops) {
case BUS_DMASYNC_PREWRITE:
for (i=0; i < map->dm_nsegs && len != 0; i++) {
/* find the beginning segment */
dslen = map->dm_segs[i].ds_len;
if (offset >= dslen) {
offset -= dslen;
continue;
}
dslen -= offset;
minlen = len;
if (len > dslen)
minlen = dslen;
storedcache(map->dm_segs[i].ds_vaddr + offset, minlen);
len -= minlen;
offset = 0;
}
break;
case BUS_DMASYNC_PREREAD:
for (i=0; i < map->dm_nsegs && len != 0; i++) {
vaddr_t va;
/* find the beginning segment */
dslen = map->dm_segs[i].ds_len;
if (offset >= dslen) {
offset -= dslen;
continue;
}
dslen -= offset;
minlen = len;
if (len > dslen)
minlen = dslen;
va = map->dm_segs[i].ds_vaddr + offset;
if (va & (CACHELINESIZE-1))
storedcache(va, 1);
va += minlen;
if (va & (CACHELINESIZE-1))
storedcache(va, 1);
invaldcache(map->dm_segs[i].ds_vaddr + offset, minlen);
len -= minlen;
offset = 0;
}
break;
case BUS_DMASYNC_POSTREAD:
for (i=0; i < map->dm_nsegs && len != 0; i++) {
/* find the beginning segment */
dslen = map->dm_segs[i].ds_len;
if (offset >= dslen) {
offset -= dslen;
continue;
}
dslen -= offset;
minlen = len;
if (len > dslen)
minlen = dslen;
invaldcache(map->dm_segs[i].ds_vaddr + offset, minlen);
len -= minlen;
offset = 0;
}
break;
case BUS_DMASYNC_POSTWRITE:
break;
case BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE:
for (i=0; i < map->dm_nsegs && len != 0; i++) {
/* find the beginning segment */
dslen = map->dm_segs[i].ds_len;
if (offset >= dslen) {
offset -= dslen;
continue;
}
dslen -= offset;
minlen = len;
if (len > dslen)
minlen = dslen;
flushdcache(map->dm_segs[i].ds_vaddr + offset, minlen);
len -= minlen;
offset = 0;
}
break;
case BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE:
for (i=0; i < map->dm_nsegs && len != 0; i++) {
/* find the beginning segment */
dslen = map->dm_segs[i].ds_len;
if (offset >= dslen) {
offset -= dslen;
continue;
}
dslen -= offset;
minlen = len;
if (len > dslen)
minlen = dslen;
invaldcache(map->dm_segs[i].ds_vaddr + offset, minlen);
len -= minlen;
offset = 0;
}
break;
}
}
/*
* Common function for DMA-safe memory allocation. May be called
* by bus-specific DMA memory allocation functions.
*/
int
_bus_dmamem_alloc(t, size, alignment, boundary, segs, nsegs, rsegs, flags)
bus_dma_tag_t t;
bus_size_t size, alignment, boundary;
bus_dma_segment_t *segs;
int nsegs;
int *rsegs;
int flags;
{
paddr_t avail_start = 0xffffffff, avail_end = 0;
paddr_t curaddr, lastaddr, high;
struct vm_page *m;
struct pglist mlist;
int curseg, error, bank;
for (bank = 0; bank < vm_nphysseg; bank++) {
if (avail_start > vm_physmem[bank].avail_start << PGSHIFT)
avail_start = vm_physmem[bank].avail_start << PGSHIFT;
if (avail_end < vm_physmem[bank].avail_end << PGSHIFT)
avail_end = vm_physmem[bank].avail_end << PGSHIFT;
}
/* Always round the size. */
size = round_page(size);
high = avail_end - PAGE_SIZE;
/*
* Allocate pages from the VM system.
*/
TAILQ_INIT(&mlist);
error = uvm_pglistalloc(size, avail_start, high, alignment, boundary,
&mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
if (error)
return (error);
/*
* Compute the location, size, and number of segments actually
* returned by the VM code.
*/
m = mlist.tqh_first;
curseg = 0;
lastaddr = segs[curseg].ds_addr = VM_PAGE_TO_PHYS(m);
segs[curseg].ds_len = PAGE_SIZE;
segs[curseg].ds_vaddr = (vaddr_t)0xdeadbeef;
m = m->pageq.tqe_next;
for (; m != NULL; m = m->pageq.tqe_next) {
curaddr = VM_PAGE_TO_PHYS(m);
#ifdef DIAGNOSTIC
if (curaddr < avail_start || curaddr >= high) {
printf("vm_page_alloc_memory returned non-sensical"
" address 0x%lx\n", curaddr);
panic("_bus_dmamem_alloc");
}
#endif
if (curaddr == (lastaddr + PAGE_SIZE))
segs[curseg].ds_len += PAGE_SIZE;
else {
curseg++;
segs[curseg].ds_addr = curaddr;
segs[curseg].ds_len = PAGE_SIZE;
segs[curseg].ds_vaddr = (vaddr_t)0xdeadbeef;
}
lastaddr = curaddr;
}
*rsegs = curseg + 1;
return (0);
}
/*
* Common function for freeing DMA-safe memory. May be called by
* bus-specific DMA memory free functions.
*/
void
_bus_dmamem_free(t, segs, nsegs)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
{
struct vm_page *m;
bus_addr_t addr;
struct pglist mlist;
int curseg;
/*
* Build a list of pages to free back to the VM system.
*/
TAILQ_INIT(&mlist);
for (curseg = 0; curseg < nsegs; curseg++) {
for (addr = segs[curseg].ds_addr;
addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
addr += PAGE_SIZE) {
m = PHYS_TO_VM_PAGE(addr);
TAILQ_INSERT_TAIL(&mlist, m, pageq);
}
}
uvm_pglistfree(&mlist);
}
/*
* Common function for mapping DMA-safe memory. May be called by
* bus-specific DMA memory map functions.
*/
int
_bus_dmamem_map(t, segs, nsegs, size, kvap, flags)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs;
size_t size;
caddr_t *kvap;
int flags;
{
vaddr_t va;
bus_addr_t addr;
int curseg;
size = round_page(size);
va = uvm_km_valloc(kernel_map, size);
if (va == 0)
return (ENOMEM);
*kvap = (caddr_t)va;
for (curseg = 0; curseg < nsegs; curseg++) {
for (addr = segs[curseg].ds_addr;
addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
addr += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
if (size == 0)
panic("_bus_dmamem_map: size botch");
pmap_enter(pmap_kernel(), va, addr,
VM_PROT_READ | VM_PROT_WRITE,
VM_PROT_READ | VM_PROT_WRITE | PMAP_WIRED|
(flags & BUS_DMA_COHERENT ? PMAP_NC : 0));
}
}
return (0);
}
/*
* Common function for unmapping DMA-safe memory. May be called by
* bus-specific DMA memory unmapping functions.
*/
void
_bus_dmamem_unmap(t, kva, size)
bus_dma_tag_t t;
caddr_t kva;
size_t size;
{
#ifdef DIAGNOSTIC
if ((u_long)kva & PGOFSET)
panic("_bus_dmamem_unmap");
#endif
size = round_page(size);
uvm_km_free(kernel_map, (vaddr_t)kva, size);
}
/*
* Common functin for mmap(2)'ing DMA-safe memory. May be called by
* bus-specific DMA mmap(2)'ing functions.
*/
paddr_t
_bus_dmamem_mmap(t, segs, nsegs, off, prot, flags)
bus_dma_tag_t t;
bus_dma_segment_t *segs;
int nsegs, prot, flags;
off_t off;
{
int i;
for (i = 0; i < nsegs; i++) {
#ifdef DIAGNOSTIC
if (off & PGOFSET)
panic("_bus_dmamem_mmap: offset unaligned");
if (segs[i].ds_addr & PGOFSET)
panic("_bus_dmamem_mmap: segment unaligned");
if (segs[i].ds_len & PGOFSET)
panic("_bus_dmamem_mmap: segment size not multiple"
" of page size");
#endif
if (off >= segs[i].ds_len) {
off -= segs[i].ds_len;
continue;
}
return (segs[i].ds_addr + off);
}
/* Page not found. */
return (-1);
}