NetBSD/lib/libc/cdb/cdbw.c
joerg ca946cd63d Redo hashing, if two of the three individual hashes result in identical
hash modules. This is the trivial case for loops in the 3-graph and got
lost when adopting the nbperf code.
2012-07-21 22:49:37 +00:00

624 lines
14 KiB
C

/* $NetBSD: cdbw.c,v 1.5 2012/07/21 22:49:37 joerg Exp $ */
/*-
* Copyright (c) 2009, 2010 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Joerg Sonnenberger.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif
#include <sys/cdefs.h>
__RCSID("$NetBSD: cdbw.c,v 1.5 2012/07/21 22:49:37 joerg Exp $");
#include "namespace.h"
#if !HAVE_NBTOOL_CONFIG_H || HAVE_SYS_ENDIAN_H
#include <sys/endian.h>
#endif
#include <sys/queue.h>
#include <cdbw.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#ifdef __weak_alias
__weak_alias(cdbw_close,_cdbw_close)
__weak_alias(cdbw_open,_cdbw_open)
__weak_alias(cdbw_output,_cdbw_output)
__weak_alias(cdbw_put,_cdbw_put)
__weak_alias(cdbw_put_data,_cdbw_put_data)
__weak_alias(cdbw_put_key,_cdbw_put_key)
#endif
struct key_hash {
SLIST_ENTRY(key_hash) link;
uint32_t hashes[3];
uint32_t idx;
void *key;
size_t keylen;
};
SLIST_HEAD(key_hash_head, key_hash);
struct cdbw {
size_t data_counter;
size_t data_allocated;
size_t data_size;
size_t *data_len;
void **data_ptr;
size_t hash_size;
struct key_hash_head *hash;
size_t key_counter;
};
/* Max. data counter that allows the index size to be 32bit. */
static const uint32_t max_data_counter = 0xccccccccU;
struct cdbw *
cdbw_open(void)
{
struct cdbw *cdbw;
size_t i;
cdbw = calloc(sizeof(*cdbw), 1);
if (cdbw == NULL)
return NULL;
cdbw->hash_size = 1024;
cdbw->hash = calloc(cdbw->hash_size, sizeof(*cdbw->hash));
if (cdbw->hash == NULL) {
free(cdbw);
return NULL;
}
for (i = 0; i < cdbw->hash_size; ++i)
SLIST_INIT(cdbw->hash + i);
return cdbw;
}
int
cdbw_put(struct cdbw *cdbw, const void *key, size_t keylen,
const void *data, size_t datalen)
{
uint32_t idx;
int rv;
rv = cdbw_put_data(cdbw, data, datalen, &idx);
if (rv)
return rv;
rv = cdbw_put_key(cdbw, key, keylen, idx);
if (rv) {
--cdbw->data_counter;
free(cdbw->data_ptr[cdbw->data_counter]);
cdbw->data_size -= datalen;
return rv;
}
return 0;
}
int
cdbw_put_data(struct cdbw *cdbw, const void *data, size_t datalen,
uint32_t *idx)
{
if (cdbw->data_counter == max_data_counter)
return -1;
if (cdbw->data_size + datalen < cdbw->data_size ||
cdbw->data_size + datalen > 0xffffffffU)
return -1; /* Overflow */
if (cdbw->data_allocated == cdbw->data_counter) {
void **new_data_ptr;
size_t *new_data_len;
size_t new_allocated;
if (cdbw->data_allocated == 0)
new_allocated = 256;
else
new_allocated = cdbw->data_allocated * 2;
new_data_ptr = realloc(cdbw->data_ptr,
sizeof(*cdbw->data_ptr) * new_allocated);
if (new_data_ptr == NULL)
return -1;
cdbw->data_ptr = new_data_ptr;
new_data_len = realloc(cdbw->data_len,
sizeof(*cdbw->data_len) * new_allocated);
if (new_data_len == NULL)
return -1;
cdbw->data_len = new_data_len;
cdbw->data_allocated = new_allocated;
}
cdbw->data_ptr[cdbw->data_counter] = malloc(datalen);
if (cdbw->data_ptr[cdbw->data_counter] == NULL)
return -1;
memcpy(cdbw->data_ptr[cdbw->data_counter], data, datalen);
cdbw->data_len[cdbw->data_counter] = datalen;
cdbw->data_size += datalen;
*idx = cdbw->data_counter++;
return 0;
}
int
cdbw_put_key(struct cdbw *cdbw, const void *key, size_t keylen, uint32_t idx)
{
uint32_t hashes[3];
struct key_hash_head *head, *head2, *new_head;
struct key_hash *key_hash;
size_t new_hash_size, i;
if (idx >= cdbw->data_counter ||
cdbw->key_counter == max_data_counter)
return -1;
mi_vector_hash(key, keylen, 0, hashes);
head = cdbw->hash + (hashes[0] & (cdbw->hash_size - 1));
SLIST_FOREACH(key_hash, head, link) {
if (key_hash->keylen != keylen)
continue;
if (key_hash->hashes[0] != hashes[0])
continue;
if (key_hash->hashes[1] != hashes[1])
continue;
if (key_hash->hashes[2] != hashes[2])
continue;
if (memcmp(key, key_hash->key, keylen))
continue;
return -1;
}
key_hash = malloc(sizeof(*key_hash));
if (key_hash == NULL)
return -1;
key_hash->key = malloc(keylen);
if (key_hash->key == NULL) {
free(key_hash);
return -1;
}
memcpy(key_hash->key, key, keylen);
key_hash->hashes[0] = hashes[0];
key_hash->hashes[1] = hashes[1];
key_hash->hashes[2] = hashes[2];
key_hash->keylen = keylen;
key_hash->idx = idx;
SLIST_INSERT_HEAD(head, key_hash, link);
++cdbw->key_counter;
if (cdbw->key_counter <= cdbw->hash_size)
return 0;
/* Try to resize the hash table, but ignore errors. */
new_hash_size = cdbw->hash_size * 2;
new_head = calloc(sizeof(*new_head), new_hash_size);
if (new_head == NULL)
return 0;
head = &cdbw->hash[hashes[0] & (cdbw->hash_size - 1)];
for (i = 0; i < new_hash_size; ++i)
SLIST_INIT(new_head + i);
for (i = 0; i < cdbw->hash_size; ++i) {
head = cdbw->hash + i;
while ((key_hash = SLIST_FIRST(head)) != NULL) {
SLIST_REMOVE_HEAD(head, link);
head2 = new_head +
(key_hash->hashes[0] & (new_hash_size - 1));
SLIST_INSERT_HEAD(head2, key_hash, link);
}
}
free(cdbw->hash);
cdbw->hash_size = new_hash_size;
cdbw->hash = new_head;
return 0;
}
void
cdbw_close(struct cdbw *cdbw)
{
struct key_hash_head *head;
struct key_hash *key_hash;
size_t i;
for (i = 0; i < cdbw->hash_size; ++i) {
head = cdbw->hash + i;
while ((key_hash = SLIST_FIRST(head)) != NULL) {
SLIST_REMOVE_HEAD(head, link);
free(key_hash->key);
free(key_hash);
}
}
for (i = 0; i < cdbw->data_counter; ++i)
free(cdbw->data_ptr[i]);
free(cdbw->data_ptr);
free(cdbw->data_len);
free(cdbw->hash);
free(cdbw);
}
uint32_t
cdbw_stable_seeder(void)
{
return 0;
}
#define unused 0xffffffffU
struct vertex {
uint32_t l_edge, m_edge, r_edge;
};
struct edge {
uint32_t idx;
uint32_t left, middle, right;
uint32_t l_prev, m_prev, l_next;
uint32_t r_prev, m_next, r_next;
};
struct state {
uint32_t data_entries;
uint32_t entries;
uint32_t keys;
uint32_t seed;
uint32_t *g;
char *visited;
struct vertex *verts;
struct edge *edges;
uint32_t output_index;
uint32_t *output_order;
};
static void
remove_vertex(struct state *state, struct vertex *v)
{
struct edge *e;
struct vertex *vl, *vm, *vr;
if (v->l_edge != unused && v->m_edge != unused)
return;
if (v->l_edge != unused && v->r_edge != unused)
return;
if (v->m_edge != unused && v->r_edge != unused)
return;
if (v->l_edge == unused && v->m_edge == unused && v->r_edge == unused)
return;
if (v->l_edge != unused) {
e = &state->edges[v->l_edge];
if (e->l_next != unused)
return;
} else if (v->m_edge != unused) {
e = &state->edges[v->m_edge];
if (e->m_next != unused)
return;
} else {
if (v->r_edge == unused)
abort();
e = &state->edges[v->r_edge];
if (e->r_next != unused)
return;
}
state->output_order[--state->output_index] = e - state->edges;
vl = &state->verts[e->left];
vm = &state->verts[e->middle];
vr = &state->verts[e->right];
if (e->l_prev == unused)
vl->l_edge = e->l_next;
else
state->edges[e->l_prev].l_next = e->l_next;
if (e->l_next != unused)
state->edges[e->l_next].l_prev = e->l_prev;
if (e->m_prev == unused)
vm->m_edge = e->m_next;
else
state->edges[e->m_prev].m_next = e->m_next;
if (e->m_next != unused)
state->edges[e->m_next].m_prev = e->m_prev;
if (e->r_prev == unused)
vr->r_edge = e->r_next;
else
state->edges[e->r_prev].r_next = e->r_next;
if (e->r_next != unused)
state->edges[e->r_next].r_prev = e->r_prev;
}
static int
build_graph(struct cdbw *cdbw, struct state *state)
{
struct key_hash_head *head;
struct key_hash *key_hash;
struct vertex *v;
struct edge *e;
uint32_t hashes[3];
size_t i;
e = state->edges;
for (i = 0; i < cdbw->hash_size; ++i) {
head = &cdbw->hash[i];
SLIST_FOREACH(key_hash, head, link) {
e->idx = key_hash->idx;
mi_vector_hash(key_hash->key, key_hash->keylen,
state->seed, hashes);
e->left = hashes[0] % state->entries;
e->middle = hashes[1] % state->entries;
e->right = hashes[2] % state->entries;
if (e->left == e->middle)
return -1;
if (e->left == e->right)
return -1;
if (e->middle == e->right)
return -1;
++e;
}
}
for (i = 0; i < state->entries; ++i) {
v = state->verts + i;
v->l_edge = unused;
v->m_edge = unused;
v->r_edge = unused;
}
for (i = 0; i < state->keys; ++i) {
e = state->edges + i;
v = state->verts + e->left;
if (v->l_edge != unused)
state->edges[v->l_edge].l_prev = i;
e->l_next = v->l_edge;
e->l_prev = unused;
v->l_edge = i;
v = &state->verts[e->middle];
if (v->m_edge != unused)
state->edges[v->m_edge].m_prev = i;
e->m_next = v->m_edge;
e->m_prev = unused;
v->m_edge = i;
v = &state->verts[e->right];
if (v->r_edge != unused)
state->edges[v->r_edge].r_prev = i;
e->r_next = v->r_edge;
e->r_prev = unused;
v->r_edge = i;
}
state->output_index = state->keys;
for (i = 0; i < state->entries; ++i)
remove_vertex(state, state->verts + i);
i = state->keys;
while (i > 0 && i > state->output_index) {
--i;
e = state->edges + state->output_order[i];
remove_vertex(state, state->verts + e->left);
remove_vertex(state, state->verts + e->middle);
remove_vertex(state, state->verts + e->right);
}
return state->output_index == 0 ? 0 : -1;
}
static void
assign_nodes(struct state *state)
{
struct edge *e;
size_t i;
for (i = 0; i < state->keys; ++i) {
e = state->edges + state->output_order[i];
if (!state->visited[e->left]) {
state->g[e->left] =
(2 * state->data_entries + e->idx
- state->g[e->middle] - state->g[e->right])
% state->data_entries;
} else if (!state->visited[e->middle]) {
state->g[e->middle] =
(2 * state->data_entries + e->idx
- state->g[e->left] - state->g[e->right])
% state->data_entries;
} else {
state->g[e->right] =
(2 * state->data_entries + e->idx
- state->g[e->left] - state->g[e->middle])
% state->data_entries;
}
state->visited[e->left] = 1;
state->visited[e->middle] = 1;
state->visited[e->right] = 1;
}
}
static size_t
compute_size(uint32_t size)
{
if (size < 0x100)
return 1;
else if (size < 0x10000)
return 2;
else
return 4;
}
#define COND_FLUSH_BUFFER(n) do { \
if (__predict_false(cur_pos + (n) >= sizeof(buf))) { \
ret = write(fd, buf, cur_pos); \
if (ret == -1 || (size_t)ret != cur_pos) \
return -1; \
cur_pos = 0; \
} \
} while (/* CONSTCOND */ 0)
static int
print_hash(struct cdbw *cdbw, struct state *state, int fd, const char *descr)
{
uint32_t data_size;
uint8_t buf[90000];
size_t i, size, size2, cur_pos;
ssize_t ret;
memcpy(buf, "NBCDB\n\0", 7);
buf[7] = 1;
strncpy((char *)buf + 8, descr, 16);
le32enc(buf + 24, cdbw->data_size);
le32enc(buf + 28, cdbw->data_counter);
le32enc(buf + 32, state->entries);
le32enc(buf + 36, state->seed);
cur_pos = 40;
size = compute_size(state->entries);
for (i = 0; i < state->entries; ++i) {
COND_FLUSH_BUFFER(4);
le32enc(buf + cur_pos, state->g[i]);
cur_pos += size;
}
size2 = compute_size(cdbw->data_size);
size = size * state->entries % size2;
if (size != 0) {
size = size2 - size;
COND_FLUSH_BUFFER(4);
le32enc(buf + cur_pos, 0);
cur_pos += size;
}
for (data_size = 0, i = 0; i < cdbw->data_counter; ++i) {
COND_FLUSH_BUFFER(4);
le32enc(buf + cur_pos, data_size);
cur_pos += size2;
data_size += cdbw->data_len[i];
}
COND_FLUSH_BUFFER(4);
le32enc(buf + cur_pos, data_size);
cur_pos += size2;
for (i = 0; i < cdbw->data_counter; ++i) {
COND_FLUSH_BUFFER(cdbw->data_len[i]);
if (cdbw->data_len[i] < sizeof(buf)) {
memcpy(buf + cur_pos, cdbw->data_ptr[i],
cdbw->data_len[i]);
cur_pos += cdbw->data_len[i];
} else {
ret = write(fd, cdbw->data_ptr[i], cdbw->data_len[i]);
if (ret == -1 || (size_t)ret != cdbw->data_len[i])
return -1;
}
}
if (cur_pos != 0) {
ret = write(fd, buf, cur_pos);
if (ret == -1 || (size_t)ret != cur_pos)
return -1;
}
return 0;
}
int
cdbw_output(struct cdbw *cdbw, int fd, const char descr[16],
uint32_t (*seedgen)(void))
{
struct state state;
int rv;
if (cdbw->data_counter == 0 || cdbw->key_counter == 0) {
state.entries = 0;
state.seed = 0;
print_hash(cdbw, &state, fd, descr);
return 0;
}
#if HAVE_NBTOOL_CONFIG_H
if (seedgen == NULL)
seedgen = cdbw_stable_seeder;
#else
if (seedgen == NULL)
seedgen = arc4random;
#endif
rv = 0;
state.keys = cdbw->key_counter;
state.data_entries = cdbw->data_counter;
state.entries = state.keys + (state.keys + 3) / 4;
if (state.entries < 10)
state.entries = 10;
#define NALLOC(var, n) var = calloc(sizeof(*var), n)
NALLOC(state.g, state.entries);
NALLOC(state.visited, state.entries);
NALLOC(state.verts, state.entries);
NALLOC(state.edges, state.entries);
NALLOC(state.output_order, state.keys);
#undef NALLOC
if (state.g == NULL || state.visited == NULL || state.verts == NULL ||
state.edges == NULL || state.output_order == NULL) {
rv = -1;
goto release;
}
state.seed = 0;
do {
if (seedgen == cdbw_stable_seeder)
++state.seed;
else
state.seed = (*seedgen)();
} while (build_graph(cdbw, &state));
assign_nodes(&state);
rv = print_hash(cdbw, &state, fd, descr);
release:
free(state.g);
free(state.visited);
free(state.verts);
free(state.edges);
free(state.output_order);
return rv;
}