NetBSD/sys/dev/pci/if_nfe.c
msaitoh 430e9a94b1 Fix a bug that the duplex of manual media setting may be wrong
when the IFM_GMASK bit other than IFM_[FH]DX is set.
2019-04-11 08:50:59 +00:00

2009 lines
51 KiB
C

/* $NetBSD: if_nfe.c,v 1.68 2019/04/11 08:50:59 msaitoh Exp $ */
/* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
/*-
* Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.68 2019/04/11 08:50:59 msaitoh Exp $");
#include "opt_inet.h"
#include "vlan.h"
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <sys/socket.h>
#include <sys/bus.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/if_arp.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#if NVLAN > 0
#include <net/if_types.h>
#endif
#include <net/bpf.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_nfereg.h>
#include <dev/pci/if_nfevar.h>
static int nfe_ifflags_cb(struct ethercom *);
int nfe_match(device_t, cfdata_t, void *);
void nfe_attach(device_t, device_t, void *);
int nfe_detach(device_t, int);
void nfe_power(int, void *);
void nfe_miibus_statchg(struct ifnet *);
int nfe_miibus_readreg(device_t, int, int, uint16_t *);
int nfe_miibus_writereg(device_t, int, int, uint16_t);
int nfe_intr(void *);
int nfe_ioctl(struct ifnet *, u_long, void *);
void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
void nfe_rxeof(struct nfe_softc *);
void nfe_txeof(struct nfe_softc *);
int nfe_encap(struct nfe_softc *, struct mbuf *);
void nfe_start(struct ifnet *);
void nfe_watchdog(struct ifnet *);
int nfe_init(struct ifnet *);
void nfe_stop(struct ifnet *, int);
struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
void nfe_jfree(struct mbuf *, void *, size_t, void *);
int nfe_jpool_alloc(struct nfe_softc *);
void nfe_jpool_free(struct nfe_softc *);
int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
void nfe_setmulti(struct nfe_softc *);
void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
void nfe_tick(void *);
void nfe_poweron(device_t);
bool nfe_resume(device_t, const pmf_qual_t *);
CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc),
nfe_match, nfe_attach, nfe_detach, NULL);
/* #define NFE_NO_JUMBO */
#ifdef NFE_DEBUG
int nfedebug = 0;
#define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
#define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
/* deal with naming differences */
#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
#define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
#define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
#define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
#define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
#ifdef _LP64
#define __LP64__ 1
#endif
const struct nfe_product {
pci_vendor_id_t vendor;
pci_product_id_t product;
} nfe_devices[] = {
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
};
int
nfe_match(device_t dev, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = aux;
const struct nfe_product *np;
int i;
for (i = 0; i < __arraycount(nfe_devices); i++) {
np = &nfe_devices[i];
if (PCI_VENDOR(pa->pa_id) == np->vendor &&
PCI_PRODUCT(pa->pa_id) == np->product)
return 1;
}
return 0;
}
void
nfe_attach(device_t parent, device_t self, void *aux)
{
struct nfe_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr;
struct ifnet *ifp;
pcireg_t memtype, csr;
int mii_flags = 0;
char intrbuf[PCI_INTRSTR_LEN];
sc->sc_dev = self;
sc->sc_pc = pa->pa_pc;
pci_aprint_devinfo(pa, NULL);
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
&sc->sc_memh, NULL, &sc->sc_mems) == 0)
break;
/* FALLTHROUGH */
default:
aprint_error_dev(self, "could not map mem space\n");
return;
}
if (pci_intr_map(pa, &ih) != 0) {
aprint_error_dev(self, "could not map interrupt\n");
goto fail;
}
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, nfe_intr, sc,
device_xname(self));
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "could not establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
goto fail;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
csr |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
sc->sc_flags = 0;
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
break;
case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
break;
case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
NFE_PWR_MGMT;
break;
case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
break;
case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
break;
case PCI_PRODUCT_NVIDIA_CK804_LAN1:
case PCI_PRODUCT_NVIDIA_CK804_LAN2:
case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
break;
case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
mii_flags = MIIF_DOPAUSE;
break;
case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
NFE_HW_VLAN | NFE_PWR_MGMT;
break;
}
if (pci_dma64_available(pa) && (sc->sc_flags & NFE_40BIT_ADDR) != 0)
sc->sc_dmat = pa->pa_dmat64;
else
sc->sc_dmat = pa->pa_dmat;
nfe_poweron(self);
#ifndef NFE_NO_JUMBO
/* enable jumbo frames for adapters that support it */
if (sc->sc_flags & NFE_JUMBO_SUP)
sc->sc_flags |= NFE_USE_JUMBO;
#endif
/* Check for reversed ethernet address */
if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
sc->sc_flags |= NFE_CORRECT_MACADDR;
nfe_get_macaddr(sc, sc->sc_enaddr);
aprint_normal_dev(self, "Ethernet address %s\n",
ether_sprintf(sc->sc_enaddr));
/*
* Allocate Tx and Rx rings.
*/
if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
aprint_error_dev(self, "could not allocate Tx ring\n");
goto fail;
}
mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
aprint_error_dev(self, "could not allocate Rx ring\n");
nfe_free_tx_ring(sc, &sc->txq);
goto fail;
}
ifp = &sc->sc_ethercom.ec_if;
ifp->if_softc = sc;
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = nfe_ioctl;
ifp->if_start = nfe_start;
ifp->if_stop = nfe_stop;
ifp->if_watchdog = nfe_watchdog;
ifp->if_init = nfe_init;
ifp->if_baudrate = IF_Gbps(1);
IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
IFQ_SET_READY(&ifp->if_snd);
strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
if (sc->sc_flags & NFE_USE_JUMBO)
sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
#if NVLAN > 0
if (sc->sc_flags & NFE_HW_VLAN)
sc->sc_ethercom.ec_capabilities |=
ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
#endif
if (sc->sc_flags & NFE_HW_CSUM) {
ifp->if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
}
sc->sc_mii.mii_ifp = ifp;
sc->sc_mii.mii_readreg = nfe_miibus_readreg;
sc->sc_mii.mii_writereg = nfe_miibus_writereg;
sc->sc_mii.mii_statchg = nfe_miibus_statchg;
sc->sc_ethercom.ec_mii = &sc->sc_mii;
ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
ether_mediastatus);
mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags);
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
aprint_error_dev(self, "no PHY found!\n");
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, sc->sc_enaddr);
ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
if (pmf_device_register(self, NULL, nfe_resume))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
return;
fail:
if (sc->sc_ih != NULL) {
pci_intr_disestablish(pc, sc->sc_ih);
sc->sc_ih = NULL;
}
if (sc->sc_mems != 0) {
bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
sc->sc_mems = 0;
}
}
int
nfe_detach(device_t self, int flags)
{
struct nfe_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int s;
s = splnet();
nfe_stop(ifp, 1);
pmf_device_deregister(self);
callout_destroy(&sc->sc_tick_ch);
ether_ifdetach(ifp);
if_detach(ifp);
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
nfe_free_rx_ring(sc, &sc->rxq);
mutex_destroy(&sc->rxq.mtx);
nfe_free_tx_ring(sc, &sc->txq);
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
sc->sc_ih = NULL;
}
if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
nfe_set_macaddr(sc, sc->sc_enaddr);
} else {
NFE_WRITE(sc, NFE_MACADDR_LO,
sc->sc_enaddr[0] << 8 | sc->sc_enaddr[1]);
NFE_WRITE(sc, NFE_MACADDR_HI,
sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 |
sc->sc_enaddr[4] << 8 | sc->sc_enaddr[5]);
}
if (sc->sc_mems != 0) {
bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
sc->sc_mems = 0;
}
splx(s);
return 0;
}
void
nfe_miibus_statchg(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->sc_mii;
uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
phy = NFE_READ(sc, NFE_PHY_IFACE);
phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
seed = NFE_READ(sc, NFE_RNDSEED);
seed &= ~NFE_SEED_MASK;
if ((mii->mii_media_active & IFM_HDX) != 0) {
phy |= NFE_PHY_HDX; /* half-duplex */
misc |= NFE_MISC1_HDX;
}
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T: /* full-duplex only */
link |= NFE_MEDIA_1000T;
seed |= NFE_SEED_1000T;
phy |= NFE_PHY_1000T;
break;
case IFM_100_TX:
link |= NFE_MEDIA_100TX;
seed |= NFE_SEED_100TX;
phy |= NFE_PHY_100TX;
break;
case IFM_10_T:
link |= NFE_MEDIA_10T;
seed |= NFE_SEED_10T;
break;
}
NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
NFE_WRITE(sc, NFE_PHY_IFACE, phy);
NFE_WRITE(sc, NFE_MISC1, misc);
NFE_WRITE(sc, NFE_LINKSPEED, link);
}
int
nfe_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
struct nfe_softc *sc = device_private(dev);
uint32_t data;
int ntries;
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
DELAY(100);
}
NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
for (ntries = 0; ntries < 1000; ntries++) {
DELAY(100);
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
break;
}
if (ntries == 1000) {
DPRINTFN(2, ("%s: timeout waiting for PHY\n",
device_xname(sc->sc_dev)));
return ETIMEDOUT;
}
if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
DPRINTFN(2, ("%s: could not read PHY\n",
device_xname(sc->sc_dev)));
return -1;
}
data = NFE_READ(sc, NFE_PHY_DATA);
if (data != 0xffffffff && data != 0)
sc->mii_phyaddr = phy;
DPRINTFN(2, ("%s: mii read phy %d reg 0x%x data 0x%x\n",
device_xname(sc->sc_dev), phy, reg, data));
*val = data & 0x0000ffff;
return 0;
}
int
nfe_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
{
struct nfe_softc *sc = device_private(dev);
uint32_t ctl;
int ntries;
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
DELAY(100);
}
NFE_WRITE(sc, NFE_PHY_DATA, val);
ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
NFE_WRITE(sc, NFE_PHY_CTL, ctl);
for (ntries = 0; ntries < 1000; ntries++) {
DELAY(100);
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
break;
}
if (ntries == 1000) {
#ifdef NFE_DEBUG
if (nfedebug >= 2)
printf("could not write to PHY\n");
#endif
return ETIMEDOUT;
}
return 0;
}
int
nfe_intr(void *arg)
{
struct nfe_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t r;
int handled;
if ((ifp->if_flags & IFF_UP) == 0)
return 0;
handled = 0;
for (;;) {
r = NFE_READ(sc, NFE_IRQ_STATUS);
if ((r & NFE_IRQ_WANTED) == 0)
break;
NFE_WRITE(sc, NFE_IRQ_STATUS, r);
handled = 1;
DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
/* check Rx ring */
nfe_rxeof(sc);
}
if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
/* check Tx ring */
nfe_txeof(sc);
}
if ((r & NFE_IRQ_LINK) != 0) {
NFE_READ(sc, NFE_PHY_STATUS);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
DPRINTF(("%s: link state changed\n",
device_xname(sc->sc_dev)));
}
}
if (handled)
if_schedule_deferred_start(ifp);
return handled;
}
static int
nfe_ifflags_cb(struct ethercom *ec)
{
struct ifnet *ifp = &ec->ec_if;
struct nfe_softc *sc = ifp->if_softc;
int change = ifp->if_flags ^ sc->sc_if_flags;
/*
* If only the PROMISC flag changes, then
* don't do a full re-init of the chip, just update
* the Rx filter.
*/
if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
return ENETRESET;
else if ((change & IFF_PROMISC) != 0)
nfe_setmulti(sc);
return 0;
}
int
nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct nfe_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCINITIFADDR:
ifp->if_flags |= IFF_UP;
nfe_init(ifp);
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
arp_ifinit(ifp, ifa);
break;
#endif
default:
break;
}
break;
default:
if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
break;
error = 0;
if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING)
nfe_setmulti(sc);
break;
}
sc->sc_if_flags = ifp->if_flags;
splx(s);
return error;
}
void
nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
{
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(char *)desc32 - (char *)sc->txq.desc32,
sizeof (struct nfe_desc32), ops);
}
void
nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
{
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(char *)desc64 - (char *)sc->txq.desc64,
sizeof (struct nfe_desc64), ops);
}
void
nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
{
if (end > start) {
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
(char *)&sc->txq.desc32[end] -
(char *)&sc->txq.desc32[start], ops);
return;
}
/* sync from 'start' to end of ring */
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
(char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
(char *)&sc->txq.desc32[start], ops);
/* sync from start of ring to 'end' */
bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
(char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
}
void
nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
{
if (end > start) {
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
(char *)&sc->txq.desc64[end] -
(char *)&sc->txq.desc64[start], ops);
return;
}
/* sync from 'start' to end of ring */
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
(char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
(char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
(char *)&sc->txq.desc64[start], ops);
/* sync from start of ring to 'end' */
bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
(char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
}
void
nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
{
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
(char *)desc32 - (char *)sc->rxq.desc32,
sizeof (struct nfe_desc32), ops);
}
void
nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
{
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
(char *)desc64 - (char *)sc->rxq.desc64,
sizeof (struct nfe_desc64), ops);
}
void
nfe_rxeof(struct nfe_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct nfe_jbuf *jbuf;
struct mbuf *m, *mnew;
bus_addr_t physaddr;
uint16_t flags;
int error, len, i;
desc32 = NULL;
desc64 = NULL;
for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
data = &sc->rxq.data[i];
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[i];
nfe_rxdesc64_sync(sc, desc64,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
flags = le16toh(desc64->flags);
len = le16toh(desc64->length) & 0x3fff;
} else {
desc32 = &sc->rxq.desc32[i];
nfe_rxdesc32_sync(sc, desc32,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
flags = le16toh(desc32->flags);
len = le16toh(desc32->length) & 0x3fff;
}
if ((flags & NFE_RX_READY) != 0)
break;
if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if ((flags & NFE_RX_VALID_V1) == 0)
goto skip;
if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
} else {
if ((flags & NFE_RX_VALID_V2) == 0)
goto skip;
if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
flags &= ~NFE_RX_ERROR;
len--; /* fix buffer length */
}
}
if (flags & NFE_RX_ERROR) {
ifp->if_ierrors++;
goto skip;
}
/*
* Try to allocate a new mbuf for this ring element and load
* it before processing the current mbuf. If the ring element
* cannot be loaded, drop the received packet and reuse the
* old mbuf. In the unlikely case that the old mbuf can't be
* reloaded either, explicitly panic.
*/
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
ifp->if_ierrors++;
goto skip;
}
if (sc->sc_flags & NFE_USE_JUMBO) {
physaddr =
sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
if (len > MCLBYTES) {
m_freem(mnew);
ifp->if_ierrors++;
goto skip1;
}
MCLGET(mnew, M_DONTWAIT);
if ((mnew->m_flags & M_EXT) == 0) {
m_freem(mnew);
ifp->if_ierrors++;
goto skip1;
}
(void)memcpy(mtod(mnew, void *),
mtod(data->m, const void *), len);
m = mnew;
goto mbufcopied;
} else {
MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
mtod(data->m, char *) - (char *)sc->rxq.jpool,
NFE_JBYTES, BUS_DMASYNC_POSTREAD);
physaddr = jbuf->physaddr;
}
} else {
MCLGET(mnew, M_DONTWAIT);
if ((mnew->m_flags & M_EXT) == 0) {
m_freem(mnew);
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(mnew, void *), MCLBYTES, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(mnew);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
/* very unlikely that it will fail.. */
panic("%s: could not load old rx mbuf",
device_xname(sc->sc_dev));
}
ifp->if_ierrors++;
goto skip;
}
physaddr = data->map->dm_segs[0].ds_addr;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = mnew;
mbufcopied:
/* finalize mbuf */
m->m_pkthdr.len = m->m_len = len;
m_set_rcvif(m, ifp);
if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
/*
* XXX
* no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
*/
if (flags & NFE_RX_IP_CSUMOK) {
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
DPRINTFN(3, ("%s: ip4csum-rx ok\n",
device_xname(sc->sc_dev)));
}
/*
* XXX
* no way to check M_CSUM_TCP_UDP_BAD or
* other protocols?
*/
if (flags & NFE_RX_UDP_CSUMOK) {
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
DPRINTFN(3, ("%s: udp4csum-rx ok\n",
device_xname(sc->sc_dev)));
} else if (flags & NFE_RX_TCP_CSUMOK) {
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
device_xname(sc->sc_dev)));
}
}
if_percpuq_enqueue(ifp->if_percpuq, m);
skip1:
/* update mapping address in h/w descriptor */
if (sc->sc_flags & NFE_40BIT_ADDR) {
#if defined(__LP64__)
desc64->physaddr[0] = htole32(physaddr >> 32);
#endif
desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
} else {
desc32->physaddr = htole32(physaddr);
}
skip:
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc64->length = htole16(sc->rxq.bufsz);
desc64->flags = htole16(NFE_RX_READY);
nfe_rxdesc64_sync(sc, desc64,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
} else {
desc32->length = htole16(sc->rxq.bufsz);
desc32->flags = htole16(NFE_RX_READY);
nfe_rxdesc32_sync(sc, desc32,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
}
/* update current RX pointer */
sc->rxq.cur = i;
}
void
nfe_txeof(struct nfe_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_tx_data *data = NULL;
int i;
uint16_t flags;
char buf[128];
for (i = sc->txq.next;
sc->txq.queued > 0;
i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc64 = &sc->txq.desc64[i];
nfe_txdesc64_sync(sc, desc64,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
flags = le16toh(desc64->flags);
} else {
desc32 = &sc->txq.desc32[i];
nfe_txdesc32_sync(sc, desc32,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
flags = le16toh(desc32->flags);
}
if ((flags & NFE_TX_VALID) != 0)
break;
data = &sc->txq.data[i];
if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
data->m == NULL)
continue;
if ((flags & NFE_TX_ERROR_V1) != 0) {
snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
buf);
ifp->if_oerrors++;
} else
ifp->if_opackets++;
} else {
if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
data->m == NULL)
continue;
if ((flags & NFE_TX_ERROR_V2) != 0) {
snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
buf);
ifp->if_oerrors++;
} else
ifp->if_opackets++;
}
if (data->m == NULL) { /* should not get there */
aprint_error_dev(sc->sc_dev,
"last fragment bit w/o associated mbuf!\n");
continue;
}
/* last fragment of the mbuf chain transmitted */
bus_dmamap_sync(sc->sc_dmat, data->active, 0,
data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->active);
m_freem(data->m);
data->m = NULL;
}
sc->txq.next = i;
if (sc->txq.queued < NFE_TX_RING_COUNT) {
/* at least one slot freed */
ifp->if_flags &= ~IFF_OACTIVE;
}
if (sc->txq.queued == 0) {
/* all queued packets are sent */
ifp->if_timer = 0;
}
}
int
nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
{
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_tx_data *data;
bus_dmamap_t map;
uint16_t flags, csumflags;
#if NVLAN > 0
uint32_t vtag = 0;
#endif
int error, i, first;
desc32 = NULL;
desc64 = NULL;
data = NULL;
flags = 0;
csumflags = 0;
first = sc->txq.cur;
map = sc->txq.data[first].map;
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
return error;
}
if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
bus_dmamap_unload(sc->sc_dmat, map);
return ENOBUFS;
}
#if NVLAN > 0
/* setup h/w VLAN tagging */
if (vlan_has_tag(m0))
vtag = NFE_TX_VTAG | vlan_get_tag(m0);
#endif
if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
csumflags |= NFE_TX_IP_CSUM;
if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
csumflags |= NFE_TX_TCP_UDP_CSUM;
}
for (i = 0; i < map->dm_nsegs; i++) {
data = &sc->txq.data[sc->txq.cur];
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc64 = &sc->txq.desc64[sc->txq.cur];
#if defined(__LP64__)
desc64->physaddr[0] =
htole32(map->dm_segs[i].ds_addr >> 32);
#endif
desc64->physaddr[1] =
htole32(map->dm_segs[i].ds_addr & 0xffffffff);
desc64->length = htole16(map->dm_segs[i].ds_len - 1);
desc64->flags = htole16(flags);
desc64->vtag = 0;
} else {
desc32 = &sc->txq.desc32[sc->txq.cur];
desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
desc32->length = htole16(map->dm_segs[i].ds_len - 1);
desc32->flags = htole16(flags);
}
/*
* Setting of the valid bit in the first descriptor is
* deferred until the whole chain is fully setup.
*/
flags |= NFE_TX_VALID;
sc->txq.queued++;
sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
}
/* the whole mbuf chain has been setup */
if (sc->sc_flags & NFE_40BIT_ADDR) {
/* fix last descriptor */
flags |= NFE_TX_LASTFRAG_V2;
desc64->flags = htole16(flags);
/* Checksum flags and vtag belong to the first fragment only. */
#if NVLAN > 0
sc->txq.desc64[first].vtag = htole32(vtag);
#endif
sc->txq.desc64[first].flags |= htole16(csumflags);
/* finally, set the valid bit in the first descriptor */
sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
} else {
/* fix last descriptor */
if (sc->sc_flags & NFE_JUMBO_SUP)
flags |= NFE_TX_LASTFRAG_V2;
else
flags |= NFE_TX_LASTFRAG_V1;
desc32->flags = htole16(flags);
/* Checksum flags belong to the first fragment only. */
sc->txq.desc32[first].flags |= htole16(csumflags);
/* finally, set the valid bit in the first descriptor */
sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
}
data->m = m0;
data->active = map;
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
return 0;
}
void
nfe_start(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
int old = sc->txq.queued;
struct mbuf *m0;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (nfe_encap(sc, m0) != 0) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* packet put in h/w queue, remove from s/w queue */
IFQ_DEQUEUE(&ifp->if_snd, m0);
bpf_mtap(ifp, m0, BPF_D_OUT);
}
if (sc->txq.queued != old) {
/* packets are queued */
if (sc->sc_flags & NFE_40BIT_ADDR)
nfe_txdesc64_rsync(sc, old, sc->txq.cur,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
else
nfe_txdesc32_rsync(sc, old, sc->txq.cur,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* kick Tx */
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
}
void
nfe_watchdog(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
ifp->if_flags &= ~IFF_RUNNING;
nfe_init(ifp);
ifp->if_oerrors++;
}
int
nfe_init(struct ifnet *ifp)
{
struct nfe_softc *sc = ifp->if_softc;
uint32_t tmp;
int rc = 0, s;
if (ifp->if_flags & IFF_RUNNING)
return 0;
nfe_stop(ifp, 0);
NFE_WRITE(sc, NFE_TX_UNK, 0);
NFE_WRITE(sc, NFE_STATUS, 0);
sc->rxtxctl = NFE_RXTX_BIT2;
if (sc->sc_flags & NFE_40BIT_ADDR)
sc->rxtxctl |= NFE_RXTX_V3MAGIC;
else if (sc->sc_flags & NFE_JUMBO_SUP)
sc->rxtxctl |= NFE_RXTX_V2MAGIC;
if (sc->sc_flags & NFE_HW_CSUM)
sc->rxtxctl |= NFE_RXTX_RXCSUM;
#if NVLAN > 0
/*
* Although the adapter is capable of stripping VLAN tags from received
* frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
* purpose. This will be done in software by our network stack.
*/
if (sc->sc_flags & NFE_HW_VLAN)
sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
#endif
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
DELAY(10);
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
#if NVLAN
if (sc->sc_flags & NFE_HW_VLAN)
NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
#endif
NFE_WRITE(sc, NFE_SETUP_R6, 0);
/* set MAC address */
nfe_set_macaddr(sc, sc->sc_enaddr);
/* tell MAC where rings are in memory */
#ifdef __LP64__
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
#endif
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
#ifdef __LP64__
NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
#endif
NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
NFE_WRITE(sc, NFE_RING_SIZE,
(NFE_RX_RING_COUNT - 1) << 16 |
(NFE_TX_RING_COUNT - 1));
NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
/* force MAC to wakeup */
tmp = NFE_READ(sc, NFE_PWR_STATE);
NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
DELAY(10);
tmp = NFE_READ(sc, NFE_PWR_STATE);
NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
s = splnet();
NFE_WRITE(sc, NFE_IRQ_MASK, 0);
nfe_intr(sc); /* XXX clear IRQ status registers */
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
splx(s);
#if 1
/* configure interrupts coalescing/mitigation */
NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
#else
/* no interrupt mitigation: one interrupt per packet */
NFE_WRITE(sc, NFE_IMTIMER, 970);
#endif
NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
sc->rxtxctl &= ~NFE_RXTX_BIT2;
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
DELAY(10);
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
/* set Rx filter */
nfe_setmulti(sc);
if ((rc = ether_mediachange(ifp)) != 0)
goto out;
nfe_tick(sc);
/* enable Rx */
NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
/* enable Tx */
NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
/* enable interrupts */
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
callout_schedule(&sc->sc_tick_ch, hz);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
out:
return rc;
}
void
nfe_stop(struct ifnet *ifp, int disable)
{
struct nfe_softc *sc = ifp->if_softc;
callout_stop(&sc->sc_tick_ch);
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
mii_down(&sc->sc_mii);
/* abort Tx */
NFE_WRITE(sc, NFE_TX_CTL, 0);
/* disable Rx */
NFE_WRITE(sc, NFE_RX_CTL, 0);
/* disable interrupts */
NFE_WRITE(sc, NFE_IRQ_MASK, 0);
/* reset Tx and Rx rings */
nfe_reset_tx_ring(sc, &sc->txq);
nfe_reset_rx_ring(sc, &sc->rxq);
}
int
nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
struct nfe_desc32 *desc32;
struct nfe_desc64 *desc64;
struct nfe_rx_data *data;
struct nfe_jbuf *jbuf;
void **desc;
bus_addr_t physaddr;
int i, nsegs, error, descsize;
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc = (void **)&ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = (void **)&ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
ring->cur = ring->next = 0;
ring->bufsz = MCLBYTES;
error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create desc DMA map\n");
ring->map = NULL;
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not map desc DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
ring->physaddr = ring->map->dm_segs[0].ds_addr;
if (sc->sc_flags & NFE_USE_JUMBO) {
ring->bufsz = NFE_JBYTES;
if ((error = nfe_jpool_alloc(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate jumbo frames\n");
goto fail;
}
}
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
data = &sc->rxq.data[i];
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
if (sc->sc_flags & NFE_USE_JUMBO) {
if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate jumbo buffer\n");
goto fail;
}
MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
sc);
physaddr = jbuf->physaddr;
} else {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create DMA map\n");
data->map = NULL;
goto fail;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
aprint_error_dev(sc->sc_dev,
"could not allocate mbuf cluster\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load rx buf DMA map");
goto fail;
}
physaddr = data->map->dm_segs[0].ds_addr;
}
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc64 = &sc->rxq.desc64[i];
#if defined(__LP64__)
desc64->physaddr[0] = htole32(physaddr >> 32);
#endif
desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
desc64->length = htole16(sc->rxq.bufsz);
desc64->flags = htole16(NFE_RX_READY);
} else {
desc32 = &sc->rxq.desc32[i];
desc32->physaddr = htole32(physaddr);
desc32->length = htole16(sc->rxq.bufsz);
desc32->flags = htole16(NFE_RX_READY);
}
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
return 0;
fail: nfe_free_rx_ring(sc, ring);
return error;
}
void
nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
int i;
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
if (sc->sc_flags & NFE_40BIT_ADDR) {
ring->desc64[i].length = htole16(ring->bufsz);
ring->desc64[i].flags = htole16(NFE_RX_READY);
} else {
ring->desc32[i].length = htole16(ring->bufsz);
ring->desc32[i].flags = htole16(NFE_RX_READY);
}
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
ring->cur = ring->next = 0;
}
void
nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
{
struct nfe_rx_data *data;
void *desc;
int i, descsize;
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
if (desc != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
NFE_RX_RING_COUNT * descsize);
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->map != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
if (data->m != NULL)
m_freem(data->m);
}
nfe_jpool_free(sc);
}
struct nfe_jbuf *
nfe_jalloc(struct nfe_softc *sc, int i)
{
struct nfe_jbuf *jbuf;
mutex_enter(&sc->rxq.mtx);
jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
if (jbuf != NULL)
SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
mutex_exit(&sc->rxq.mtx);
if (jbuf == NULL)
return NULL;
sc->rxq.jbufmap[i] =
((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
return jbuf;
}
/*
* This is called automatically by the network stack when the mbuf is freed.
* Caution must be taken that the NIC might be reset by the time the mbuf is
* freed.
*/
void
nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
{
struct nfe_softc *sc = arg;
struct nfe_jbuf *jbuf;
int i;
/* find the jbuf from the base pointer */
i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
if (i < 0 || i >= NFE_JPOOL_COUNT) {
aprint_error_dev(sc->sc_dev,
"request to free a buffer (%p) not managed by us\n", buf);
return;
}
jbuf = &sc->rxq.jbuf[i];
/* ..and put it back in the free list */
mutex_enter(&sc->rxq.mtx);
SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
mutex_exit(&sc->rxq.mtx);
if (m != NULL)
pool_cache_put(mb_cache, m);
}
int
nfe_jpool_alloc(struct nfe_softc *sc)
{
struct nfe_rx_ring *ring = &sc->rxq;
struct nfe_jbuf *jbuf;
bus_addr_t physaddr;
char *buf;
int i, nsegs, error;
/*
* Allocate a big chunk of DMA'able memory.
*/
error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create jumbo DMA map\n");
ring->jmap = NULL;
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
&ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate jumbo DMA memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
&ring->jpool, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not map jumbo DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not load jumbo DMA map\n");
goto fail;
}
/* ..and split it into 9KB chunks */
SLIST_INIT(&ring->jfreelist);
buf = ring->jpool;
physaddr = ring->jmap->dm_segs[0].ds_addr;
for (i = 0; i < NFE_JPOOL_COUNT; i++) {
jbuf = &ring->jbuf[i];
jbuf->buf = buf;
jbuf->physaddr = physaddr;
SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
buf += NFE_JBYTES;
physaddr += NFE_JBYTES;
}
return 0;
fail: nfe_jpool_free(sc);
return error;
}
void
nfe_jpool_free(struct nfe_softc *sc)
{
struct nfe_rx_ring *ring = &sc->rxq;
if (ring->jmap != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->jmap);
bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
ring->jmap = NULL;
}
if (ring->jpool != NULL) {
bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
ring->jpool = NULL;
}
}
int
nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
int i, nsegs, error;
void **desc;
int descsize;
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc = (void **)&ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = (void **)&ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
ring->queued = 0;
ring->cur = ring->next = 0;
error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create desc DMA map\n");
ring->map = NULL;
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not map desc DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
ring->physaddr = ring->map->dm_segs[0].ds_addr;
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
&ring->data[i].map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create DMA map\n");
ring->data[i].map = NULL;
goto fail;
}
}
return 0;
fail: nfe_free_tx_ring(sc, ring);
return error;
}
void
nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
struct nfe_tx_data *data;
int i;
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
if (sc->sc_flags & NFE_40BIT_ADDR)
ring->desc64[i].flags = 0;
else
ring->desc32[i].flags = 0;
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->active, 0,
data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->active);
m_freem(data->m);
data->m = NULL;
}
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
ring->queued = 0;
ring->cur = ring->next = 0;
}
void
nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
{
struct nfe_tx_data *data;
void *desc;
int i, descsize;
if (sc->sc_flags & NFE_40BIT_ADDR) {
desc = ring->desc64;
descsize = sizeof (struct nfe_desc64);
} else {
desc = ring->desc32;
descsize = sizeof (struct nfe_desc32);
}
if (desc != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
NFE_TX_RING_COUNT * descsize);
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->active, 0,
data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->active);
m_freem(data->m);
}
}
/* ..and now actually destroy the DMA mappings */
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
data = &ring->data[i];
if (data->map == NULL)
continue;
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
}
void
nfe_setmulti(struct nfe_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
uint32_t filter = NFE_RXFILTER_MAGIC;
int i;
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
memset(addr, 0, ETHER_ADDR_LEN);
memset(mask, 0, ETHER_ADDR_LEN);
goto done;
}
memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
ifp->if_flags |= IFF_ALLMULTI;
memset(addr, 0, ETHER_ADDR_LEN);
memset(mask, 0, ETHER_ADDR_LEN);
goto done;
}
for (i = 0; i < ETHER_ADDR_LEN; i++) {
addr[i] &= enm->enm_addrlo[i];
mask[i] &= ~enm->enm_addrlo[i];
}
ETHER_NEXT_MULTI(step, enm);
}
for (i = 0; i < ETHER_ADDR_LEN; i++)
mask[i] |= addr[i];
done:
addr[0] |= 0x01; /* make sure multicast bit is set */
NFE_WRITE(sc, NFE_MULTIADDR_HI,
addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
NFE_WRITE(sc, NFE_MULTIADDR_LO,
addr[5] << 8 | addr[4]);
NFE_WRITE(sc, NFE_MULTIMASK_HI,
mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
NFE_WRITE(sc, NFE_MULTIMASK_LO,
mask[5] << 8 | mask[4]);
filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
NFE_WRITE(sc, NFE_RXFILTER, filter);
}
void
nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
{
uint32_t tmp;
if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
tmp = NFE_READ(sc, NFE_MACADDR_HI);
addr[0] = (tmp & 0xff);
addr[1] = (tmp >> 8) & 0xff;
addr[2] = (tmp >> 16) & 0xff;
addr[3] = (tmp >> 24) & 0xff;
tmp = NFE_READ(sc, NFE_MACADDR_LO);
addr[4] = (tmp & 0xff);
addr[5] = (tmp >> 8) & 0xff;
} else {
tmp = NFE_READ(sc, NFE_MACADDR_LO);
addr[0] = (tmp >> 8) & 0xff;
addr[1] = (tmp & 0xff);
tmp = NFE_READ(sc, NFE_MACADDR_HI);
addr[2] = (tmp >> 24) & 0xff;
addr[3] = (tmp >> 16) & 0xff;
addr[4] = (tmp >> 8) & 0xff;
addr[5] = (tmp & 0xff);
}
}
void
nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
{
NFE_WRITE(sc, NFE_MACADDR_LO,
addr[5] << 8 | addr[4]);
NFE_WRITE(sc, NFE_MACADDR_HI,
addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
}
void
nfe_tick(void *arg)
{
struct nfe_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_schedule(&sc->sc_tick_ch, hz);
}
void
nfe_poweron(device_t self)
{
struct nfe_softc *sc = device_private(self);
if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
DELAY(100);
NFE_WRITE(sc, NFE_MAC_RESET, 0);
DELAY(100);
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
NFE_WRITE(sc, NFE_PWR2_CTL,
NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
}
}
bool
nfe_resume(device_t dv, const pmf_qual_t *qual)
{
nfe_poweron(dv);
return true;
}