13d4fcd69b
enough, e.g. it has been initialized already by inittodr() or set explicitly before by resettodr(). This prevents the TOD clock from going way backwards when typing `halt' at the `mount root filesystem' prompt.
885 lines
22 KiB
C
885 lines
22 KiB
C
/* $NetBSD: clock.c,v 1.39 2001/01/20 13:44:30 pk Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* Copyright (c) 1994 Gordon W. Ross
|
|
* Copyright (c) 1993 Adam Glass
|
|
* Copyright (c) 1996 Paul Kranenburg
|
|
* Copyright (c) 1996
|
|
* The President and Fellows of Harvard College. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Harvard University.
|
|
* This product includes software developed by the University of
|
|
* California, Lawrence Berkeley Laboratory.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* This product includes software developed by Paul Kranenburg.
|
|
* This product includes software developed by Harvard University.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)clock.c 8.1 (Berkeley) 6/11/93
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* Clock driver. This is the id prom and eeprom driver as well
|
|
* and includes the timer register functions too.
|
|
*/
|
|
|
|
/* Define this for a 1/4s clock to ease debugging */
|
|
/* #define INTR_DEBUG */
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/device.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/systm.h>
|
|
#ifdef GPROF
|
|
#include <sys/gmon.h>
|
|
#endif
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/autoconf.h>
|
|
#include <machine/eeprom.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/idprom.h>
|
|
|
|
#include <dev/clock_subr.h>
|
|
#include <dev/ic/mk48txxreg.h>
|
|
|
|
#include <sparc64/sparc64/intreg.h>
|
|
#include <sparc64/sparc64/timerreg.h>
|
|
#include <sparc64/dev/iommureg.h>
|
|
#include <sparc64/dev/sbusreg.h>
|
|
#include <dev/sbus/sbusvar.h>
|
|
#include <sparc64/dev/ebusreg.h>
|
|
#include <sparc64/dev/ebusvar.h>
|
|
|
|
extern u_int64_t cpu_clockrate;
|
|
|
|
/*
|
|
* Statistics clock interval and variance, in usec. Variance must be a
|
|
* power of two. Since this gives us an even number, not an odd number,
|
|
* we discard one case and compensate. That is, a variance of 1024 would
|
|
* give us offsets in [0..1023]. Instead, we take offsets in [1..1023].
|
|
* This is symmetric about the point 512, or statvar/2, and thus averages
|
|
* to that value (assuming uniform random numbers).
|
|
*/
|
|
/* XXX fix comment to match value */
|
|
int statvar = 8192;
|
|
int statmin; /* statclock interval - 1/2*variance */
|
|
int timerok;
|
|
|
|
static long tick_increment;
|
|
int schedintr __P((void *));
|
|
|
|
static struct intrhand level10 = { clockintr };
|
|
static struct intrhand level0 = { tickintr };
|
|
static struct intrhand level14 = { statintr };
|
|
static struct intrhand schedint = { schedintr };
|
|
|
|
/*
|
|
* clock (eeprom) attaches at the sbus or the ebus (PCI)
|
|
*/
|
|
static int clockmatch_sbus __P((struct device *, struct cfdata *, void *));
|
|
static void clockattach_sbus __P((struct device *, struct device *, void *));
|
|
static int clockmatch_ebus __P((struct device *, struct cfdata *, void *));
|
|
static void clockattach_ebus __P((struct device *, struct device *, void *));
|
|
static void clockattach __P((int, bus_space_tag_t, bus_space_handle_t));
|
|
|
|
|
|
struct cfattach clock_sbus_ca = {
|
|
sizeof(struct device), clockmatch_sbus, clockattach_sbus
|
|
};
|
|
|
|
struct cfattach clock_ebus_ca = {
|
|
sizeof(struct device), clockmatch_ebus, clockattach_ebus
|
|
};
|
|
|
|
extern struct cfdriver clock_cd;
|
|
|
|
/* Global TOD clock handle & idprom pointer */
|
|
static todr_chip_handle_t todr_handle;
|
|
static struct idprom *idprom;
|
|
|
|
static int timermatch __P((struct device *, struct cfdata *, void *));
|
|
static void timerattach __P((struct device *, struct device *, void *));
|
|
|
|
struct timerreg_4u timerreg_4u; /* XXX - need more cleanup */
|
|
|
|
struct cfattach timer_ca = {
|
|
sizeof(struct device), timermatch, timerattach
|
|
};
|
|
|
|
int sbus_wenable __P((struct todr_chip_handle *, int));
|
|
int ebus_wenable __P((struct todr_chip_handle *, int));
|
|
struct chiptime;
|
|
void myetheraddr __P((u_char *));
|
|
int chiptotime __P((int, int, int, int, int, int));
|
|
void timetochip __P((struct chiptime *));
|
|
void stopcounter __P((struct timer_4u *));
|
|
|
|
int timerblurb = 10; /* Guess a value; used before clock is attached */
|
|
|
|
/*
|
|
* The OPENPROM calls the clock the "eeprom", so we have to have our
|
|
* own special match function to call it the "clock".
|
|
*/
|
|
static int
|
|
clockmatch_sbus(parent, cf, aux)
|
|
struct device *parent;
|
|
struct cfdata *cf;
|
|
void *aux;
|
|
{
|
|
struct sbus_attach_args *sa = aux;
|
|
|
|
return (strcmp("eeprom", sa->sa_name) == 0);
|
|
}
|
|
|
|
static int
|
|
clockmatch_ebus(parent, cf, aux)
|
|
struct device *parent;
|
|
struct cfdata *cf;
|
|
void *aux;
|
|
{
|
|
struct ebus_attach_args *ea = aux;
|
|
|
|
return (strcmp("eeprom", ea->ea_name) == 0);
|
|
}
|
|
|
|
/*
|
|
* Attach a clock (really `eeprom') to the sbus or ebus.
|
|
*
|
|
* We ignore any existing virtual address as we need to map
|
|
* this read-only and make it read-write only temporarily,
|
|
* whenever we read or write the clock chip. The clock also
|
|
* contains the ID ``PROM'', and I have already had the pleasure
|
|
* of reloading the cpu type, Ethernet address, etc, by hand from
|
|
* the console FORTH interpreter. I intend not to enjoy it again.
|
|
*
|
|
* the MK48T02 is 2K. the MK48T08 is 8K, and the MK48T59 is
|
|
* supposed to be identical to it.
|
|
*
|
|
* This is *UGLY*! We probably have multiple mappings. But I do
|
|
* know that this all fits inside an 8K page, so I'll just map in
|
|
* once.
|
|
*
|
|
* What we really need is some way to record the bus attach args
|
|
* so we can call *_bus_map() later with BUS_SPACE_MAP_READONLY
|
|
* or not to write enable/disable the device registers. This is
|
|
* a non-trivial operation.
|
|
*/
|
|
|
|
/* Somewhere to keep info that sbus_wenable() needs */
|
|
struct sbus_info {
|
|
bus_space_tag_t si_bt;
|
|
bus_space_handle_t si_bh;
|
|
struct sbus_reg si_reg;
|
|
};
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
clockattach_sbus(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
struct sbus_attach_args *sa = aux;
|
|
bus_space_tag_t bt = sa->sa_bustag;
|
|
int sz;
|
|
static struct sbus_info sbi;
|
|
|
|
/* use sa->sa_regs[0].size? */
|
|
sz = 8192;
|
|
|
|
if (sbus_bus_map(bt,
|
|
sa->sa_slot,
|
|
(sa->sa_offset & ~NBPG),
|
|
sz,
|
|
BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_READONLY,
|
|
0,
|
|
&sbi.si_bh) != 0) {
|
|
printf("%s: can't map register\n", self->dv_xname);
|
|
return;
|
|
}
|
|
clockattach(sa->sa_node, bt, sbi.si_bh);
|
|
|
|
/* Save info for the clock wenable call. */
|
|
sbi.si_bt = bt;
|
|
sbi.si_reg = sa->sa_reg[0];
|
|
todr_handle->bus_cookie = &sbi;
|
|
todr_handle->todr_setwen = sbus_wenable;
|
|
}
|
|
|
|
/*
|
|
* Write en/dis-able clock registers. We coordinate so that several
|
|
* writers can run simultaneously.
|
|
*/
|
|
int
|
|
sbus_wenable(handle, onoff)
|
|
struct todr_chip_handle *handle;
|
|
int onoff;
|
|
{
|
|
register int s, err = 0;
|
|
register int prot;/* nonzero => change prot */
|
|
static int writers;
|
|
|
|
s = splhigh();
|
|
if (onoff)
|
|
prot = writers++ == 0 ? BUS_SPACE_MAP_LINEAR : 0;
|
|
else
|
|
prot = --writers == 0 ?
|
|
BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_READONLY : 0;
|
|
splx(s);
|
|
if (prot) {
|
|
struct sbus_info *sbi = (struct sbus_info *)handle->bus_cookie;
|
|
bus_space_handle_t newaddr;
|
|
|
|
err = sbus_bus_map(sbi->si_bt, sbi->si_reg.sbr_slot,
|
|
(sbi->si_reg.sbr_offset & ~NBPG),
|
|
8192, prot, (vaddr_t)sbi->si_bh, &newaddr);
|
|
/* We can panic now or take a datafault later... */
|
|
if (sbi->si_bh != newaddr)
|
|
panic("sbus_wenable: address %p changed to %p\n",
|
|
(void *)(u_long)sbi->si_bh,
|
|
(void *)(u_long)newaddr);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
|
|
struct ebus_info {
|
|
bus_space_tag_t ei_bt;
|
|
bus_space_handle_t ei_bh;
|
|
struct ebus_regs ei_reg;
|
|
};
|
|
|
|
/* ARGSUSED */
|
|
static void
|
|
clockattach_ebus(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
struct ebus_attach_args *ea = aux;
|
|
bus_space_tag_t bt = ea->ea_bustag;
|
|
int sz;
|
|
static struct ebus_info ebi;
|
|
|
|
/* hard code to 8K? */
|
|
sz = ea->ea_regs[0].size;
|
|
|
|
if (ebus_bus_map(bt,
|
|
0,
|
|
EBUS_PADDR_FROM_REG(&ea->ea_regs[0]),
|
|
sz,
|
|
BUS_SPACE_MAP_LINEAR,
|
|
0,
|
|
&ebi.ei_bh) != 0) {
|
|
printf("%s: can't map register\n", self->dv_xname);
|
|
return;
|
|
}
|
|
clockattach(ea->ea_node, bt, ebi.ei_bh);
|
|
|
|
/* Save info for the clock wenable call. */
|
|
ebi.ei_bt = bt;
|
|
ebi.ei_reg = ea->ea_regs[0];
|
|
todr_handle->bus_cookie = &ebi;
|
|
todr_handle->todr_setwen = ebus_wenable;
|
|
}
|
|
|
|
/*
|
|
* Write en/dis-able clock registers. We coordinate so that several
|
|
* writers can run simultaneously.
|
|
*/
|
|
int
|
|
ebus_wenable(handle, onoff)
|
|
struct todr_chip_handle *handle;
|
|
int onoff;
|
|
{
|
|
register int s, err = 0;
|
|
register int prot;/* nonzero => change prot */
|
|
static int writers;
|
|
|
|
s = splhigh();
|
|
if (onoff)
|
|
prot = writers++ == 0 ? BUS_SPACE_MAP_LINEAR : 0;
|
|
else
|
|
prot = --writers == 0 ?
|
|
BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_READONLY : 0;
|
|
splx(s);
|
|
if (prot) {
|
|
struct ebus_info *ebi = (struct ebus_info *)handle->bus_cookie;
|
|
bus_space_handle_t newaddr;
|
|
|
|
err = sbus_bus_map(ebi->ei_bt, 0,
|
|
EBUS_PADDR_FROM_REG(&ebi->ei_reg), 8192, prot,
|
|
(vaddr_t)ebi->ei_bh, &newaddr);
|
|
/* We can panic now or take a datafault later... */
|
|
if (ebi->ei_bh != newaddr)
|
|
panic("ebus_wenable: address %p changed to %p\n",
|
|
(void *)(u_long)ebi->ei_bh,
|
|
(void *)(u_long)newaddr);
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
static void
|
|
clockattach(node, bt, bh)
|
|
int node;
|
|
bus_space_tag_t bt;
|
|
bus_space_handle_t bh;
|
|
{
|
|
char *model;
|
|
struct idprom *idp;
|
|
int h;
|
|
|
|
model = getpropstring(node, "model");
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (model == NULL)
|
|
panic("clockattach: no model property");
|
|
#endif
|
|
|
|
/* Our TOD clock year 0 is 1968 */
|
|
if ((todr_handle = mk48txx_attach(bt, bh, model, 1968)) == NULL)
|
|
panic("Can't attach %s tod clock", model);
|
|
|
|
#define IDPROM_OFFSET (8*1024 - 40) /* XXX - get nvram sz from driver */
|
|
idp = (struct idprom *)((u_long)bh + IDPROM_OFFSET);
|
|
|
|
h = idp->id_machine << 24;
|
|
h |= idp->id_hostid[0] << 16;
|
|
h |= idp->id_hostid[1] << 8;
|
|
h |= idp->id_hostid[2];
|
|
hostid = h;
|
|
printf(": hostid %x\n", (u_int)hostid);
|
|
|
|
idprom = idp;
|
|
}
|
|
|
|
/*
|
|
* The sun4u OPENPROMs call the timer the "counter-timer", except for
|
|
* the lame UltraSPARC IIi PCI machines that don't have them.
|
|
*/
|
|
static int
|
|
timermatch(parent, cf, aux)
|
|
struct device *parent;
|
|
struct cfdata *cf;
|
|
void *aux;
|
|
{
|
|
struct mainbus_attach_args *ma = aux;
|
|
|
|
return (strcmp("counter-timer", ma->ma_name) == 0);
|
|
}
|
|
|
|
static void
|
|
timerattach(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
struct mainbus_attach_args *ma = aux;
|
|
u_int *va = ma->ma_address;
|
|
#if 0
|
|
volatile int64_t *cnt = NULL, *lim = NULL;
|
|
#endif
|
|
|
|
/*
|
|
* What we should have are 3 sets of registers that reside on
|
|
* different parts of SYSIO or PSYCHO. We'll use the prom
|
|
* mappings cause we can't get rid of them and set up appropriate
|
|
* pointers on the timerreg_4u structure.
|
|
*/
|
|
timerreg_4u.t_timer = (struct timer_4u *)(u_long)va[0];
|
|
timerreg_4u.t_clrintr = (int64_t *)(u_long)va[1];
|
|
timerreg_4u.t_mapintr = (int64_t *)(u_long)va[2];
|
|
|
|
/* Install the appropriate interrupt vector here */
|
|
level10.ih_number = ma->ma_interrupts[0];
|
|
level10.ih_clr = (void*)&timerreg_4u.t_clrintr[0];
|
|
intr_establish(10, &level10);
|
|
level14.ih_number = ma->ma_interrupts[1];
|
|
level14.ih_clr = (void*)&timerreg_4u.t_clrintr[1];
|
|
|
|
intr_establish(14, &level14);
|
|
printf(" irq vectors %lx and %lx",
|
|
(u_long)level10.ih_number,
|
|
(u_long)level14.ih_number);
|
|
|
|
#if 0
|
|
cnt = &(timerreg_4u.t_timer[0].t_count);
|
|
lim = &(timerreg_4u.t_timer[0].t_limit);
|
|
|
|
/*
|
|
* Calibrate delay() by tweaking the magic constant
|
|
* until a delay(100) actually reads (at least) 100 us
|
|
* on the clock. Since we're using the %tick register
|
|
* which should be running at exactly the CPU clock rate, it
|
|
* has a period of somewhere between 7ns and 3ns.
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
printf("Delay calibrarion....\n");
|
|
#endif
|
|
for (timerblurb = 1; timerblurb > 0; timerblurb++) {
|
|
volatile int discard;
|
|
register int t0, t1;
|
|
|
|
/* Reset counter register by writing some large limit value */
|
|
discard = *lim;
|
|
*lim = tmr_ustolim(TMR_MASK-1);
|
|
|
|
t0 = *cnt;
|
|
delay(100);
|
|
t1 = *cnt;
|
|
|
|
if (t1 & TMR_LIMIT)
|
|
panic("delay calibration");
|
|
|
|
t0 = (t0 >> TMR_SHIFT) & TMR_MASK;
|
|
t1 = (t1 >> TMR_SHIFT) & TMR_MASK;
|
|
|
|
if (t1 >= t0 + 100)
|
|
break;
|
|
}
|
|
|
|
printf(" delay constant %d\n", timerblurb);
|
|
#endif
|
|
printf("\n");
|
|
timerok = 1;
|
|
}
|
|
|
|
void
|
|
stopcounter(creg)
|
|
struct timer_4u *creg;
|
|
{
|
|
/* Stop the clock */
|
|
volatile int discard;
|
|
discard = creg->t_limit;
|
|
creg->t_limit = 0;
|
|
}
|
|
|
|
/*
|
|
* XXX this belongs elsewhere
|
|
*/
|
|
void
|
|
myetheraddr(cp)
|
|
u_char *cp;
|
|
{
|
|
struct idprom *idp;
|
|
|
|
if ((idp = idprom) == NULL) {
|
|
int node, n;
|
|
|
|
node = findroot();
|
|
if (getprop(node, "idprom", sizeof *idp, &n, (void **)&idp) ||
|
|
n != 1) {
|
|
printf("\nmyetheraddr: clock not setup yet, "
|
|
"and no idprom property in /\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
cp[0] = idp->id_ether[0];
|
|
cp[1] = idp->id_ether[1];
|
|
cp[2] = idp->id_ether[2];
|
|
cp[3] = idp->id_ether[3];
|
|
cp[4] = idp->id_ether[4];
|
|
cp[5] = idp->id_ether[5];
|
|
if (idprom == NULL)
|
|
free(idp, M_DEVBUF);
|
|
}
|
|
|
|
/*
|
|
* Set up the real-time and statistics clocks. Leave stathz 0 only if
|
|
* no alternative timer is available.
|
|
*
|
|
* The frequencies of these clocks must be an even number of microseconds.
|
|
*/
|
|
void
|
|
cpu_initclocks()
|
|
{
|
|
int statint, minint;
|
|
static u_int64_t start_time;
|
|
#ifdef DEBUG
|
|
extern int intrdebug;
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
/* Set a 1s clock */
|
|
if (intrdebug) {
|
|
hz = 1;
|
|
tick = 1000000 / hz;
|
|
printf("intrdebug set: 1Hz clock\n");
|
|
}
|
|
#endif
|
|
|
|
if (1000000 % hz) {
|
|
printf("cannot get %d Hz clock; using 100 Hz\n", hz);
|
|
hz = 100;
|
|
tick = 1000000 / hz;
|
|
}
|
|
|
|
/* Make sure we have a sane cpu_clockrate -- we'll need it */
|
|
if (!cpu_clockrate)
|
|
/* Default to 200MHz clock XXXXX */
|
|
cpu_clockrate = 200000000;
|
|
|
|
/*
|
|
* Calculate the starting %tick value. We set that to the same
|
|
* as time, scaled for the CPU clockrate. This gets nasty, but
|
|
* we can handle it. time.tv_usec is in microseconds.
|
|
* cpu_clockrate is in MHz.
|
|
*/
|
|
start_time = time.tv_sec * cpu_clockrate;
|
|
/* Now fine tune the usecs */
|
|
start_time += cpu_clockrate / 1000000 * time.tv_usec;
|
|
|
|
/* Initialize the %tick register */
|
|
#ifdef __arch64__
|
|
__asm __volatile("wrpr %0, 0, %%tick" : : "r" (start_time));
|
|
#else
|
|
{
|
|
int start_hi = (start_time>>32), start_lo = start_time;
|
|
__asm __volatile("sllx %1,32,%0; or %0,%2,%0; wrpr %0, 0, %%tick"
|
|
: "=&r" (start_hi) /* scratch register */
|
|
: "r" ((int)(start_hi)), "r" ((int)(start_lo)));
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Now handle machines w/o counter-timers.
|
|
*/
|
|
|
|
if (!timerreg_4u.t_timer || !timerreg_4u.t_clrintr) {
|
|
|
|
printf("No counter-timer -- using %%tick at %ldMHz as system clock.\n",
|
|
(long)(cpu_clockrate/1000000));
|
|
/* We don't have a counter-timer -- use %tick */
|
|
level0.ih_clr = 0;
|
|
/*
|
|
* Establish a level 10 interrupt handler
|
|
*
|
|
* We will have a conflict with the softint handler,
|
|
* so we set the ih_number to 1.
|
|
*/
|
|
level0.ih_number = 1;
|
|
intr_establish(10, &level0);
|
|
/* We only have one timer so we have no statclock */
|
|
stathz = 0;
|
|
|
|
/* set the next interrupt time */
|
|
tick_increment = cpu_clockrate / hz;
|
|
#ifdef DEBUG
|
|
printf("Using %%tick -- intr in %ld cycles...", tick_increment);
|
|
#endif
|
|
next_tick(tick_increment);
|
|
#ifdef DEBUG
|
|
printf("done.\n");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
if (stathz == 0)
|
|
stathz = hz;
|
|
if (1000000 % stathz) {
|
|
printf("cannot get %d Hz statclock; using 100 Hz\n", stathz);
|
|
stathz = 100;
|
|
}
|
|
|
|
profhz = stathz; /* always */
|
|
|
|
statint = 1000000 / stathz;
|
|
minint = statint / 2 + 100;
|
|
while (statvar > minint)
|
|
statvar >>= 1;
|
|
|
|
/*
|
|
* Establish scheduler softint.
|
|
*/
|
|
schedint.ih_pil = PIL_SCHED;
|
|
schedint.ih_clr = NULL;
|
|
schedint.ih_arg = 0;
|
|
schedint.ih_pending = 0;
|
|
schedhz = stathz/4;
|
|
|
|
/*
|
|
* Enable timers
|
|
*
|
|
* Also need to map the interrupts cause we're not a child of the sbus.
|
|
* N.B. By default timer[0] is disabled and timer[1] is enabled.
|
|
*/
|
|
stxa((vaddr_t)&timerreg_4u.t_timer[0].t_limit, ASI_NUCLEUS,
|
|
tmr_ustolim(tick)|TMR_LIM_IEN|TMR_LIM_PERIODIC|TMR_LIM_RELOAD);
|
|
stxa((vaddr_t)&timerreg_4u.t_mapintr[0], ASI_NUCLEUS,
|
|
timerreg_4u.t_mapintr[0]|INTMAP_V);
|
|
|
|
#ifdef DEBUG
|
|
if (intrdebug)
|
|
/* Neglect to enable timer */
|
|
stxa((vaddr_t)&timerreg_4u.t_timer[1].t_limit, ASI_NUCLEUS,
|
|
tmr_ustolim(statint)|TMR_LIM_RELOAD);
|
|
else
|
|
#endif
|
|
stxa((vaddr_t)&timerreg_4u.t_timer[1].t_limit, ASI_NUCLEUS,
|
|
tmr_ustolim(statint)|TMR_LIM_IEN|TMR_LIM_RELOAD);
|
|
stxa((vaddr_t)&timerreg_4u.t_mapintr[1], ASI_NUCLEUS,
|
|
timerreg_4u.t_mapintr[1]|INTMAP_V);
|
|
|
|
statmin = statint - (statvar >> 1);
|
|
|
|
}
|
|
|
|
/*
|
|
* Dummy setstatclockrate(), since we know profhz==hz.
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
setstatclockrate(newhz)
|
|
int newhz;
|
|
{
|
|
/* nothing */
|
|
}
|
|
|
|
/*
|
|
* Level 10 (clock) interrupts. If we are using the FORTH PROM for
|
|
* console input, we need to check for that here as well, and generate
|
|
* a software interrupt to read it.
|
|
*/
|
|
#ifdef DEBUG
|
|
static int clockcheck = 0;
|
|
#endif
|
|
int
|
|
clockintr(cap)
|
|
void *cap;
|
|
{
|
|
#ifdef DEBUG
|
|
static int64_t tick_base = 0;
|
|
int64_t t = (u_int64_t)tick();
|
|
|
|
if (!tick_base) {
|
|
tick_base = (time.tv_sec * 1000000LL + time.tv_usec)
|
|
* 1000000LL / cpu_clockrate;
|
|
tick_base -= t;
|
|
} else if (clockcheck) {
|
|
int64_t tk = t;
|
|
int64_t clk = (time.tv_sec * 1000000LL + time.tv_usec);
|
|
t -= tick_base;
|
|
t = t * 1000000LL / cpu_clockrate;
|
|
if (t - clk > hz) {
|
|
printf("Clock lost an interrupt!\n");
|
|
printf("Actual: %llx Expected: %llx tick %llx tick_base %llx\n",
|
|
(long long)t, (long long)clk, (long long)tk, (long long)tick_base);
|
|
Debugger();
|
|
tick_base = 0;
|
|
}
|
|
}
|
|
#endif
|
|
/* Let locore.s clear the interrupt for us. */
|
|
hardclock((struct clockframe *)cap);
|
|
return (1);
|
|
}
|
|
|
|
int poll_console = 0;
|
|
|
|
/*
|
|
* Level 10 (clock) interrupts. If we are using the FORTH PROM for
|
|
* console input, we need to check for that here as well, and generate
|
|
* a software interrupt to read it.
|
|
*
|
|
* %tick is really a level-14 interrupt. We need to remap this in
|
|
* locore.s to a level 10.
|
|
*/
|
|
int
|
|
tickintr(cap)
|
|
void *cap;
|
|
{
|
|
int s;
|
|
|
|
#if NKBD > 0
|
|
extern int cnrom __P((void));
|
|
extern int rom_console_input;
|
|
#endif
|
|
|
|
hardclock((struct clockframe *)cap);
|
|
if (poll_console)
|
|
setsoftint();
|
|
|
|
s = splhigh();
|
|
/* Reset the interrupt */
|
|
next_tick(tick_increment);
|
|
splx(s);
|
|
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Level 14 (stat clock) interrupt handler.
|
|
*/
|
|
int
|
|
statintr(cap)
|
|
void *cap;
|
|
{
|
|
register u_long newint, r, var;
|
|
struct cpu_info *ci = curcpu();
|
|
|
|
#ifdef NOT_DEBUG
|
|
printf("statclock: count %x:%x, limit %x:%x\n",
|
|
timerreg_4u.t_timer[1].t_count, timerreg_4u.t_timer[1].t_limit);
|
|
#endif
|
|
#ifdef NOT_DEBUG
|
|
prom_printf("!");
|
|
#endif
|
|
statclock((struct clockframe *)cap);
|
|
#ifdef NOTDEF_DEBUG
|
|
/* Don't re-schedule the IRQ */
|
|
return 1;
|
|
#endif
|
|
/*
|
|
* Compute new randomized interval. The intervals are uniformly
|
|
* distributed on [statint - statvar / 2, statint + statvar / 2],
|
|
* and therefore have mean statint, giving a stathz frequency clock.
|
|
*/
|
|
var = statvar;
|
|
do {
|
|
r = random() & (var - 1);
|
|
} while (r == 0);
|
|
newint = statmin + r;
|
|
|
|
if (schedhz)
|
|
if ((++ci->ci_schedstate.spc_schedticks & 3) == 0)
|
|
send_softint(-1, PIL_SCHED, &schedint);
|
|
stxa((vaddr_t)&timerreg_4u.t_timer[1].t_limit, ASI_NUCLEUS,
|
|
tmr_ustolim(newint)|TMR_LIM_IEN|TMR_LIM_RELOAD);
|
|
return (1);
|
|
}
|
|
|
|
int
|
|
schedintr(arg)
|
|
void *arg;
|
|
{
|
|
if (curproc)
|
|
schedclock(curproc);
|
|
return (1);
|
|
}
|
|
|
|
|
|
/*
|
|
* `sparc_clock_time_is_ok' is used in cpu_reboot() to determine
|
|
* whether it is appropriate to call resettodr() to consolidate
|
|
* pending time adjustments.
|
|
*/
|
|
int sparc_clock_time_is_ok;
|
|
|
|
/*
|
|
* Set up the system's time, given a `reasonable' time value.
|
|
*/
|
|
void
|
|
inittodr(base)
|
|
time_t base;
|
|
{
|
|
int badbase = 0, waszero = base == 0;
|
|
|
|
if (base < 5 * SECYR) {
|
|
/*
|
|
* If base is 0, assume filesystem time is just unknown
|
|
* in stead of preposterous. Don't bark.
|
|
*/
|
|
if (base != 0)
|
|
printf("WARNING: preposterous time in file system\n");
|
|
/* not going to use it anyway, if the chip is readable */
|
|
base = 21*SECYR + 186*SECDAY + SECDAY/2;
|
|
badbase = 1;
|
|
}
|
|
|
|
if (todr_gettime(todr_handle, (struct timeval *)&time) != 0 ||
|
|
time.tv_sec == 0) {
|
|
printf("WARNING: bad date in battery clock");
|
|
/*
|
|
* Believe the time in the file system for lack of
|
|
* anything better, resetting the clock.
|
|
*/
|
|
time.tv_sec = base;
|
|
if (!badbase)
|
|
resettodr();
|
|
} else {
|
|
int deltat = time.tv_sec - base;
|
|
|
|
sparc_clock_time_is_ok = 1;
|
|
|
|
if (deltat < 0)
|
|
deltat = -deltat;
|
|
if (waszero || deltat < 2 * SECDAY)
|
|
return;
|
|
printf("WARNING: clock %s %d days",
|
|
time.tv_sec < base ? "lost" : "gained", deltat / SECDAY);
|
|
}
|
|
printf(" -- CHECK AND RESET THE DATE!\n");
|
|
}
|
|
|
|
/*
|
|
* Reset the clock based on the current time.
|
|
* Used when the current clock is preposterous, when the time is changed,
|
|
* and when rebooting. Do nothing if the time is not yet known, e.g.,
|
|
* when crashing during autoconfig.
|
|
*/
|
|
void
|
|
resettodr()
|
|
{
|
|
|
|
if (time.tv_sec == 0)
|
|
return;
|
|
|
|
sparc_clock_time_is_ok = 1;
|
|
if (todr_settime(todr_handle, (struct timeval *)&time) != 0)
|
|
printf("Cannot set time in time-of-day clock\n");
|
|
}
|
|
|
|
/*
|
|
* XXX: these may actually belong somewhere else, but since the
|
|
* EEPROM is so closely tied to the clock on some models, perhaps
|
|
* it needs to stay here...
|
|
*/
|
|
int
|
|
eeprom_uio(uio)
|
|
struct uio *uio;
|
|
{
|
|
return (ENODEV);
|
|
}
|