1516 lines
38 KiB
C
1516 lines
38 KiB
C
/* $NetBSD: kern_proc.c,v 1.114 2007/08/10 21:50:48 dyoung Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2006, 2007 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center, and by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_proc.c 8.7 (Berkeley) 2/14/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_proc.c,v 1.114 2007/08/10 21:50:48 dyoung Exp $");
|
|
|
|
#include "opt_kstack.h"
|
|
#include "opt_maxuprc.h"
|
|
#include "opt_multiprocessor.h"
|
|
#include "opt_lockdebug.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/acct.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/file.h>
|
|
#include <ufs/ufs/quota.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/ras.h>
|
|
#include <sys/filedesc.h>
|
|
#include "sys/syscall_stats.h"
|
|
#include <sys/kauth.h>
|
|
#include <sys/sleepq.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
/*
|
|
* Other process lists
|
|
*/
|
|
|
|
struct proclist allproc;
|
|
struct proclist zombproc; /* resources have been freed */
|
|
|
|
/*
|
|
* There are two locks on global process state.
|
|
*
|
|
* 1. proclist_lock is an adaptive mutex and is used when modifying
|
|
* or examining process state from a process context. It protects
|
|
* the internal tables, all of the process lists, and a number of
|
|
* members of struct proc.
|
|
*
|
|
* 2. proclist_mutex is used when allproc must be traversed from an
|
|
* interrupt context, or when changing the state of processes. The
|
|
* proclist_lock should always be used in preference. In some cases,
|
|
* both locks need to be held.
|
|
*
|
|
* proclist_lock proclist_mutex structure
|
|
* --------------- --------------- -----------------
|
|
* x zombproc
|
|
* x x pid_table
|
|
* x proc::p_pptr
|
|
* x proc::p_sibling
|
|
* x proc::p_children
|
|
* x x allproc
|
|
* x x proc::p_pgrp
|
|
* x x proc::p_pglist
|
|
* x x proc::p_session
|
|
* x x proc::p_list
|
|
* x alllwp
|
|
* x lwp::l_list
|
|
*
|
|
* The lock order for processes and LWPs is approximately as following:
|
|
*
|
|
* kernel_lock
|
|
* -> proclist_lock
|
|
* -> proc::p_mutex
|
|
* -> proclist_mutex
|
|
* -> proc::p_smutex
|
|
* -> proc::p_stmutex
|
|
*
|
|
* XXX p_smutex can be run at IPL_VM once audio drivers on the x86
|
|
* platform are made MP safe. Currently it blocks interrupts at
|
|
* IPL_SCHED and below.
|
|
*
|
|
* XXX The two process locks (p_smutex + p_mutex), and the two global
|
|
* state locks (proclist_lock + proclist_mutex) should be merged
|
|
* together. However, to do so requires interrupts that interrupts
|
|
* be run with LWP context.
|
|
*/
|
|
kmutex_t proclist_lock;
|
|
kmutex_t proclist_mutex;
|
|
|
|
/*
|
|
* pid to proc lookup is done by indexing the pid_table array.
|
|
* Since pid numbers are only allocated when an empty slot
|
|
* has been found, there is no need to search any lists ever.
|
|
* (an orphaned pgrp will lock the slot, a session will lock
|
|
* the pgrp with the same number.)
|
|
* If the table is too small it is reallocated with twice the
|
|
* previous size and the entries 'unzipped' into the two halves.
|
|
* A linked list of free entries is passed through the pt_proc
|
|
* field of 'free' items - set odd to be an invalid ptr.
|
|
*/
|
|
|
|
struct pid_table {
|
|
struct proc *pt_proc;
|
|
struct pgrp *pt_pgrp;
|
|
};
|
|
#if 1 /* strongly typed cast - should be a noop */
|
|
static inline uint p2u(struct proc *p) { return (uint)(uintptr_t)p; }
|
|
#else
|
|
#define p2u(p) ((uint)p)
|
|
#endif
|
|
#define P_VALID(p) (!(p2u(p) & 1))
|
|
#define P_NEXT(p) (p2u(p) >> 1)
|
|
#define P_FREE(pid) ((struct proc *)(uintptr_t)((pid) << 1 | 1))
|
|
|
|
#define INITIAL_PID_TABLE_SIZE (1 << 5)
|
|
static struct pid_table *pid_table;
|
|
static uint pid_tbl_mask = INITIAL_PID_TABLE_SIZE - 1;
|
|
static uint pid_alloc_lim; /* max we allocate before growing table */
|
|
static uint pid_alloc_cnt; /* number of allocated pids */
|
|
|
|
/* links through free slots - never empty! */
|
|
static uint next_free_pt, last_free_pt;
|
|
static pid_t pid_max = PID_MAX; /* largest value we allocate */
|
|
|
|
/* Components of the first process -- never freed. */
|
|
struct session session0;
|
|
struct pgrp pgrp0;
|
|
struct proc proc0;
|
|
struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT);
|
|
kauth_cred_t cred0;
|
|
struct filedesc0 filedesc0;
|
|
struct cwdinfo cwdi0;
|
|
struct plimit limit0;
|
|
struct pstats pstat0;
|
|
struct vmspace vmspace0;
|
|
struct sigacts sigacts0;
|
|
struct turnstile turnstile0;
|
|
|
|
extern struct user *proc0paddr;
|
|
|
|
extern const struct emul emul_netbsd; /* defined in kern_exec.c */
|
|
|
|
int nofile = NOFILE;
|
|
int maxuprc = MAXUPRC;
|
|
int cmask = CMASK;
|
|
|
|
POOL_INIT(proc_pool, sizeof(struct proc), 0, 0, 0, "procpl",
|
|
&pool_allocator_nointr, IPL_NONE);
|
|
POOL_INIT(pgrp_pool, sizeof(struct pgrp), 0, 0, 0, "pgrppl",
|
|
&pool_allocator_nointr, IPL_NONE);
|
|
POOL_INIT(plimit_pool, sizeof(struct plimit), 0, 0, 0, "plimitpl",
|
|
&pool_allocator_nointr, IPL_NONE);
|
|
POOL_INIT(pstats_pool, sizeof(struct pstats), 0, 0, 0, "pstatspl",
|
|
&pool_allocator_nointr, IPL_NONE);
|
|
POOL_INIT(session_pool, sizeof(struct session), 0, 0, 0, "sessionpl",
|
|
&pool_allocator_nointr, IPL_NONE);
|
|
|
|
MALLOC_DEFINE(M_EMULDATA, "emuldata", "Per-process emulation data");
|
|
MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
|
|
MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
|
|
|
|
/*
|
|
* The process list descriptors, used during pid allocation and
|
|
* by sysctl. No locking on this data structure is needed since
|
|
* it is completely static.
|
|
*/
|
|
const struct proclist_desc proclists[] = {
|
|
{ &allproc },
|
|
{ &zombproc },
|
|
{ NULL },
|
|
};
|
|
|
|
static void orphanpg(struct pgrp *);
|
|
static void pg_delete(pid_t);
|
|
|
|
static specificdata_domain_t proc_specificdata_domain;
|
|
|
|
/*
|
|
* Initialize global process hashing structures.
|
|
*/
|
|
void
|
|
procinit(void)
|
|
{
|
|
const struct proclist_desc *pd;
|
|
int i;
|
|
#define LINK_EMPTY ((PID_MAX + INITIAL_PID_TABLE_SIZE) & ~(INITIAL_PID_TABLE_SIZE - 1))
|
|
|
|
for (pd = proclists; pd->pd_list != NULL; pd++)
|
|
LIST_INIT(pd->pd_list);
|
|
|
|
mutex_init(&proclist_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
mutex_init(&proclist_mutex, MUTEX_SPIN, IPL_SCHED);
|
|
|
|
pid_table = malloc(INITIAL_PID_TABLE_SIZE * sizeof *pid_table,
|
|
M_PROC, M_WAITOK);
|
|
/* Set free list running through table...
|
|
Preset 'use count' above PID_MAX so we allocate pid 1 next. */
|
|
for (i = 0; i <= pid_tbl_mask; i++) {
|
|
pid_table[i].pt_proc = P_FREE(LINK_EMPTY + i + 1);
|
|
pid_table[i].pt_pgrp = 0;
|
|
}
|
|
/* slot 0 is just grabbed */
|
|
next_free_pt = 1;
|
|
/* Need to fix last entry. */
|
|
last_free_pt = pid_tbl_mask;
|
|
pid_table[last_free_pt].pt_proc = P_FREE(LINK_EMPTY);
|
|
/* point at which we grow table - to avoid reusing pids too often */
|
|
pid_alloc_lim = pid_tbl_mask - 1;
|
|
#undef LINK_EMPTY
|
|
|
|
LIST_INIT(&alllwp);
|
|
|
|
uihashtbl =
|
|
hashinit(maxproc / 16, HASH_LIST, M_PROC, M_WAITOK, &uihash);
|
|
|
|
proc_specificdata_domain = specificdata_domain_create();
|
|
KASSERT(proc_specificdata_domain != NULL);
|
|
}
|
|
|
|
/*
|
|
* Initialize process 0.
|
|
*/
|
|
void
|
|
proc0_init(void)
|
|
{
|
|
struct proc *p;
|
|
struct pgrp *pg;
|
|
struct session *sess;
|
|
struct lwp *l;
|
|
u_int i;
|
|
rlim_t lim;
|
|
|
|
p = &proc0;
|
|
pg = &pgrp0;
|
|
sess = &session0;
|
|
l = &lwp0;
|
|
|
|
/*
|
|
* XXX p_rasmutex is run at IPL_SCHED, because of lock order
|
|
* issues (kernel_lock -> p_rasmutex). Ideally ras_lookup
|
|
* should operate "lock free".
|
|
*/
|
|
mutex_init(&p->p_smutex, MUTEX_SPIN, IPL_SCHED);
|
|
mutex_init(&p->p_stmutex, MUTEX_SPIN, IPL_HIGH);
|
|
mutex_init(&p->p_rasmutex, MUTEX_SPIN, IPL_SCHED);
|
|
mutex_init(&p->p_mutex, MUTEX_DEFAULT, IPL_NONE);
|
|
mutex_init(&l->l_swaplock, MUTEX_DEFAULT, IPL_NONE);
|
|
|
|
cv_init(&p->p_refcv, "drainref");
|
|
cv_init(&p->p_waitcv, "wait");
|
|
cv_init(&p->p_lwpcv, "lwpwait");
|
|
|
|
LIST_INIT(&p->p_lwps);
|
|
LIST_INIT(&p->p_sigwaiters);
|
|
LIST_INSERT_HEAD(&p->p_lwps, l, l_sibling);
|
|
|
|
p->p_nlwps = 1;
|
|
p->p_nrlwps = 1;
|
|
p->p_nlwpid = l->l_lid;
|
|
p->p_refcnt = 1;
|
|
|
|
pid_table[0].pt_proc = p;
|
|
LIST_INSERT_HEAD(&allproc, p, p_list);
|
|
LIST_INSERT_HEAD(&alllwp, l, l_list);
|
|
|
|
p->p_pgrp = pg;
|
|
pid_table[0].pt_pgrp = pg;
|
|
LIST_INIT(&pg->pg_members);
|
|
LIST_INSERT_HEAD(&pg->pg_members, p, p_pglist);
|
|
|
|
pg->pg_session = sess;
|
|
sess->s_count = 1;
|
|
sess->s_sid = 0;
|
|
sess->s_leader = p;
|
|
|
|
/*
|
|
* Set P_NOCLDWAIT so that kernel threads are reparented to
|
|
* init(8) when they exit. init(8) can easily wait them out
|
|
* for us.
|
|
*/
|
|
p->p_flag = PK_SYSTEM | PK_NOCLDWAIT;
|
|
p->p_stat = SACTIVE;
|
|
p->p_nice = NZERO;
|
|
p->p_emul = &emul_netbsd;
|
|
#ifdef __HAVE_SYSCALL_INTERN
|
|
(*p->p_emul->e_syscall_intern)(p);
|
|
#endif
|
|
strlcpy(p->p_comm, "system", sizeof(p->p_comm));
|
|
|
|
l->l_flag = LW_INMEM | LW_SYSTEM;
|
|
l->l_stat = LSONPROC;
|
|
l->l_ts = &turnstile0;
|
|
l->l_syncobj = &sched_syncobj;
|
|
l->l_refcnt = 1;
|
|
l->l_cpu = curcpu();
|
|
l->l_priority = PRIBIO;
|
|
l->l_usrpri = PRIBIO;
|
|
l->l_inheritedprio = MAXPRI;
|
|
SLIST_INIT(&l->l_pi_lenders);
|
|
l->l_name = __UNCONST("swapper");
|
|
|
|
callout_init(&l->l_tsleep_ch, 0);
|
|
cv_init(&l->l_sigcv, "sigwait");
|
|
|
|
/* Create credentials. */
|
|
cred0 = kauth_cred_alloc();
|
|
p->p_cred = cred0;
|
|
kauth_cred_hold(cred0);
|
|
l->l_cred = cred0;
|
|
|
|
/* Create the CWD info. */
|
|
p->p_cwdi = &cwdi0;
|
|
cwdi0.cwdi_cmask = cmask;
|
|
cwdi0.cwdi_refcnt = 1;
|
|
rw_init(&cwdi0.cwdi_lock);
|
|
|
|
/* Create the limits structures. */
|
|
p->p_limit = &limit0;
|
|
mutex_init(&limit0.p_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
for (i = 0; i < sizeof(p->p_rlimit)/sizeof(p->p_rlimit[0]); i++)
|
|
limit0.pl_rlimit[i].rlim_cur =
|
|
limit0.pl_rlimit[i].rlim_max = RLIM_INFINITY;
|
|
|
|
limit0.pl_rlimit[RLIMIT_NOFILE].rlim_max = maxfiles;
|
|
limit0.pl_rlimit[RLIMIT_NOFILE].rlim_cur =
|
|
maxfiles < nofile ? maxfiles : nofile;
|
|
|
|
limit0.pl_rlimit[RLIMIT_NPROC].rlim_max = maxproc;
|
|
limit0.pl_rlimit[RLIMIT_NPROC].rlim_cur =
|
|
maxproc < maxuprc ? maxproc : maxuprc;
|
|
|
|
lim = ptoa(uvmexp.free);
|
|
limit0.pl_rlimit[RLIMIT_RSS].rlim_max = lim;
|
|
limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_max = lim;
|
|
limit0.pl_rlimit[RLIMIT_MEMLOCK].rlim_cur = lim / 3;
|
|
limit0.pl_corename = defcorename;
|
|
limit0.p_refcnt = 1;
|
|
|
|
/* Configure virtual memory system, set vm rlimits. */
|
|
uvm_init_limits(p);
|
|
|
|
/* Initialize file descriptor table for proc0. */
|
|
p->p_fd = &filedesc0.fd_fd;
|
|
fdinit1(&filedesc0);
|
|
|
|
/*
|
|
* Initialize proc0's vmspace, which uses the kernel pmap.
|
|
* All kernel processes (which never have user space mappings)
|
|
* share proc0's vmspace, and thus, the kernel pmap.
|
|
*/
|
|
uvmspace_init(&vmspace0, pmap_kernel(), round_page(VM_MIN_ADDRESS),
|
|
trunc_page(VM_MAX_ADDRESS));
|
|
p->p_vmspace = &vmspace0;
|
|
|
|
l->l_addr = proc0paddr; /* XXX */
|
|
|
|
p->p_stats = &pstat0;
|
|
|
|
/* Initialize signal state for proc0. */
|
|
p->p_sigacts = &sigacts0;
|
|
mutex_init(&p->p_sigacts->sa_mutex, MUTEX_SPIN, IPL_NONE);
|
|
siginit(p);
|
|
|
|
proc_initspecific(p);
|
|
lwp_initspecific(l);
|
|
|
|
SYSCALL_TIME_LWP_INIT(l);
|
|
}
|
|
|
|
/*
|
|
* Check that the specified process group is in the session of the
|
|
* specified process.
|
|
* Treats -ve ids as process ids.
|
|
* Used to validate TIOCSPGRP requests.
|
|
*/
|
|
int
|
|
pgid_in_session(struct proc *p, pid_t pg_id)
|
|
{
|
|
struct pgrp *pgrp;
|
|
struct session *session;
|
|
int error;
|
|
|
|
mutex_enter(&proclist_lock);
|
|
if (pg_id < 0) {
|
|
struct proc *p1 = p_find(-pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
|
|
if (p1 == NULL)
|
|
return EINVAL;
|
|
pgrp = p1->p_pgrp;
|
|
} else {
|
|
pgrp = pg_find(pg_id, PFIND_LOCKED | PFIND_UNLOCK_FAIL);
|
|
if (pgrp == NULL)
|
|
return EINVAL;
|
|
}
|
|
session = pgrp->pg_session;
|
|
if (session != p->p_pgrp->pg_session)
|
|
error = EPERM;
|
|
else
|
|
error = 0;
|
|
mutex_exit(&proclist_lock);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Is p an inferior of q?
|
|
*
|
|
* Call with the proclist_lock held.
|
|
*/
|
|
int
|
|
inferior(struct proc *p, struct proc *q)
|
|
{
|
|
|
|
for (; p != q; p = p->p_pptr)
|
|
if (p->p_pid == 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Locate a process by number
|
|
*/
|
|
struct proc *
|
|
p_find(pid_t pid, uint flags)
|
|
{
|
|
struct proc *p;
|
|
char stat;
|
|
|
|
if (!(flags & PFIND_LOCKED))
|
|
mutex_enter(&proclist_lock);
|
|
|
|
p = pid_table[pid & pid_tbl_mask].pt_proc;
|
|
|
|
/* Only allow live processes to be found by pid. */
|
|
/* XXXSMP p_stat */
|
|
if (P_VALID(p) && p->p_pid == pid && ((stat = p->p_stat) == SACTIVE ||
|
|
stat == SSTOP || ((flags & PFIND_ZOMBIE) &&
|
|
(stat == SZOMB || stat == SDEAD || stat == SDYING)))) {
|
|
if (flags & PFIND_UNLOCK_OK)
|
|
mutex_exit(&proclist_lock);
|
|
return p;
|
|
}
|
|
if (flags & PFIND_UNLOCK_FAIL)
|
|
mutex_exit(&proclist_lock);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* Locate a process group by number
|
|
*/
|
|
struct pgrp *
|
|
pg_find(pid_t pgid, uint flags)
|
|
{
|
|
struct pgrp *pg;
|
|
|
|
if (!(flags & PFIND_LOCKED))
|
|
mutex_enter(&proclist_lock);
|
|
pg = pid_table[pgid & pid_tbl_mask].pt_pgrp;
|
|
/*
|
|
* Can't look up a pgrp that only exists because the session
|
|
* hasn't died yet (traditional)
|
|
*/
|
|
if (pg == NULL || pg->pg_id != pgid || LIST_EMPTY(&pg->pg_members)) {
|
|
if (flags & PFIND_UNLOCK_FAIL)
|
|
mutex_exit(&proclist_lock);
|
|
return NULL;
|
|
}
|
|
|
|
if (flags & PFIND_UNLOCK_OK)
|
|
mutex_exit(&proclist_lock);
|
|
return pg;
|
|
}
|
|
|
|
static void
|
|
expand_pid_table(void)
|
|
{
|
|
uint pt_size = pid_tbl_mask + 1;
|
|
struct pid_table *n_pt, *new_pt;
|
|
struct proc *proc;
|
|
struct pgrp *pgrp;
|
|
int i;
|
|
pid_t pid;
|
|
|
|
new_pt = malloc(pt_size * 2 * sizeof *new_pt, M_PROC, M_WAITOK);
|
|
|
|
mutex_enter(&proclist_lock);
|
|
if (pt_size != pid_tbl_mask + 1) {
|
|
/* Another process beat us to it... */
|
|
mutex_exit(&proclist_lock);
|
|
FREE(new_pt, M_PROC);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Copy entries from old table into new one.
|
|
* If 'pid' is 'odd' we need to place in the upper half,
|
|
* even pid's to the lower half.
|
|
* Free items stay in the low half so we don't have to
|
|
* fixup the reference to them.
|
|
* We stuff free items on the front of the freelist
|
|
* because we can't write to unmodified entries.
|
|
* Processing the table backwards maintains a semblance
|
|
* of issueing pid numbers that increase with time.
|
|
*/
|
|
i = pt_size - 1;
|
|
n_pt = new_pt + i;
|
|
for (; ; i--, n_pt--) {
|
|
proc = pid_table[i].pt_proc;
|
|
pgrp = pid_table[i].pt_pgrp;
|
|
if (!P_VALID(proc)) {
|
|
/* Up 'use count' so that link is valid */
|
|
pid = (P_NEXT(proc) + pt_size) & ~pt_size;
|
|
proc = P_FREE(pid);
|
|
if (pgrp)
|
|
pid = pgrp->pg_id;
|
|
} else
|
|
pid = proc->p_pid;
|
|
|
|
/* Save entry in appropriate half of table */
|
|
n_pt[pid & pt_size].pt_proc = proc;
|
|
n_pt[pid & pt_size].pt_pgrp = pgrp;
|
|
|
|
/* Put other piece on start of free list */
|
|
pid = (pid ^ pt_size) & ~pid_tbl_mask;
|
|
n_pt[pid & pt_size].pt_proc =
|
|
P_FREE((pid & ~pt_size) | next_free_pt);
|
|
n_pt[pid & pt_size].pt_pgrp = 0;
|
|
next_free_pt = i | (pid & pt_size);
|
|
if (i == 0)
|
|
break;
|
|
}
|
|
|
|
/* Switch tables */
|
|
mutex_enter(&proclist_mutex);
|
|
n_pt = pid_table;
|
|
pid_table = new_pt;
|
|
mutex_exit(&proclist_mutex);
|
|
pid_tbl_mask = pt_size * 2 - 1;
|
|
|
|
/*
|
|
* pid_max starts as PID_MAX (= 30000), once we have 16384
|
|
* allocated pids we need it to be larger!
|
|
*/
|
|
if (pid_tbl_mask > PID_MAX) {
|
|
pid_max = pid_tbl_mask * 2 + 1;
|
|
pid_alloc_lim |= pid_alloc_lim << 1;
|
|
} else
|
|
pid_alloc_lim <<= 1; /* doubles number of free slots... */
|
|
|
|
mutex_exit(&proclist_lock);
|
|
FREE(n_pt, M_PROC);
|
|
}
|
|
|
|
struct proc *
|
|
proc_alloc(void)
|
|
{
|
|
struct proc *p;
|
|
int nxt;
|
|
pid_t pid;
|
|
struct pid_table *pt;
|
|
|
|
p = pool_get(&proc_pool, PR_WAITOK);
|
|
p->p_stat = SIDL; /* protect against others */
|
|
|
|
proc_initspecific(p);
|
|
/* allocate next free pid */
|
|
|
|
for (;;expand_pid_table()) {
|
|
if (__predict_false(pid_alloc_cnt >= pid_alloc_lim))
|
|
/* ensure pids cycle through 2000+ values */
|
|
continue;
|
|
mutex_enter(&proclist_lock);
|
|
pt = &pid_table[next_free_pt];
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(P_VALID(pt->pt_proc) || pt->pt_pgrp))
|
|
panic("proc_alloc: slot busy");
|
|
#endif
|
|
nxt = P_NEXT(pt->pt_proc);
|
|
if (nxt & pid_tbl_mask)
|
|
break;
|
|
/* Table full - expand (NB last entry not used....) */
|
|
mutex_exit(&proclist_lock);
|
|
}
|
|
|
|
/* pid is 'saved use count' + 'size' + entry */
|
|
pid = (nxt & ~pid_tbl_mask) + pid_tbl_mask + 1 + next_free_pt;
|
|
if ((uint)pid > (uint)pid_max)
|
|
pid &= pid_tbl_mask;
|
|
p->p_pid = pid;
|
|
next_free_pt = nxt & pid_tbl_mask;
|
|
|
|
/* Grab table slot */
|
|
mutex_enter(&proclist_mutex);
|
|
pt->pt_proc = p;
|
|
mutex_exit(&proclist_mutex);
|
|
pid_alloc_cnt++;
|
|
|
|
mutex_exit(&proclist_lock);
|
|
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Free last resources of a process - called from proc_free (in kern_exit.c)
|
|
*
|
|
* Called with the proclist_lock held, and releases upon exit.
|
|
*/
|
|
void
|
|
proc_free_mem(struct proc *p)
|
|
{
|
|
pid_t pid = p->p_pid;
|
|
struct pid_table *pt;
|
|
|
|
KASSERT(mutex_owned(&proclist_lock));
|
|
|
|
pt = &pid_table[pid & pid_tbl_mask];
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(pt->pt_proc != p))
|
|
panic("proc_free: pid_table mismatch, pid %x, proc %p",
|
|
pid, p);
|
|
#endif
|
|
mutex_enter(&proclist_mutex);
|
|
/* save pid use count in slot */
|
|
pt->pt_proc = P_FREE(pid & ~pid_tbl_mask);
|
|
|
|
if (pt->pt_pgrp == NULL) {
|
|
/* link last freed entry onto ours */
|
|
pid &= pid_tbl_mask;
|
|
pt = &pid_table[last_free_pt];
|
|
pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pid);
|
|
last_free_pt = pid;
|
|
pid_alloc_cnt--;
|
|
}
|
|
mutex_exit(&proclist_mutex);
|
|
|
|
nprocs--;
|
|
mutex_exit(&proclist_lock);
|
|
|
|
pool_put(&proc_pool, p);
|
|
}
|
|
|
|
/*
|
|
* Move p to a new or existing process group (and session)
|
|
*
|
|
* If we are creating a new pgrp, the pgid should equal
|
|
* the calling process' pid.
|
|
* If is only valid to enter a process group that is in the session
|
|
* of the process.
|
|
* Also mksess should only be set if we are creating a process group
|
|
*
|
|
* Only called from sys_setsid, sys_setpgid/sys_setpgrp and the
|
|
* SYSV setpgrp support for hpux.
|
|
*/
|
|
int
|
|
enterpgrp(struct proc *curp, pid_t pid, pid_t pgid, int mksess)
|
|
{
|
|
struct pgrp *new_pgrp, *pgrp;
|
|
struct session *sess;
|
|
struct proc *p;
|
|
int rval;
|
|
pid_t pg_id = NO_PGID;
|
|
|
|
if (mksess)
|
|
sess = pool_get(&session_pool, PR_WAITOK);
|
|
else
|
|
sess = NULL;
|
|
|
|
/* Allocate data areas we might need before doing any validity checks */
|
|
mutex_enter(&proclist_lock); /* Because pid_table might change */
|
|
if (pid_table[pgid & pid_tbl_mask].pt_pgrp == 0) {
|
|
mutex_exit(&proclist_lock);
|
|
new_pgrp = pool_get(&pgrp_pool, PR_WAITOK);
|
|
mutex_enter(&proclist_lock);
|
|
} else
|
|
new_pgrp = NULL;
|
|
rval = EPERM; /* most common error (to save typing) */
|
|
|
|
/* Check pgrp exists or can be created */
|
|
pgrp = pid_table[pgid & pid_tbl_mask].pt_pgrp;
|
|
if (pgrp != NULL && pgrp->pg_id != pgid)
|
|
goto done;
|
|
|
|
/* Can only set another process under restricted circumstances. */
|
|
if (pid != curp->p_pid) {
|
|
/* must exist and be one of our children... */
|
|
if ((p = p_find(pid, PFIND_LOCKED)) == NULL ||
|
|
!inferior(p, curp)) {
|
|
rval = ESRCH;
|
|
goto done;
|
|
}
|
|
/* ... in the same session... */
|
|
if (sess != NULL || p->p_session != curp->p_session)
|
|
goto done;
|
|
/* ... existing pgid must be in same session ... */
|
|
if (pgrp != NULL && pgrp->pg_session != p->p_session)
|
|
goto done;
|
|
/* ... and not done an exec. */
|
|
if (p->p_flag & PK_EXEC) {
|
|
rval = EACCES;
|
|
goto done;
|
|
}
|
|
} else {
|
|
/* ... setsid() cannot re-enter a pgrp */
|
|
if (mksess && (curp->p_pgid == curp->p_pid ||
|
|
pg_find(curp->p_pid, PFIND_LOCKED)))
|
|
goto done;
|
|
p = curp;
|
|
}
|
|
|
|
/* Changing the process group/session of a session
|
|
leader is definitely off limits. */
|
|
if (SESS_LEADER(p)) {
|
|
if (sess == NULL && p->p_pgrp == pgrp)
|
|
/* unless it's a definite noop */
|
|
rval = 0;
|
|
goto done;
|
|
}
|
|
|
|
/* Can only create a process group with id of process */
|
|
if (pgrp == NULL && pgid != pid)
|
|
goto done;
|
|
|
|
/* Can only create a session if creating pgrp */
|
|
if (sess != NULL && pgrp != NULL)
|
|
goto done;
|
|
|
|
/* Check we allocated memory for a pgrp... */
|
|
if (pgrp == NULL && new_pgrp == NULL)
|
|
goto done;
|
|
|
|
/* Don't attach to 'zombie' pgrp */
|
|
if (pgrp != NULL && LIST_EMPTY(&pgrp->pg_members))
|
|
goto done;
|
|
|
|
/* Expect to succeed now */
|
|
rval = 0;
|
|
|
|
if (pgrp == p->p_pgrp)
|
|
/* nothing to do */
|
|
goto done;
|
|
|
|
/* Ok all setup, link up required structures */
|
|
|
|
if (pgrp == NULL) {
|
|
pgrp = new_pgrp;
|
|
new_pgrp = 0;
|
|
if (sess != NULL) {
|
|
sess->s_sid = p->p_pid;
|
|
sess->s_leader = p;
|
|
sess->s_count = 1;
|
|
sess->s_ttyvp = NULL;
|
|
sess->s_ttyp = NULL;
|
|
sess->s_flags = p->p_session->s_flags & ~S_LOGIN_SET;
|
|
memcpy(sess->s_login, p->p_session->s_login,
|
|
sizeof(sess->s_login));
|
|
p->p_lflag &= ~PL_CONTROLT;
|
|
} else {
|
|
sess = p->p_pgrp->pg_session;
|
|
SESSHOLD(sess);
|
|
}
|
|
pgrp->pg_session = sess;
|
|
sess = 0;
|
|
|
|
pgrp->pg_id = pgid;
|
|
LIST_INIT(&pgrp->pg_members);
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(pid_table[pgid & pid_tbl_mask].pt_pgrp))
|
|
panic("enterpgrp: pgrp table slot in use");
|
|
if (__predict_false(mksess && p != curp))
|
|
panic("enterpgrp: mksession and p != curproc");
|
|
#endif
|
|
mutex_enter(&proclist_mutex);
|
|
pid_table[pgid & pid_tbl_mask].pt_pgrp = pgrp;
|
|
pgrp->pg_jobc = 0;
|
|
} else
|
|
mutex_enter(&proclist_mutex);
|
|
|
|
#ifdef notyet
|
|
/*
|
|
* If there's a controlling terminal for the current session, we
|
|
* have to interlock with it. See ttread().
|
|
*/
|
|
if (p->p_session->s_ttyvp != NULL) {
|
|
tp = p->p_session->s_ttyp;
|
|
mutex_enter(&tp->t_mutex);
|
|
} else
|
|
tp = NULL;
|
|
#endif
|
|
|
|
/*
|
|
* Adjust eligibility of affected pgrps to participate in job control.
|
|
* Increment eligibility counts before decrementing, otherwise we
|
|
* could reach 0 spuriously during the first call.
|
|
*/
|
|
fixjobc(p, pgrp, 1);
|
|
fixjobc(p, p->p_pgrp, 0);
|
|
|
|
/* Move process to requested group. */
|
|
LIST_REMOVE(p, p_pglist);
|
|
if (LIST_EMPTY(&p->p_pgrp->pg_members))
|
|
/* defer delete until we've dumped the lock */
|
|
pg_id = p->p_pgrp->pg_id;
|
|
p->p_pgrp = pgrp;
|
|
LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
|
|
mutex_exit(&proclist_mutex);
|
|
|
|
#ifdef notyet
|
|
/* Done with the swap; we can release the tty mutex. */
|
|
if (tp != NULL)
|
|
mutex_exit(&tp->t_mutex);
|
|
#endif
|
|
|
|
done:
|
|
if (pg_id != NO_PGID)
|
|
pg_delete(pg_id);
|
|
mutex_exit(&proclist_lock);
|
|
if (sess != NULL)
|
|
pool_put(&session_pool, sess);
|
|
if (new_pgrp != NULL)
|
|
pool_put(&pgrp_pool, new_pgrp);
|
|
#ifdef DEBUG_PGRP
|
|
if (__predict_false(rval))
|
|
printf("enterpgrp(%d,%d,%d), curproc %d, rval %d\n",
|
|
pid, pgid, mksess, curp->p_pid, rval);
|
|
#endif
|
|
return rval;
|
|
}
|
|
|
|
/*
|
|
* Remove a process from its process group. Must be called with the
|
|
* proclist_lock held.
|
|
*/
|
|
void
|
|
leavepgrp(struct proc *p)
|
|
{
|
|
struct pgrp *pgrp;
|
|
|
|
KASSERT(mutex_owned(&proclist_lock));
|
|
|
|
/*
|
|
* If there's a controlling terminal for the session, we have to
|
|
* interlock with it. See ttread().
|
|
*/
|
|
mutex_enter(&proclist_mutex);
|
|
#ifdef notyet
|
|
if (p_>p_session->s_ttyvp != NULL) {
|
|
tp = p->p_session->s_ttyp;
|
|
mutex_enter(&tp->t_mutex);
|
|
} else
|
|
tp = NULL;
|
|
#endif
|
|
|
|
pgrp = p->p_pgrp;
|
|
LIST_REMOVE(p, p_pglist);
|
|
p->p_pgrp = NULL;
|
|
|
|
#ifdef notyet
|
|
if (tp != NULL)
|
|
mutex_exit(&tp->t_mutex);
|
|
#endif
|
|
mutex_exit(&proclist_mutex);
|
|
|
|
if (LIST_EMPTY(&pgrp->pg_members))
|
|
pg_delete(pgrp->pg_id);
|
|
}
|
|
|
|
/*
|
|
* Free a process group. Must be called with the proclist_lock held.
|
|
*/
|
|
static void
|
|
pg_free(pid_t pg_id)
|
|
{
|
|
struct pgrp *pgrp;
|
|
struct pid_table *pt;
|
|
|
|
KASSERT(mutex_owned(&proclist_lock));
|
|
|
|
pt = &pid_table[pg_id & pid_tbl_mask];
|
|
pgrp = pt->pt_pgrp;
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(!pgrp || pgrp->pg_id != pg_id
|
|
|| !LIST_EMPTY(&pgrp->pg_members)))
|
|
panic("pg_free: process group absent or has members");
|
|
#endif
|
|
pt->pt_pgrp = 0;
|
|
|
|
if (!P_VALID(pt->pt_proc)) {
|
|
/* orphaned pgrp, put slot onto free list */
|
|
#ifdef DIAGNOSTIC
|
|
if (__predict_false(P_NEXT(pt->pt_proc) & pid_tbl_mask))
|
|
panic("pg_free: process slot on free list");
|
|
#endif
|
|
mutex_enter(&proclist_mutex);
|
|
pg_id &= pid_tbl_mask;
|
|
pt = &pid_table[last_free_pt];
|
|
pt->pt_proc = P_FREE(P_NEXT(pt->pt_proc) | pg_id);
|
|
mutex_exit(&proclist_mutex);
|
|
last_free_pt = pg_id;
|
|
pid_alloc_cnt--;
|
|
}
|
|
pool_put(&pgrp_pool, pgrp);
|
|
}
|
|
|
|
/*
|
|
* Delete a process group. Must be called with the proclist_lock held.
|
|
*/
|
|
static void
|
|
pg_delete(pid_t pg_id)
|
|
{
|
|
struct pgrp *pgrp;
|
|
struct tty *ttyp;
|
|
struct session *ss;
|
|
int is_pgrp_leader;
|
|
|
|
KASSERT(mutex_owned(&proclist_lock));
|
|
|
|
pgrp = pid_table[pg_id & pid_tbl_mask].pt_pgrp;
|
|
if (pgrp == NULL || pgrp->pg_id != pg_id ||
|
|
!LIST_EMPTY(&pgrp->pg_members))
|
|
return;
|
|
|
|
ss = pgrp->pg_session;
|
|
|
|
/* Remove reference (if any) from tty to this process group */
|
|
ttyp = ss->s_ttyp;
|
|
if (ttyp != NULL && ttyp->t_pgrp == pgrp) {
|
|
ttyp->t_pgrp = NULL;
|
|
#ifdef DIAGNOSTIC
|
|
if (ttyp->t_session != ss)
|
|
panic("pg_delete: wrong session on terminal");
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The leading process group in a session is freed
|
|
* by sessdelete() if last reference.
|
|
*/
|
|
is_pgrp_leader = (ss->s_sid == pgrp->pg_id);
|
|
SESSRELE(ss);
|
|
|
|
if (is_pgrp_leader)
|
|
return;
|
|
|
|
pg_free(pg_id);
|
|
}
|
|
|
|
/*
|
|
* Delete session - called from SESSRELE when s_count becomes zero.
|
|
* Must be called with the proclist_lock held.
|
|
*/
|
|
void
|
|
sessdelete(struct session *ss)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&proclist_lock));
|
|
|
|
/*
|
|
* We keep the pgrp with the same id as the session in
|
|
* order to stop a process being given the same pid.
|
|
* Since the pgrp holds a reference to the session, it
|
|
* must be a 'zombie' pgrp by now.
|
|
*/
|
|
pg_free(ss->s_sid);
|
|
pool_put(&session_pool, ss);
|
|
}
|
|
|
|
/*
|
|
* Adjust pgrp jobc counters when specified process changes process group.
|
|
* We count the number of processes in each process group that "qualify"
|
|
* the group for terminal job control (those with a parent in a different
|
|
* process group of the same session). If that count reaches zero, the
|
|
* process group becomes orphaned. Check both the specified process'
|
|
* process group and that of its children.
|
|
* entering == 0 => p is leaving specified group.
|
|
* entering == 1 => p is entering specified group.
|
|
*
|
|
* Call with proclist_lock held.
|
|
*/
|
|
void
|
|
fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
|
|
{
|
|
struct pgrp *hispgrp;
|
|
struct session *mysession = pgrp->pg_session;
|
|
struct proc *child;
|
|
|
|
KASSERT(mutex_owned(&proclist_lock));
|
|
KASSERT(mutex_owned(&proclist_mutex));
|
|
|
|
/*
|
|
* Check p's parent to see whether p qualifies its own process
|
|
* group; if so, adjust count for p's process group.
|
|
*/
|
|
hispgrp = p->p_pptr->p_pgrp;
|
|
if (hispgrp != pgrp && hispgrp->pg_session == mysession) {
|
|
if (entering) {
|
|
mutex_enter(&p->p_smutex);
|
|
p->p_sflag &= ~PS_ORPHANPG;
|
|
mutex_exit(&p->p_smutex);
|
|
pgrp->pg_jobc++;
|
|
} else if (--pgrp->pg_jobc == 0)
|
|
orphanpg(pgrp);
|
|
}
|
|
|
|
/*
|
|
* Check this process' children to see whether they qualify
|
|
* their process groups; if so, adjust counts for children's
|
|
* process groups.
|
|
*/
|
|
LIST_FOREACH(child, &p->p_children, p_sibling) {
|
|
hispgrp = child->p_pgrp;
|
|
if (hispgrp != pgrp && hispgrp->pg_session == mysession &&
|
|
!P_ZOMBIE(child)) {
|
|
if (entering) {
|
|
mutex_enter(&child->p_smutex);
|
|
child->p_sflag &= ~PS_ORPHANPG;
|
|
mutex_exit(&child->p_smutex);
|
|
hispgrp->pg_jobc++;
|
|
} else if (--hispgrp->pg_jobc == 0)
|
|
orphanpg(hispgrp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A process group has become orphaned;
|
|
* if there are any stopped processes in the group,
|
|
* hang-up all process in that group.
|
|
*
|
|
* Call with proclist_lock held.
|
|
*/
|
|
static void
|
|
orphanpg(struct pgrp *pg)
|
|
{
|
|
struct proc *p;
|
|
int doit;
|
|
|
|
KASSERT(mutex_owned(&proclist_lock));
|
|
KASSERT(mutex_owned(&proclist_mutex));
|
|
|
|
doit = 0;
|
|
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
mutex_enter(&p->p_smutex);
|
|
if (p->p_stat == SSTOP) {
|
|
doit = 1;
|
|
p->p_sflag |= PS_ORPHANPG;
|
|
}
|
|
mutex_exit(&p->p_smutex);
|
|
}
|
|
|
|
if (doit) {
|
|
LIST_FOREACH(p, &pg->pg_members, p_pglist) {
|
|
psignal(p, SIGHUP);
|
|
psignal(p, SIGCONT);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DDB
|
|
#include <ddb/db_output.h>
|
|
void pidtbl_dump(void);
|
|
void
|
|
pidtbl_dump(void)
|
|
{
|
|
struct pid_table *pt;
|
|
struct proc *p;
|
|
struct pgrp *pgrp;
|
|
int id;
|
|
|
|
db_printf("pid table %p size %x, next %x, last %x\n",
|
|
pid_table, pid_tbl_mask+1,
|
|
next_free_pt, last_free_pt);
|
|
for (pt = pid_table, id = 0; id <= pid_tbl_mask; id++, pt++) {
|
|
p = pt->pt_proc;
|
|
if (!P_VALID(p) && !pt->pt_pgrp)
|
|
continue;
|
|
db_printf(" id %x: ", id);
|
|
if (P_VALID(p))
|
|
db_printf("proc %p id %d (0x%x) %s\n",
|
|
p, p->p_pid, p->p_pid, p->p_comm);
|
|
else
|
|
db_printf("next %x use %x\n",
|
|
P_NEXT(p) & pid_tbl_mask,
|
|
P_NEXT(p) & ~pid_tbl_mask);
|
|
if ((pgrp = pt->pt_pgrp)) {
|
|
db_printf("\tsession %p, sid %d, count %d, login %s\n",
|
|
pgrp->pg_session, pgrp->pg_session->s_sid,
|
|
pgrp->pg_session->s_count,
|
|
pgrp->pg_session->s_login);
|
|
db_printf("\tpgrp %p, pg_id %d, pg_jobc %d, members %p\n",
|
|
pgrp, pgrp->pg_id, pgrp->pg_jobc,
|
|
pgrp->pg_members.lh_first);
|
|
for (p = pgrp->pg_members.lh_first; p != 0;
|
|
p = p->p_pglist.le_next) {
|
|
db_printf("\t\tpid %d addr %p pgrp %p %s\n",
|
|
p->p_pid, p, p->p_pgrp, p->p_comm);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* DDB */
|
|
|
|
#ifdef KSTACK_CHECK_MAGIC
|
|
#include <sys/user.h>
|
|
|
|
#define KSTACK_MAGIC 0xdeadbeaf
|
|
|
|
/* XXX should be per process basis? */
|
|
int kstackleftmin = KSTACK_SIZE;
|
|
int kstackleftthres = KSTACK_SIZE / 8; /* warn if remaining stack is
|
|
less than this */
|
|
|
|
void
|
|
kstack_setup_magic(const struct lwp *l)
|
|
{
|
|
uint32_t *ip;
|
|
uint32_t const *end;
|
|
|
|
KASSERT(l != NULL);
|
|
KASSERT(l != &lwp0);
|
|
|
|
/*
|
|
* fill all the stack with magic number
|
|
* so that later modification on it can be detected.
|
|
*/
|
|
ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
|
|
end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
|
|
for (; ip < end; ip++) {
|
|
*ip = KSTACK_MAGIC;
|
|
}
|
|
}
|
|
|
|
void
|
|
kstack_check_magic(const struct lwp *l)
|
|
{
|
|
uint32_t const *ip, *end;
|
|
int stackleft;
|
|
|
|
KASSERT(l != NULL);
|
|
|
|
/* don't check proc0 */ /*XXX*/
|
|
if (l == &lwp0)
|
|
return;
|
|
|
|
#ifdef __MACHINE_STACK_GROWS_UP
|
|
/* stack grows upwards (eg. hppa) */
|
|
ip = (uint32_t *)((void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
|
|
end = (uint32_t *)KSTACK_LOWEST_ADDR(l);
|
|
for (ip--; ip >= end; ip--)
|
|
if (*ip != KSTACK_MAGIC)
|
|
break;
|
|
|
|
stackleft = (void *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE - (void *)ip;
|
|
#else /* __MACHINE_STACK_GROWS_UP */
|
|
/* stack grows downwards (eg. i386) */
|
|
ip = (uint32_t *)KSTACK_LOWEST_ADDR(l);
|
|
end = (uint32_t *)((char *)KSTACK_LOWEST_ADDR(l) + KSTACK_SIZE);
|
|
for (; ip < end; ip++)
|
|
if (*ip != KSTACK_MAGIC)
|
|
break;
|
|
|
|
stackleft = ((const char *)ip) - (const char *)KSTACK_LOWEST_ADDR(l);
|
|
#endif /* __MACHINE_STACK_GROWS_UP */
|
|
|
|
if (kstackleftmin > stackleft) {
|
|
kstackleftmin = stackleft;
|
|
if (stackleft < kstackleftthres)
|
|
printf("warning: kernel stack left %d bytes"
|
|
"(pid %u:lid %u)\n", stackleft,
|
|
(u_int)l->l_proc->p_pid, (u_int)l->l_lid);
|
|
}
|
|
|
|
if (stackleft <= 0) {
|
|
panic("magic on the top of kernel stack changed for "
|
|
"pid %u, lid %u: maybe kernel stack overflow",
|
|
(u_int)l->l_proc->p_pid, (u_int)l->l_lid);
|
|
}
|
|
}
|
|
#endif /* KSTACK_CHECK_MAGIC */
|
|
|
|
/*
|
|
* XXXSMP this is bust, it grabs a read lock and then messes about
|
|
* with allproc.
|
|
*/
|
|
int
|
|
proclist_foreach_call(struct proclist *list,
|
|
int (*callback)(struct proc *, void *arg), void *arg)
|
|
{
|
|
struct proc marker;
|
|
struct proc *p;
|
|
struct lwp * const l = curlwp;
|
|
int ret = 0;
|
|
|
|
marker.p_flag = PK_MARKER;
|
|
uvm_lwp_hold(l);
|
|
mutex_enter(&proclist_lock);
|
|
for (p = LIST_FIRST(list); ret == 0 && p != NULL;) {
|
|
if (p->p_flag & PK_MARKER) {
|
|
p = LIST_NEXT(p, p_list);
|
|
continue;
|
|
}
|
|
LIST_INSERT_AFTER(p, &marker, p_list);
|
|
ret = (*callback)(p, arg);
|
|
KASSERT(mutex_owned(&proclist_lock));
|
|
p = LIST_NEXT(&marker, p_list);
|
|
LIST_REMOVE(&marker, p_list);
|
|
}
|
|
mutex_exit(&proclist_lock);
|
|
uvm_lwp_rele(l);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
proc_vmspace_getref(struct proc *p, struct vmspace **vm)
|
|
{
|
|
|
|
/* XXXCDC: how should locking work here? */
|
|
|
|
/* curproc exception is for coredump. */
|
|
|
|
if ((p != curproc && (p->p_sflag & PS_WEXIT) != 0) ||
|
|
(p->p_vmspace->vm_refcnt < 1)) { /* XXX */
|
|
return EFAULT;
|
|
}
|
|
|
|
uvmspace_addref(p->p_vmspace);
|
|
*vm = p->p_vmspace;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Acquire a write lock on the process credential.
|
|
*/
|
|
void
|
|
proc_crmod_enter(void)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
struct proc *p = l->l_proc;
|
|
struct plimit *lim;
|
|
kauth_cred_t oc;
|
|
char *cn;
|
|
|
|
mutex_enter(&p->p_mutex);
|
|
|
|
/* Ensure the LWP cached credentials are up to date. */
|
|
if ((oc = l->l_cred) != p->p_cred) {
|
|
kauth_cred_hold(p->p_cred);
|
|
l->l_cred = p->p_cred;
|
|
kauth_cred_free(oc);
|
|
}
|
|
|
|
/* Reset what needs to be reset in plimit. */
|
|
lim = p->p_limit;
|
|
if (lim->pl_corename != defcorename) {
|
|
if (lim->p_refcnt > 1 &&
|
|
(lim->p_lflags & PL_SHAREMOD) == 0) {
|
|
p->p_limit = limcopy(p);
|
|
limfree(lim);
|
|
lim = p->p_limit;
|
|
}
|
|
mutex_enter(&lim->p_lock);
|
|
cn = lim->pl_corename;
|
|
lim->pl_corename = defcorename;
|
|
mutex_exit(&lim->p_lock);
|
|
if (cn != defcorename)
|
|
free(cn, M_TEMP);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set in a new process credential, and drop the write lock. The credential
|
|
* must have a reference already. Optionally, free a no-longer required
|
|
* credential. The scheduler also needs to inspect p_cred, so we also
|
|
* briefly acquire the sched state mutex.
|
|
*/
|
|
void
|
|
proc_crmod_leave(kauth_cred_t scred, kauth_cred_t fcred, bool sugid)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
struct proc *p = l->l_proc;
|
|
kauth_cred_t oc;
|
|
|
|
/* Is there a new credential to set in? */
|
|
if (scred != NULL) {
|
|
mutex_enter(&p->p_smutex);
|
|
p->p_cred = scred;
|
|
mutex_exit(&p->p_smutex);
|
|
|
|
/* Ensure the LWP cached credentials are up to date. */
|
|
if ((oc = l->l_cred) != scred) {
|
|
kauth_cred_hold(scred);
|
|
l->l_cred = scred;
|
|
}
|
|
} else
|
|
oc = NULL; /* XXXgcc */
|
|
|
|
if (sugid) {
|
|
/*
|
|
* Mark process as having changed credentials, stops
|
|
* tracing etc.
|
|
*/
|
|
p->p_flag |= PK_SUGID;
|
|
}
|
|
|
|
mutex_exit(&p->p_mutex);
|
|
|
|
/* If there is a credential to be released, free it now. */
|
|
if (fcred != NULL) {
|
|
KASSERT(scred != NULL);
|
|
kauth_cred_free(fcred);
|
|
if (oc != scred)
|
|
kauth_cred_free(oc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Acquire a reference on a process, to prevent it from exiting or execing.
|
|
*/
|
|
int
|
|
proc_addref(struct proc *p)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&p->p_mutex));
|
|
|
|
if (p->p_refcnt <= 0)
|
|
return EAGAIN;
|
|
p->p_refcnt++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Release a reference on a process.
|
|
*/
|
|
void
|
|
proc_delref(struct proc *p)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&p->p_mutex));
|
|
|
|
if (p->p_refcnt < 0) {
|
|
if (++p->p_refcnt == 0)
|
|
cv_broadcast(&p->p_refcv);
|
|
} else {
|
|
p->p_refcnt--;
|
|
KASSERT(p->p_refcnt != 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wait for all references on the process to drain, and prevent new
|
|
* references from being acquired.
|
|
*/
|
|
void
|
|
proc_drainrefs(struct proc *p)
|
|
{
|
|
|
|
KASSERT(mutex_owned(&p->p_mutex));
|
|
KASSERT(p->p_refcnt >= 0);
|
|
|
|
/*
|
|
* The process itself holds the last reference. Once it's released,
|
|
* no new references will be granted. If we have already locked out
|
|
* new references (refcnt <= 0), potentially due to a failed exec,
|
|
* there is nothing more to do.
|
|
*/
|
|
if (p->p_refcnt == 0)
|
|
return;
|
|
p->p_refcnt = 1 - p->p_refcnt;
|
|
while (p->p_refcnt != 0)
|
|
cv_wait(&p->p_refcv, &p->p_mutex);
|
|
}
|
|
|
|
/*
|
|
* proc_specific_key_create --
|
|
* Create a key for subsystem proc-specific data.
|
|
*/
|
|
int
|
|
proc_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
|
|
{
|
|
|
|
return (specificdata_key_create(proc_specificdata_domain, keyp, dtor));
|
|
}
|
|
|
|
/*
|
|
* proc_specific_key_delete --
|
|
* Delete a key for subsystem proc-specific data.
|
|
*/
|
|
void
|
|
proc_specific_key_delete(specificdata_key_t key)
|
|
{
|
|
|
|
specificdata_key_delete(proc_specificdata_domain, key);
|
|
}
|
|
|
|
/*
|
|
* proc_initspecific --
|
|
* Initialize a proc's specificdata container.
|
|
*/
|
|
void
|
|
proc_initspecific(struct proc *p)
|
|
{
|
|
int error;
|
|
|
|
error = specificdata_init(proc_specificdata_domain, &p->p_specdataref);
|
|
KASSERT(error == 0);
|
|
}
|
|
|
|
/*
|
|
* proc_finispecific --
|
|
* Finalize a proc's specificdata container.
|
|
*/
|
|
void
|
|
proc_finispecific(struct proc *p)
|
|
{
|
|
|
|
specificdata_fini(proc_specificdata_domain, &p->p_specdataref);
|
|
}
|
|
|
|
/*
|
|
* proc_getspecific --
|
|
* Return proc-specific data corresponding to the specified key.
|
|
*/
|
|
void *
|
|
proc_getspecific(struct proc *p, specificdata_key_t key)
|
|
{
|
|
|
|
return (specificdata_getspecific(proc_specificdata_domain,
|
|
&p->p_specdataref, key));
|
|
}
|
|
|
|
/*
|
|
* proc_setspecific --
|
|
* Set proc-specific data corresponding to the specified key.
|
|
*/
|
|
void
|
|
proc_setspecific(struct proc *p, specificdata_key_t key, void *data)
|
|
{
|
|
|
|
specificdata_setspecific(proc_specificdata_domain,
|
|
&p->p_specdataref, key, data);
|
|
}
|