NetBSD/sys/dev/sdmmc/sdmmc_io.c

721 lines
16 KiB
C

/* $NetBSD: sdmmc_io.c,v 1.7 2012/02/01 22:34:43 matt Exp $ */
/* $OpenBSD: sdmmc_io.c,v 1.10 2007/09/17 01:33:33 krw Exp $ */
/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* Routines for SD I/O cards. */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sdmmc_io.c,v 1.7 2012/02/01 22:34:43 matt Exp $");
#ifdef _KERNEL_OPT
#include "opt_sdmmc.h"
#endif
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <dev/sdmmc/sdmmc_ioreg.h>
#include <dev/sdmmc/sdmmcchip.h>
#include <dev/sdmmc/sdmmcreg.h>
#include <dev/sdmmc/sdmmcvar.h>
#ifdef SDMMC_DEBUG
#define DPRINTF(s) do { printf s; } while (0)
#else
#define DPRINTF(s) do {} while (0)
#endif
struct sdmmc_intr_handler {
struct sdmmc_softc *ih_softc;
char *ih_name;
int (*ih_fun)(void *);
void *ih_arg;
TAILQ_ENTRY(sdmmc_intr_handler) entry;
};
static int sdmmc_io_rw_direct(struct sdmmc_softc *,
struct sdmmc_function *, int, u_char *, int);
static int sdmmc_io_rw_extended(struct sdmmc_softc *,
struct sdmmc_function *, int, u_char *, int, int);
#if 0
static int sdmmc_io_xchg(struct sdmmc_softc *, struct sdmmc_function *,
int, u_char *);
#endif
static void sdmmc_io_reset(struct sdmmc_softc *);
static int sdmmc_io_send_op_cond(struct sdmmc_softc *, uint32_t,
uint32_t *);
/*
* Initialize SD I/O card functions (before memory cards). The host
* system and controller must support card interrupts in order to use
* I/O functions.
*/
int
sdmmc_io_enable(struct sdmmc_softc *sc)
{
uint32_t host_ocr;
uint32_t card_ocr;
int error;
SDMMC_LOCK(sc);
/* Set host mode to SD "combo" card. */
SET(sc->sc_flags, SMF_SD_MODE|SMF_IO_MODE|SMF_MEM_MODE);
/* Reset I/O functions. */
sdmmc_io_reset(sc);
/*
* Read the I/O OCR value, determine the number of I/O
* functions and whether memory is also present (a "combo
* card") by issuing CMD5. SD memory-only and MMC cards
* do not respond to CMD5.
*/
error = sdmmc_io_send_op_cond(sc, 0, &card_ocr);
if (error) {
/* No SDIO card; switch to SD memory-only mode. */
CLR(sc->sc_flags, SMF_IO_MODE);
error = 0;
goto out;
}
/* Parse the additional bits in the I/O OCR value. */
if (!ISSET(card_ocr, SD_IO_OCR_MEM_PRESENT)) {
/* SDIO card without memory (not a "combo card"). */
DPRINTF(("%s: no memory present\n", SDMMCDEVNAME(sc)));
CLR(sc->sc_flags, SMF_MEM_MODE);
}
sc->sc_function_count = SD_IO_OCR_NUM_FUNCTIONS(card_ocr);
if (sc->sc_function_count == 0) {
/* Useless SDIO card without any I/O functions. */
DPRINTF(("%s: no I/O functions\n", SDMMCDEVNAME(sc)));
CLR(sc->sc_flags, SMF_IO_MODE);
error = 0;
goto out;
}
card_ocr &= SD_IO_OCR_MASK;
/* Set the lowest voltage supported by the card and host. */
host_ocr = sdmmc_chip_host_ocr(sc->sc_sct, sc->sc_sch);
error = sdmmc_set_bus_power(sc, host_ocr, card_ocr);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't supply voltage requested by card\n");
goto out;
}
/* Reset I/O functions (again). */
sdmmc_io_reset(sc);
/* Send the new OCR value until all cards are ready. */
error = sdmmc_io_send_op_cond(sc, host_ocr, NULL);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't send I/O OCR\n");
goto out;
}
out:
SDMMC_UNLOCK(sc);
return error;
}
/*
* Allocate sdmmc_function structures for SD card I/O function
* (including function 0).
*/
void
sdmmc_io_scan(struct sdmmc_softc *sc)
{
struct sdmmc_function *sf0, *sf;
int error;
int i;
SDMMC_LOCK(sc);
sf0 = sdmmc_function_alloc(sc);
sf0->number = 0;
error = sdmmc_set_relative_addr(sc, sf0);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't set I/O RCA\n");
SET(sf0->flags, SFF_ERROR);
goto out;
}
sc->sc_fn0 = sf0;
SIMPLEQ_INSERT_TAIL(&sc->sf_head, sf0, sf_list);
/* Go to Data Transfer Mode, if possible. */
sdmmc_chip_bus_rod(sc->sc_sct, sc->sc_sch, 0);
/* Verify that the RCA has been set by selecting the card. */
error = sdmmc_select_card(sc, sf0);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't select I/O RCA %d\n",
sf0->rca);
SET(sf0->flags, SFF_ERROR);
goto out;
}
for (i = 1; i <= sc->sc_function_count; i++) {
sf = sdmmc_function_alloc(sc);
sf->number = i;
sf->rca = sf0->rca;
SIMPLEQ_INSERT_TAIL(&sc->sf_head, sf, sf_list);
}
out:
SDMMC_UNLOCK(sc);
}
/*
* Initialize SDIO card functions.
*/
int
sdmmc_io_init(struct sdmmc_softc *sc, struct sdmmc_function *sf)
{
struct sdmmc_function *sf0 = sc->sc_fn0;
int error = 0;
uint8_t reg;
SDMMC_LOCK(sc);
if (sf->number == 0) {
reg = sdmmc_io_read_1(sf, SD_IO_CCCR_CAPABILITY);
if (!(reg & CCCR_CAPS_LSC) || (reg & CCCR_CAPS_4BLS)) {
sdmmc_io_write_1(sf, SD_IO_CCCR_BUS_WIDTH,
CCCR_BUS_WIDTH_4);
sf->width = 4;
}
error = sdmmc_read_cis(sf, &sf->cis);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't read CIS\n");
SET(sf->flags, SFF_ERROR);
goto out;
}
sdmmc_check_cis_quirks(sf);
#ifdef SDMMC_DEBUG
if (sdmmcdebug)
sdmmc_print_cis(sf);
#endif
reg = sdmmc_io_read_1(sf, SD_IO_CCCR_HIGH_SPEED);
if (reg & CCCR_HIGH_SPEED_SHS) {
reg |= CCCR_HIGH_SPEED_EHS;
sdmmc_io_write_1(sf, SD_IO_CCCR_HIGH_SPEED, reg);
sf->csd.tran_speed = 50000; /* 50MHz */
/* Wait 400KHz x 8 clock */
delay(1);
}
if (sc->sc_busclk > sf->csd.tran_speed)
sc->sc_busclk = sf->csd.tran_speed;
error =
sdmmc_chip_bus_clock(sc->sc_sct, sc->sc_sch, sc->sc_busclk);
if (error)
aprint_error_dev(sc->sc_dev,
"can't change bus clock\n");
} else {
reg = sdmmc_io_read_1(sf0, SD_IO_FBR(sf->number) + 0x000);
sf->interface = FBR_STD_FUNC_IF_CODE(reg);
if (sf->interface == 0x0f)
sf->interface =
sdmmc_io_read_1(sf0, SD_IO_FBR(sf->number) + 0x001);
error = sdmmc_read_cis(sf, &sf->cis);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't read CIS\n");
SET(sf->flags, SFF_ERROR);
goto out;
}
sdmmc_check_cis_quirks(sf);
#ifdef SDMMC_DEBUG
if (sdmmcdebug)
sdmmc_print_cis(sf);
#endif
}
out:
SDMMC_UNLOCK(sc);
return error;
}
/*
* Indicate whether the function is ready to operate.
*/
static int
sdmmc_io_function_ready(struct sdmmc_function *sf)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_function *sf0 = sc->sc_fn0;
uint8_t reg;
if (sf->number == 0)
return 1; /* FN0 is always ready */
SDMMC_LOCK(sc);
reg = sdmmc_io_read_1(sf0, SD_IO_CCCR_FN_IOREADY);
SDMMC_UNLOCK(sc);
return (reg & (1 << sf->number)) != 0;
}
int
sdmmc_io_function_enable(struct sdmmc_function *sf)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_function *sf0 = sc->sc_fn0;
uint8_t reg;
int retry;
if (sf->number == 0)
return 0; /* FN0 is always enabled */
SDMMC_LOCK(sc);
reg = sdmmc_io_read_1(sf0, SD_IO_CCCR_FN_ENABLE);
SET(reg, (1U << sf->number));
sdmmc_io_write_1(sf0, SD_IO_CCCR_FN_ENABLE, reg);
SDMMC_UNLOCK(sc);
retry = 5;
while (!sdmmc_io_function_ready(sf) && retry-- > 0)
kpause("pause", false, hz, NULL);
return (retry >= 0) ? 0 : ETIMEDOUT;
}
/*
* Disable the I/O function. Return zero if the function was
* disabled successfully.
*/
void
sdmmc_io_function_disable(struct sdmmc_function *sf)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_function *sf0 = sc->sc_fn0;
uint8_t reg;
if (sf->number == 0)
return; /* FN0 is always enabled */
SDMMC_LOCK(sc);
reg = sdmmc_io_read_1(sf0, SD_IO_CCCR_FN_ENABLE);
CLR(reg, (1U << sf->number));
sdmmc_io_write_1(sf0, SD_IO_CCCR_FN_ENABLE, reg);
SDMMC_UNLOCK(sc);
}
static int
sdmmc_io_rw_direct(struct sdmmc_softc *sc, struct sdmmc_function *sf,
int reg, u_char *datap, int arg)
{
struct sdmmc_command cmd;
int error;
/* Don't lock */
/* Make sure the card is selected. */
error = sdmmc_select_card(sc, sf);
if (error)
return error;
arg |= ((sf == NULL ? 0 : sf->number) & SD_ARG_CMD52_FUNC_MASK) <<
SD_ARG_CMD52_FUNC_SHIFT;
arg |= (reg & SD_ARG_CMD52_REG_MASK) <<
SD_ARG_CMD52_REG_SHIFT;
arg |= (*datap & SD_ARG_CMD52_DATA_MASK) <<
SD_ARG_CMD52_DATA_SHIFT;
memset(&cmd, 0, sizeof cmd);
cmd.c_opcode = SD_IO_RW_DIRECT;
cmd.c_arg = arg;
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R5;
error = sdmmc_mmc_command(sc, &cmd);
*datap = SD_R5_DATA(cmd.c_resp);
return error;
}
/*
* Useful values of `arg' to pass in are either SD_ARG_CMD53_READ or
* SD_ARG_CMD53_WRITE. SD_ARG_CMD53_INCREMENT may be ORed into `arg'
* to access successive register locations instead of accessing the
* same register many times.
*/
static int
sdmmc_io_rw_extended(struct sdmmc_softc *sc, struct sdmmc_function *sf,
int reg, u_char *datap, int datalen, int arg)
{
struct sdmmc_command cmd;
int error;
/* Don't lock */
#if 0
/* Make sure the card is selected. */
error = sdmmc_select_card(sc, sf);
if (error)
return error;
#endif
arg |= (((sf == NULL) ? 0 : sf->number) & SD_ARG_CMD53_FUNC_MASK) <<
SD_ARG_CMD53_FUNC_SHIFT;
arg |= (reg & SD_ARG_CMD53_REG_MASK) <<
SD_ARG_CMD53_REG_SHIFT;
arg |= (datalen & SD_ARG_CMD53_LENGTH_MASK) <<
SD_ARG_CMD53_LENGTH_SHIFT;
memset(&cmd, 0, sizeof cmd);
cmd.c_opcode = SD_IO_RW_EXTENDED;
cmd.c_arg = arg;
cmd.c_flags = SCF_CMD_AC | SCF_RSP_R5;
cmd.c_data = datap;
cmd.c_datalen = datalen;
cmd.c_blklen = MIN(datalen,
sdmmc_chip_host_maxblklen(sc->sc_sct,sc->sc_sch));
if (!ISSET(arg, SD_ARG_CMD53_WRITE))
cmd.c_flags |= SCF_CMD_READ;
error = sdmmc_mmc_command(sc, &cmd);
return error;
}
uint8_t
sdmmc_io_read_1(struct sdmmc_function *sf, int reg)
{
uint8_t data = 0;
/* Don't lock */
(void)sdmmc_io_rw_direct(sf->sc, sf, reg, (u_char *)&data,
SD_ARG_CMD52_READ);
return data;
}
void
sdmmc_io_write_1(struct sdmmc_function *sf, int reg, uint8_t data)
{
/* Don't lock */
(void)sdmmc_io_rw_direct(sf->sc, sf, reg, (u_char *)&data,
SD_ARG_CMD52_WRITE);
}
uint16_t
sdmmc_io_read_2(struct sdmmc_function *sf, int reg)
{
uint16_t data = 0;
/* Don't lock */
(void)sdmmc_io_rw_extended(sf->sc, sf, reg, (u_char *)&data, 2,
SD_ARG_CMD53_READ | SD_ARG_CMD53_INCREMENT);
return data;
}
void
sdmmc_io_write_2(struct sdmmc_function *sf, int reg, uint16_t data)
{
/* Don't lock */
(void)sdmmc_io_rw_extended(sf->sc, sf, reg, (u_char *)&data, 2,
SD_ARG_CMD53_WRITE | SD_ARG_CMD53_INCREMENT);
}
uint32_t
sdmmc_io_read_4(struct sdmmc_function *sf, int reg)
{
uint32_t data = 0;
/* Don't lock */
(void)sdmmc_io_rw_extended(sf->sc, sf, reg, (u_char *)&data, 4,
SD_ARG_CMD53_READ | SD_ARG_CMD53_INCREMENT);
return data;
}
void
sdmmc_io_write_4(struct sdmmc_function *sf, int reg, uint32_t data)
{
/* Don't lock */
(void)sdmmc_io_rw_extended(sf->sc, sf, reg, (u_char *)&data, 4,
SD_ARG_CMD53_WRITE | SD_ARG_CMD53_INCREMENT);
}
int
sdmmc_io_read_multi_1(struct sdmmc_function *sf, int reg, u_char *data,
int datalen)
{
int error;
/* Don't lock */
while (datalen > SD_ARG_CMD53_LENGTH_MAX) {
error = sdmmc_io_rw_extended(sf->sc, sf, reg, data,
SD_ARG_CMD53_LENGTH_MAX, SD_ARG_CMD53_READ);
if (error)
goto error;
data += SD_ARG_CMD53_LENGTH_MAX;
datalen -= SD_ARG_CMD53_LENGTH_MAX;
}
error = sdmmc_io_rw_extended(sf->sc, sf, reg, data, datalen,
SD_ARG_CMD53_READ);
error:
return error;
}
int
sdmmc_io_write_multi_1(struct sdmmc_function *sf, int reg, u_char *data,
int datalen)
{
int error;
/* Don't lock */
while (datalen > SD_ARG_CMD53_LENGTH_MAX) {
error = sdmmc_io_rw_extended(sf->sc, sf, reg, data,
SD_ARG_CMD53_LENGTH_MAX, SD_ARG_CMD53_WRITE);
if (error)
goto error;
data += SD_ARG_CMD53_LENGTH_MAX;
datalen -= SD_ARG_CMD53_LENGTH_MAX;
}
error = sdmmc_io_rw_extended(sf->sc, sf, reg, data, datalen,
SD_ARG_CMD53_WRITE);
error:
return error;
}
#if 0
static int
sdmmc_io_xchg(struct sdmmc_softc *sc, struct sdmmc_function *sf,
int reg, u_char *datap)
{
/* Don't lock */
return sdmmc_io_rw_direct(sc, sf, reg, datap,
SD_ARG_CMD52_WRITE|SD_ARG_CMD52_EXCHANGE);
}
#endif
/*
* Reset the I/O functions of the card.
*/
static void
sdmmc_io_reset(struct sdmmc_softc *sc)
{
/* Don't lock */
#if 0 /* XXX command fails */
(void)sdmmc_io_write(sc, NULL, SD_IO_REG_CCCR_CTL, CCCR_CTL_RES);
sdmmc_delay(100000);
#endif
}
/*
* Get or set the card's I/O OCR value (SDIO).
*/
static int
sdmmc_io_send_op_cond(struct sdmmc_softc *sc, u_int32_t ocr, u_int32_t *ocrp)
{
struct sdmmc_command cmd;
int error;
int retry;
DPRINTF(("sdmmc_io_send_op_cond: ocr = %#x\n", ocr));
/* Don't lock */
/*
* If we change the OCR value, retry the command until the OCR
* we receive in response has the "CARD BUSY" bit set, meaning
* that all cards are ready for identification.
*/
for (retry = 0; retry < 100; retry++) {
memset(&cmd, 0, sizeof cmd);
cmd.c_opcode = SD_IO_SEND_OP_COND;
cmd.c_arg = ocr;
cmd.c_flags = SCF_CMD_BCR | SCF_RSP_R4;
error = sdmmc_mmc_command(sc, &cmd);
if (error)
break;
if (ISSET(MMC_R4(cmd.c_resp), SD_IO_OCR_MEM_READY) || ocr == 0)
break;
error = ETIMEDOUT;
sdmmc_delay(10000);
}
if (error == 0 && ocrp != NULL)
*ocrp = MMC_R4(cmd.c_resp);
DPRINTF(("sdmmc_io_send_op_cond: error = %d\n", error));
return error;
}
/*
* Card interrupt handling
*/
void
sdmmc_intr_enable(struct sdmmc_function *sf)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_function *sf0 = sc->sc_fn0;
uint8_t reg;
SDMMC_LOCK(sc);
reg = sdmmc_io_read_1(sf0, SD_IO_CCCR_FN_INTEN);
reg |= 1 << sf->number;
sdmmc_io_write_1(sf0, SD_IO_CCCR_FN_INTEN, reg);
SDMMC_UNLOCK(sc);
}
void
sdmmc_intr_disable(struct sdmmc_function *sf)
{
struct sdmmc_softc *sc = sf->sc;
struct sdmmc_function *sf0 = sc->sc_fn0;
uint8_t reg;
SDMMC_LOCK(sc);
reg = sdmmc_io_read_1(sf0, SD_IO_CCCR_FN_INTEN);
reg &= ~(1 << sf->number);
sdmmc_io_write_1(sf0, SD_IO_CCCR_FN_INTEN, reg);
SDMMC_UNLOCK(sc);
}
/*
* Establish a handler for the SDIO card interrupt. Because the
* interrupt may be shared with different SDIO functions, multiple
* handlers can be established.
*/
void *
sdmmc_intr_establish(device_t dev, int (*fun)(void *), void *arg,
const char *name)
{
struct sdmmc_softc *sc = device_private(dev);
struct sdmmc_intr_handler *ih;
int s;
if (sc->sc_sct->card_enable_intr == NULL)
return NULL;
ih = malloc(sizeof *ih, M_DEVBUF, M_WAITOK|M_CANFAIL|M_ZERO);
if (ih == NULL)
return NULL;
ih->ih_name = malloc(strlen(name) + 1, M_DEVBUF,
M_WAITOK|M_CANFAIL|M_ZERO);
if (ih->ih_name == NULL) {
free(ih, M_DEVBUF);
return NULL;
}
strlcpy(ih->ih_name, name, strlen(name));
ih->ih_softc = sc;
ih->ih_fun = fun;
ih->ih_arg = arg;
s = splhigh();
if (TAILQ_EMPTY(&sc->sc_intrq)) {
sdmmc_intr_enable(sc->sc_fn0);
sdmmc_chip_card_enable_intr(sc->sc_sct, sc->sc_sch, 1);
}
TAILQ_INSERT_TAIL(&sc->sc_intrq, ih, entry);
splx(s);
return ih;
}
/*
* Disestablish the given handler.
*/
void
sdmmc_intr_disestablish(void *cookie)
{
struct sdmmc_intr_handler *ih = cookie;
struct sdmmc_softc *sc = ih->ih_softc;
int s;
if (sc->sc_sct->card_enable_intr == NULL)
return;
s = splhigh();
TAILQ_REMOVE(&sc->sc_intrq, ih, entry);
if (TAILQ_EMPTY(&sc->sc_intrq)) {
sdmmc_chip_card_enable_intr(sc->sc_sct, sc->sc_sch, 0);
sdmmc_intr_disable(sc->sc_fn0);
}
splx(s);
free(ih->ih_name, M_DEVBUF);
free(ih, M_DEVBUF);
}
/*
* Call established SDIO card interrupt handlers. The host controller
* must call this function from its own interrupt handler to handle an
* SDIO interrupt from the card.
*/
void
sdmmc_card_intr(device_t dev)
{
struct sdmmc_softc *sc = device_private(dev);
if (sc->sc_sct->card_enable_intr) {
mutex_enter(&sc->sc_intr_task_mtx);
if (!sdmmc_task_pending(&sc->sc_intr_task))
sdmmc_add_task(sc, &sc->sc_intr_task);
mutex_exit(&sc->sc_intr_task_mtx);
}
}
void
sdmmc_intr_task(void *arg)
{
struct sdmmc_softc *sc = (struct sdmmc_softc *)arg;
struct sdmmc_intr_handler *ih;
int s;
s = splsdmmc();
TAILQ_FOREACH(ih, &sc->sc_intrq, entry) {
splx(s);
/* XXX examine return value and do evcount stuff*/
(void)(*ih->ih_fun)(ih->ih_arg);
s = splsdmmc();
}
sdmmc_chip_card_intr_ack(sc->sc_sct, sc->sc_sch);
splx(s);
}