NetBSD/regress/sys/kern/allocfree/allocfree.c

281 lines
5.8 KiB
C

/* $NetBSD: allocfree.c,v 1.1 2008/12/20 22:29:05 ad Exp $ */
/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: allocfree.c,v 1.1 2008/12/20 22:29:05 ad Exp $");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/kmem.h>
#include <sys/malloc.h>
#include <sys/kthread.h>
#include <sys/condvar.h>
#include <sys/cpu.h>
#include <sys/atomic.h>
#include <machine/cpu_counter.h>
MODULE(MODULE_CLASS_MISC, allocfree, NULL);
static size_t sz = 128;
static int nthreads;
static int count = 100000;
static uint64_t total;
static kmutex_t lock;
static kcondvar_t cv;
static int nrun;
static void (*method)(void);
static int barrier;
static volatile u_int barrier2;
static int timing;
static struct pool pool;
static pool_cache_t cache;
static void
handle_props(prop_dictionary_t props)
{
prop_number_t num;
num = prop_dictionary_get(props, "size");
if (num != NULL && prop_object_type(num) == PROP_TYPE_NUMBER) {
sz = (size_t)prop_number_integer_value(num);
sz = max(sz, 1);
sz = min(sz, 1024*1024);
}
num = prop_dictionary_get(props, "count");
if (num != NULL && prop_object_type(num) == PROP_TYPE_NUMBER) {
count = (int)prop_number_integer_value(num);
count = min(count, 1);
}
num = prop_dictionary_get(props, "timing");
if (num != NULL && prop_object_type(num) == PROP_TYPE_NUMBER) {
timing = (int)prop_number_integer_value(num);
}
}
static void
kmem_method(void)
{
int *p;
p = kmem_alloc(sz, KM_SLEEP);
if (p != NULL) {
*p = 1;
kmem_free(p, sz);
}
}
static void
malloc_method(void)
{
int *p;
p = malloc(sz, M_DEVBUF, M_WAITOK);
if (p != NULL) {
*p = 1;
free(p, M_DEVBUF);
}
}
static void
pool_method(void)
{
int *p;
p = pool_get(&pool, PR_WAITOK);
if (p != NULL) {
*p = 1;
pool_put(&pool, p);
}
}
static void
cache_method(void)
{
int *p;
p = pool_cache_get(cache, PR_WAITOK);
if (p != NULL) {
*p = 1;
pool_cache_put(cache, p);
}
}
static void
test_thread(void *cookie)
{
struct timespec s, e, t;
int lcv;
uint64_t x;
kpreempt_disable();
memset(&t, 0, sizeof(t));
x = 0;
mutex_enter(&lock);
barrier++;
while (barrier < nthreads) {
cv_wait(&cv, &lock);
}
cv_broadcast(&cv);
mutex_exit(&lock);
atomic_inc_uint(&barrier2);
while (barrier2 < nthreads) {
nullop(NULL);
}
if (timing) {
for (lcv = count; lcv != 0; lcv--) {
x -= cpu_counter();
(*method)();
x += cpu_counter();
}
} else {
for (lcv = count; lcv != 0; lcv--) {
nanotime(&s);
(*method)();
nanotime(&e);
timespecsub(&e, &s, &e);
timespecadd(&e, &t, &t);
}
}
mutex_enter(&lock);
barrier = 0;
barrier2 = 0;
if (timing) {
total += x * 1000000000LL / cpu_frequency(curcpu());
} else {
total += timespec2ns(&t);
}
if (--nrun == 0) {
cv_broadcast(&cv);
}
mutex_exit(&lock);
kpreempt_enable();
kthread_exit(0);
}
static void
run2(int nt, void (*func)(void))
{
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
int error;
nthreads = nt;
total = 0;
method = func;
for (CPU_INFO_FOREACH(cii, ci)) {
if (nt-- == 0) {
break;
}
error = kthread_create(PRI_NONE, KTHREAD_MPSAFE,
ci, test_thread, NULL, NULL, "test");
if (error == 0) {
nrun++;
} else {
nthreads--;
}
}
mutex_enter(&lock);
cv_broadcast(&cv);
while (nrun > 0) {
cv_wait(&cv, &lock);
}
mutex_exit(&lock);
if (nthreads == 0) {
printf("FAILED\n");
} else {
printf("\t%d", (int)(total / nthreads / count));
}
}
static void
run1(int nt)
{
run2(nt, malloc_method);
run2(nt, kmem_method);
run2(nt, pool_method);
run2(nt, cache_method);
printf("\n");
}
static void
run0(void)
{
int i;
for (i = 1; i <= ncpu; i++) {
printf("%d\t%d", sz, i);
run1(i);
}
}
static int
allocfree_modcmd(modcmd_t cmd, void *arg)
{
const char *timer;
switch (cmd) {
case MODULE_CMD_INIT:
handle_props(arg);
timer = (timing ? "cpu_counter" : "nanotime");
printf("=> using %s() for timings\n", timer);
printf("SIZE\tNCPU\tMALLOC\tKMEM\tPOOL\tCACHE\n");
mutex_init(&lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&cv, "testcv");
pool_init(&pool, sz, 0, 0, 0, "tpool",
&pool_allocator_nointr, IPL_NONE);
cache = pool_cache_init(sz, 0, 0, 0, "tcache",
NULL, IPL_NONE, NULL, NULL, NULL);
run0();
pool_destroy(&pool);
pool_cache_destroy(cache);
mutex_destroy(&lock);
cv_destroy(&cv);
return 0;
case MODULE_CMD_FINI:
/* XXX in theory, threads could still be running. */
return 0;
default:
return ENOTTY;
}
}