NetBSD/sys/dev/pci/if_bge.c
2013-11-07 18:45:32 +00:00

6093 lines
173 KiB
C

/* $NetBSD: if_bge.c,v 1.264 2013/11/07 18:45:32 msaitoh Exp $ */
/*
* Copyright (c) 2001 Wind River Systems
* Copyright (c) 1997, 1998, 1999, 2001
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
*/
/*
* Broadcom BCM570x family gigabit ethernet driver for NetBSD.
*
* NetBSD version by:
*
* Frank van der Linden <fvdl@wasabisystems.com>
* Jason Thorpe <thorpej@wasabisystems.com>
* Jonathan Stone <jonathan@dsg.stanford.edu>
*
* Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
* Senior Engineer, Wind River Systems
*/
/*
* The Broadcom BCM5700 is based on technology originally developed by
* Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
* MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
* frames, highly configurable RX filtering, and 16 RX and TX queues
* (which, along with RX filter rules, can be used for QOS applications).
* Other features, such as TCP segmentation, may be available as part
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
* firmware images can be stored in hardware and need not be compiled
* into the driver.
*
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
* function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
*
* The BCM5701 is a single-chip solution incorporating both the BCM5700
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
* does not support external SSRAM.
*
* Broadcom also produces a variation of the BCM5700 under the "Altima"
* brand name, which is functionally similar but lacks PCI-X support.
*
* Without external SSRAM, you can only have at most 4 TX rings,
* and the use of the mini RX ring is disabled. This seems to imply
* that these features are simply not available on the BCM5701. As a
* result, this driver does not implement any support for the mini RX
* ring.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.264 2013/11/07 18:45:32 msaitoh Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <sys/rnd.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif
/* Headers for TCP Segmentation Offload (TSO) */
#include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
#include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
#include <netinet/ip.h> /* for struct ip */
#include <netinet/tcp.h> /* for struct tcphdr */
#include <net/bpf.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/miidevs.h>
#include <dev/mii/brgphyreg.h>
#include <dev/pci/if_bgereg.h>
#include <dev/pci/if_bgevar.h>
#include <prop/proplib.h>
#define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
/*
* Tunable thresholds for rx-side bge interrupt mitigation.
*/
/*
* The pairs of values below were obtained from empirical measurement
* on bcm5700 rev B2; they ar designed to give roughly 1 receive
* interrupt for every N packets received, where N is, approximately,
* the second value (rx_max_bds) in each pair. The values are chosen
* such that moving from one pair to the succeeding pair was observed
* to roughly halve interrupt rate under sustained input packet load.
* The values were empirically chosen to avoid overflowing internal
* limits on the bcm5700: increasing rx_ticks much beyond 600
* results in internal wrapping and higher interrupt rates.
* The limit of 46 frames was chosen to match NFS workloads.
*
* These values also work well on bcm5701, bcm5704C, and (less
* tested) bcm5703. On other chipsets, (including the Altima chip
* family), the larger values may overflow internal chip limits,
* leading to increasing interrupt rates rather than lower interrupt
* rates.
*
* Applications using heavy interrupt mitigation (interrupting every
* 32 or 46 frames) in both directions may need to increase the TCP
* windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
* full link bandwidth, due to ACKs and window updates lingering
* in the RX queue during the 30-to-40-frame interrupt-mitigation window.
*/
static const struct bge_load_rx_thresh {
int rx_ticks;
int rx_max_bds; }
bge_rx_threshes[] = {
{ 16, 1 }, /* rx_max_bds = 1 disables interrupt mitigation */
{ 32, 2 },
{ 50, 4 },
{ 100, 8 },
{ 192, 16 },
{ 416, 32 },
{ 598, 46 }
};
#define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
/* XXX patchable; should be sysctl'able */
static int bge_auto_thresh = 1;
static int bge_rx_thresh_lvl;
static int bge_rxthresh_nodenum;
typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
static uint32_t bge_chipid(const struct pci_attach_args *);
static int bge_probe(device_t, cfdata_t, void *);
static void bge_attach(device_t, device_t, void *);
static int bge_detach(device_t, int);
static void bge_release_resources(struct bge_softc *);
static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
static void bge_txeof(struct bge_softc *);
static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
static void bge_rxeof(struct bge_softc *);
static void bge_asf_driver_up (struct bge_softc *);
static void bge_tick(void *);
static void bge_stats_update(struct bge_softc *);
static void bge_stats_update_regs(struct bge_softc *);
static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
static int bge_intr(void *);
static void bge_start(struct ifnet *);
static int bge_ifflags_cb(struct ethercom *);
static int bge_ioctl(struct ifnet *, u_long, void *);
static int bge_init(struct ifnet *);
static void bge_stop(struct ifnet *, int);
static void bge_watchdog(struct ifnet *);
static int bge_ifmedia_upd(struct ifnet *);
static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
static int bge_read_eeprom(struct bge_softc *, void *, int, int);
static void bge_setmulti(struct bge_softc *);
static void bge_handle_events(struct bge_softc *);
static int bge_alloc_jumbo_mem(struct bge_softc *);
#if 0 /* XXX */
static void bge_free_jumbo_mem(struct bge_softc *);
#endif
static void *bge_jalloc(struct bge_softc *);
static void bge_jfree(struct mbuf *, void *, size_t, void *);
static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
bus_dmamap_t);
static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
static int bge_init_rx_ring_std(struct bge_softc *);
static void bge_free_rx_ring_std(struct bge_softc *);
static int bge_init_rx_ring_jumbo(struct bge_softc *);
static void bge_free_rx_ring_jumbo(struct bge_softc *);
static void bge_free_tx_ring(struct bge_softc *);
static int bge_init_tx_ring(struct bge_softc *);
static int bge_chipinit(struct bge_softc *);
static int bge_blockinit(struct bge_softc *);
static int bge_phy_addr(struct bge_softc *);
static uint32_t bge_readmem_ind(struct bge_softc *, int);
static void bge_writemem_ind(struct bge_softc *, int, int);
static void bge_writembx(struct bge_softc *, int, int);
static void bge_writembx_flush(struct bge_softc *, int, int);
static void bge_writemem_direct(struct bge_softc *, int, int);
static void bge_writereg_ind(struct bge_softc *, int, int);
static void bge_set_max_readrq(struct bge_softc *);
static int bge_miibus_readreg(device_t, int, int);
static void bge_miibus_writereg(device_t, int, int, int);
static void bge_miibus_statchg(struct ifnet *);
#define BGE_RESET_SHUTDOWN 0
#define BGE_RESET_START 1
#define BGE_RESET_SUSPEND 2
static void bge_sig_post_reset(struct bge_softc *, int);
static void bge_sig_legacy(struct bge_softc *, int);
static void bge_sig_pre_reset(struct bge_softc *, int);
static void bge_wait_for_event_ack(struct bge_softc *);
static void bge_stop_fw(struct bge_softc *);
static int bge_reset(struct bge_softc *);
static void bge_link_upd(struct bge_softc *);
static void bge_sysctl_init(struct bge_softc *);
static int bge_sysctl_verify(SYSCTLFN_PROTO);
static void bge_ape_lock_init(struct bge_softc *);
static void bge_ape_read_fw_ver(struct bge_softc *);
static int bge_ape_lock(struct bge_softc *, int);
static void bge_ape_unlock(struct bge_softc *, int);
static void bge_ape_send_event(struct bge_softc *, uint32_t);
static void bge_ape_driver_state_change(struct bge_softc *, int);
#ifdef BGE_DEBUG
#define DPRINTF(x) if (bgedebug) printf x
#define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
#define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
int bgedebug = 0;
int bge_tso_debug = 0;
void bge_debug_info(struct bge_softc *);
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#define BGE_TSO_PRINTF(x)
#endif
#ifdef BGE_EVENT_COUNTERS
#define BGE_EVCNT_INCR(ev) (ev).ev_count++
#define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
#define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
#else
#define BGE_EVCNT_INCR(ev) /* nothing */
#define BGE_EVCNT_ADD(ev, val) /* nothing */
#define BGE_EVCNT_UPD(ev, val) /* nothing */
#endif
static const struct bge_product {
pci_vendor_id_t bp_vendor;
pci_product_id_t bp_product;
const char *bp_name;
} bge_products[] = {
/*
* The BCM5700 documentation seems to indicate that the hardware
* still has the Alteon vendor ID burned into it, though it
* should always be overridden by the value in the EEPROM. We'll
* check for it anyway.
*/
{ PCI_VENDOR_ALTEON,
PCI_PRODUCT_ALTEON_BCM5700,
"Broadcom BCM5700 Gigabit Ethernet",
},
{ PCI_VENDOR_ALTEON,
PCI_PRODUCT_ALTEON_BCM5701,
"Broadcom BCM5701 Gigabit Ethernet",
},
{ PCI_VENDOR_ALTIMA,
PCI_PRODUCT_ALTIMA_AC1000,
"Altima AC1000 Gigabit Ethernet",
},
{ PCI_VENDOR_ALTIMA,
PCI_PRODUCT_ALTIMA_AC1001,
"Altima AC1001 Gigabit Ethernet",
},
{ PCI_VENDOR_ALTIMA,
PCI_PRODUCT_ALTIMA_AC1003,
"Altima AC1003 Gigabit Ethernet",
},
{ PCI_VENDOR_ALTIMA,
PCI_PRODUCT_ALTIMA_AC9100,
"Altima AC9100 Gigabit Ethernet",
},
{ PCI_VENDOR_APPLE,
PCI_PRODUCT_APPLE_BCM5701,
"APPLE BCM5701 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5700,
"Broadcom BCM5700 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5701,
"Broadcom BCM5701 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5702,
"Broadcom BCM5702 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5702X,
"Broadcom BCM5702X Gigabit Ethernet" },
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5703,
"Broadcom BCM5703 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5703X,
"Broadcom BCM5703X Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5703_ALT,
"Broadcom BCM5703 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5704C,
"Broadcom BCM5704C Dual Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5704S,
"Broadcom BCM5704S Dual Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5705,
"Broadcom BCM5705 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5705F,
"Broadcom BCM5705F Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5705K,
"Broadcom BCM5705K Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5705M,
"Broadcom BCM5705M Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
"Broadcom BCM5705M Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5714,
"Broadcom BCM5714 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5714S,
"Broadcom BCM5714S Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5715,
"Broadcom BCM5715 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5715S,
"Broadcom BCM5715S Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5717,
"Broadcom BCM5717 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5718,
"Broadcom BCM5718 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5719,
"Broadcom BCM5719 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5720,
"Broadcom BCM5720 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5721,
"Broadcom BCM5721 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5722,
"Broadcom BCM5722 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5723,
"Broadcom BCM5723 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5724,
"Broadcom BCM5724 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5750,
"Broadcom BCM5750 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5750M,
"Broadcom BCM5750M Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5751,
"Broadcom BCM5751 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5751F,
"Broadcom BCM5751F Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5751M,
"Broadcom BCM5751M Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5752,
"Broadcom BCM5752 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5752M,
"Broadcom BCM5752M Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5753,
"Broadcom BCM5753 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5753F,
"Broadcom BCM5753F Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5753M,
"Broadcom BCM5753M Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5754,
"Broadcom BCM5754 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5754M,
"Broadcom BCM5754M Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5755,
"Broadcom BCM5755 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5755M,
"Broadcom BCM5755M Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5756,
"Broadcom BCM5756 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5761,
"Broadcom BCM5761 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5761E,
"Broadcom BCM5761E Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5761S,
"Broadcom BCM5761S Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5761SE,
"Broadcom BCM5761SE Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5764,
"Broadcom BCM5764 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5780,
"Broadcom BCM5780 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5780S,
"Broadcom BCM5780S Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5781,
"Broadcom BCM5781 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5782,
"Broadcom BCM5782 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5784M,
"BCM5784M NetLink 1000baseT Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5785F,
"BCM5785F NetLink 10/100 Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5785G,
"BCM5785G NetLink 1000baseT Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5786,
"Broadcom BCM5786 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5787,
"Broadcom BCM5787 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5787F,
"Broadcom BCM5787F 10/100 Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5787M,
"Broadcom BCM5787M Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5788,
"Broadcom BCM5788 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5789,
"Broadcom BCM5789 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5901,
"Broadcom BCM5901 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5901A2,
"Broadcom BCM5901A2 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5903M,
"Broadcom BCM5903M Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5906,
"Broadcom BCM5906 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM5906M,
"Broadcom BCM5906M Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57760,
"Broadcom BCM57760 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57761,
"Broadcom BCM57761 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57762,
"Broadcom BCM57762 Gigabit Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57765,
"Broadcom BCM57765 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57766,
"Broadcom BCM57766 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57780,
"Broadcom BCM57780 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57781,
"Broadcom BCM57781 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57782,
"Broadcom BCM57782 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57785,
"Broadcom BCM57785 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57786,
"Broadcom BCM57786 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57788,
"Broadcom BCM57788 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57790,
"Broadcom BCM57790 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57791,
"Broadcom BCM57791 Fast Ethernet",
},
{ PCI_VENDOR_BROADCOM,
PCI_PRODUCT_BROADCOM_BCM57795,
"Broadcom BCM57795 Fast Ethernet",
},
{ PCI_VENDOR_SCHNEIDERKOCH,
PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
"SysKonnect SK-9Dx1 Gigabit Ethernet",
},
{ PCI_VENDOR_3COM,
PCI_PRODUCT_3COM_3C996,
"3Com 3c996 Gigabit Ethernet",
},
{ PCI_VENDOR_FUJITSU4,
PCI_PRODUCT_FUJITSU4_PW008GE4,
"Fujitsu PW008GE4 Gigabit Ethernet",
},
{ PCI_VENDOR_FUJITSU4,
PCI_PRODUCT_FUJITSU4_PW008GE5,
"Fujitsu PW008GE5 Gigabit Ethernet",
},
{ PCI_VENDOR_FUJITSU4,
PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
"Fujitsu Primepower 250/450 Gigabit Ethernet",
},
{ 0,
0,
NULL },
};
#define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
#define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGEF_5700_FAMILY)
#define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGEF_5705_PLUS)
#define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGEF_5714_FAMILY)
#define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGEF_575X_PLUS)
#define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGEF_5755_PLUS)
#define BGE_IS_57765_FAMILY(sc) ((sc)->bge_flags & BGEF_57765_FAMILY)
#define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGEF_57765_PLUS)
#define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGEF_5717_PLUS)
static const struct bge_revision {
uint32_t br_chipid;
const char *br_name;
} bge_revisions[] = {
{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
/* 5754 and 5787 share the same ASIC ID */
{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
{ BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
{ 0, NULL }
};
/*
* Some defaults for major revisions, so that newer steppings
* that we don't know about have a shot at working.
*/
static const struct bge_revision bge_majorrevs[] = {
{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
/* 5754 and 5787 share the same ASIC ID */
{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
{ 0, NULL }
};
static int bge_allow_asf = 1;
CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
static uint32_t
bge_readmem_ind(struct bge_softc *sc, int off)
{
pcireg_t val;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
return 0;
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
return val;
}
static void
bge_writemem_ind(struct bge_softc *sc, int off, int val)
{
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
}
/*
* PCI Express only
*/
static void
bge_set_max_readrq(struct bge_softc *sc)
{
pcireg_t val;
val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
+ PCIE_DCSR);
val &= ~PCIE_DCSR_MAX_READ_REQ;
switch (sc->bge_expmrq) {
case 2048:
val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
break;
case 4096:
val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
break;
default:
panic("incorrect expmrq value(%d)", sc->bge_expmrq);
break;
}
pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
+ PCIE_DCSR, val);
}
#ifdef notdef
static uint32_t
bge_readreg_ind(struct bge_softc *sc, int off)
{
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
}
#endif
static void
bge_writereg_ind(struct bge_softc *sc, int off, int val)
{
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
}
static void
bge_writemem_direct(struct bge_softc *sc, int off, int val)
{
CSR_WRITE_4(sc, off, val);
}
static void
bge_writembx(struct bge_softc *sc, int off, int val)
{
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
CSR_WRITE_4(sc, off, val);
}
static void
bge_writembx_flush(struct bge_softc *sc, int off, int val)
{
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
CSR_WRITE_4_FLUSH(sc, off, val);
}
/*
* Clear all stale locks and select the lock for this driver instance.
*/
void
bge_ape_lock_init(struct bge_softc *sc)
{
struct pci_attach_args *pa = &(sc->bge_pa);
uint32_t bit, regbase;
int i;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
regbase = BGE_APE_LOCK_GRANT;
else
regbase = BGE_APE_PER_LOCK_GRANT;
/* Clear any stale locks. */
for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
switch (i) {
case BGE_APE_LOCK_PHY0:
case BGE_APE_LOCK_PHY1:
case BGE_APE_LOCK_PHY2:
case BGE_APE_LOCK_PHY3:
bit = BGE_APE_LOCK_GRANT_DRIVER0;
break;
default:
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << pa->pa_function);
}
APE_WRITE_4(sc, regbase + 4 * i, bit);
}
/* Select the PHY lock based on the device's function number. */
switch (pa->pa_function) {
case 0:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
break;
case 1:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
break;
case 2:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
break;
case 3:
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
break;
default:
printf("%s: PHY lock not supported on function\n",
device_xname(sc->bge_dev));
break;
}
}
/*
* Check for APE firmware, set flags, and print version info.
*/
void
bge_ape_read_fw_ver(struct bge_softc *sc)
{
const char *fwtype;
uint32_t apedata, features;
/* Check for a valid APE signature in shared memory. */
apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
if (apedata != BGE_APE_SEG_SIG_MAGIC) {
sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
return;
}
/* Check if APE firmware is running. */
apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
printf("%s: APE signature found but FW status not ready! "
"0x%08x\n", device_xname(sc->bge_dev), apedata);
return;
}
sc->bge_mfw_flags |= BGE_MFW_ON_APE;
/* Fetch the APE firwmare type and version. */
apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
fwtype = "NCSI";
} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
fwtype = "DASH";
} else
fwtype = "UNKN";
/* Print the APE firmware version. */
printf(", APE firmware %s %d.%d.%d.%d", fwtype,
(apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
(apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
(apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
(apedata & BGE_APE_FW_VERSION_BLDMSK));
}
int
bge_ape_lock(struct bge_softc *sc, int locknum)
{
struct pci_attach_args *pa = &(sc->bge_pa);
uint32_t bit, gnt, req, status;
int i, off;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return (0);
/* Lock request/grant registers have different bases. */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
req = BGE_APE_LOCK_REQ;
gnt = BGE_APE_LOCK_GRANT;
} else {
req = BGE_APE_PER_LOCK_REQ;
gnt = BGE_APE_PER_LOCK_GRANT;
}
off = 4 * locknum;
switch (locknum) {
case BGE_APE_LOCK_GPIO:
/* Lock required when using GPIO. */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
return (0);
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_REQ_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_GRC:
/* Lock required to reset the device. */
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_REQ_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_MEM:
/* Lock required when accessing certain APE memory. */
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_REQ_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_PHY0:
case BGE_APE_LOCK_PHY1:
case BGE_APE_LOCK_PHY2:
case BGE_APE_LOCK_PHY3:
/* Lock required when accessing PHYs. */
bit = BGE_APE_LOCK_REQ_DRIVER0;
break;
default:
return (EINVAL);
}
/* Request a lock. */
APE_WRITE_4_FLUSH(sc, req + off, bit);
/* Wait up to 1 second to acquire lock. */
for (i = 0; i < 20000; i++) {
status = APE_READ_4(sc, gnt + off);
if (status == bit)
break;
DELAY(50);
}
/* Handle any errors. */
if (status != bit) {
printf("%s: APE lock %d request failed! "
"request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
device_xname(sc->bge_dev),
locknum, req + off, bit & 0xFFFF, gnt + off,
status & 0xFFFF);
/* Revoke the lock request. */
APE_WRITE_4(sc, gnt + off, bit);
return (EBUSY);
}
return (0);
}
void
bge_ape_unlock(struct bge_softc *sc, int locknum)
{
struct pci_attach_args *pa = &(sc->bge_pa);
uint32_t bit, gnt;
int off;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
gnt = BGE_APE_LOCK_GRANT;
else
gnt = BGE_APE_PER_LOCK_GRANT;
off = 4 * locknum;
switch (locknum) {
case BGE_APE_LOCK_GPIO:
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
return;
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_GRC:
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_MEM:
if (pa->pa_function == 0)
bit = BGE_APE_LOCK_GRANT_DRIVER0;
else
bit = (1 << pa->pa_function);
break;
case BGE_APE_LOCK_PHY0:
case BGE_APE_LOCK_PHY1:
case BGE_APE_LOCK_PHY2:
case BGE_APE_LOCK_PHY3:
bit = BGE_APE_LOCK_GRANT_DRIVER0;
break;
default:
return;
}
/* Write and flush for consecutive bge_ape_lock() */
APE_WRITE_4_FLUSH(sc, gnt + off, bit);
}
/*
* Send an event to the APE firmware.
*/
void
bge_ape_send_event(struct bge_softc *sc, uint32_t event)
{
uint32_t apedata;
int i;
/* NCSI does not support APE events. */
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return;
/* Wait up to 1ms for APE to service previous event. */
for (i = 10; i > 0; i--) {
if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
break;
apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
BGE_APE_EVENT_STATUS_EVENT_PENDING);
bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
break;
}
bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
DELAY(100);
}
if (i == 0) {
printf("%s: APE event 0x%08x send timed out\n",
device_xname(sc->bge_dev), event);
}
}
void
bge_ape_driver_state_change(struct bge_softc *sc, int kind)
{
uint32_t apedata, event;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
return;
switch (kind) {
case BGE_RESET_START:
/* If this is the first load, clear the load counter. */
apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
else {
apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
}
APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
BGE_APE_HOST_SEG_SIG_MAGIC);
APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
BGE_APE_HOST_SEG_LEN_MAGIC);
/* Add some version info if bge(4) supports it. */
APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
BGE_APE_HOST_BEHAV_NO_PHYLOCK);
APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
BGE_APE_HOST_DRVR_STATE_START);
event = BGE_APE_EVENT_STATUS_STATE_START;
break;
case BGE_RESET_SHUTDOWN:
APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
BGE_APE_HOST_DRVR_STATE_UNLOAD);
event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
break;
case BGE_RESET_SUSPEND:
event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
break;
default:
return;
}
bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
BGE_APE_EVENT_STATUS_STATE_CHNGE);
}
static uint8_t
bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
{
uint32_t access, byte = 0;
int i;
/* Lock. */
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
for (i = 0; i < 8000; i++) {
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
break;
DELAY(20);
}
if (i == 8000)
return 1;
/* Enable access. */
access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
DELAY(10);
break;
}
}
if (i == BGE_TIMEOUT * 10) {
aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
return 1;
}
/* Get result. */
byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
/* Disable access. */
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
/* Unlock. */
CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
return 0;
}
/*
* Read a sequence of bytes from NVRAM.
*/
static int
bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
{
int error = 0, i;
uint8_t byte = 0;
if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
return 1;
for (i = 0; i < cnt; i++) {
error = bge_nvram_getbyte(sc, off + i, &byte);
if (error)
break;
*(dest + i) = byte;
}
return (error ? 1 : 0);
}
/*
* Read a byte of data stored in the EEPROM at address 'addr.' The
* BCM570x supports both the traditional bitbang interface and an
* auto access interface for reading the EEPROM. We use the auto
* access method.
*/
static uint8_t
bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
{
int i;
uint32_t byte = 0;
/*
* Enable use of auto EEPROM access so we can avoid
* having to use the bitbang method.
*/
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
/* Reset the EEPROM, load the clock period. */
CSR_WRITE_4(sc, BGE_EE_ADDR,
BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
DELAY(20);
/* Issue the read EEPROM command. */
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
/* Wait for completion */
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
break;
}
if (i == BGE_TIMEOUT * 10) {
aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
return 1;
}
/* Get result. */
byte = CSR_READ_4(sc, BGE_EE_DATA);
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
return 0;
}
/*
* Read a sequence of bytes from the EEPROM.
*/
static int
bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
{
int error = 0, i;
uint8_t byte = 0;
char *dest = destv;
for (i = 0; i < cnt; i++) {
error = bge_eeprom_getbyte(sc, off + i, &byte);
if (error)
break;
*(dest + i) = byte;
}
return (error ? 1 : 0);
}
static int
bge_miibus_readreg(device_t dev, int phy, int reg)
{
struct bge_softc *sc = device_private(dev);
uint32_t val;
uint32_t autopoll;
int i;
if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
return 0;
/* Reading with autopolling on may trigger PCI errors */
autopoll = CSR_READ_4(sc, BGE_MI_MODE);
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(80);
}
CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
BGE_MIPHY(phy) | BGE_MIREG(reg));
for (i = 0; i < BGE_TIMEOUT; i++) {
delay(10);
val = CSR_READ_4(sc, BGE_MI_COMM);
if (!(val & BGE_MICOMM_BUSY)) {
DELAY(5);
val = CSR_READ_4(sc, BGE_MI_COMM);
break;
}
}
if (i == BGE_TIMEOUT) {
aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
val = 0;
goto done;
}
done:
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(80);
}
bge_ape_unlock(sc, sc->bge_phy_ape_lock);
if (val & BGE_MICOMM_READFAIL)
return 0;
return (val & 0xFFFF);
}
static void
bge_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct bge_softc *sc = device_private(dev);
uint32_t autopoll;
int i;
if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
return;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
(reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
return;
/* Reading with autopolling on may trigger PCI errors */
autopoll = CSR_READ_4(sc, BGE_MI_MODE);
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
DELAY(80);
}
CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
for (i = 0; i < BGE_TIMEOUT; i++) {
delay(10);
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
delay(5);
CSR_READ_4(sc, BGE_MI_COMM);
break;
}
}
if (autopoll & BGE_MIMODE_AUTOPOLL) {
BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
delay(80);
}
bge_ape_unlock(sc, sc->bge_phy_ape_lock);
if (i == BGE_TIMEOUT)
aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
}
static void
bge_miibus_statchg(struct ifnet *ifp)
{
struct bge_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->bge_mii;
uint32_t mac_mode, rx_mode, tx_mode;
/*
* Get flow control negotiation result.
*/
if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
(mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
BGE_STS_SETBIT(sc, BGE_STS_LINK);
else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
(!(mii->mii_media_status & IFM_ACTIVE) ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
if (!BGE_STS_BIT(sc, BGE_STS_LINK))
return;
/* Set the port mode (MII/GMII) to match the link speed. */
mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
mac_mode |= BGE_PORTMODE_GMII;
else
mac_mode |= BGE_PORTMODE_MII;
tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
if ((mii->mii_media_active & IFM_FDX) != 0) {
if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
} else
mac_mode |= BGE_MACMODE_HALF_DUPLEX;
CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
DELAY(40);
CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
}
/*
* Update rx threshold levels to values in a particular slot
* of the interrupt-mitigation table bge_rx_threshes.
*/
static void
bge_set_thresh(struct ifnet *ifp, int lvl)
{
struct bge_softc *sc = ifp->if_softc;
int s;
/* For now, just save the new Rx-intr thresholds and record
* that a threshold update is pending. Updating the hardware
* registers here (even at splhigh()) is observed to
* occasionaly cause glitches where Rx-interrupts are not
* honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
*/
s = splnet();
sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
sc->bge_pending_rxintr_change = 1;
splx(s);
}
/*
* Update Rx thresholds of all bge devices
*/
static void
bge_update_all_threshes(int lvl)
{
struct ifnet *ifp;
const char * const namebuf = "bge";
int namelen;
if (lvl < 0)
lvl = 0;
else if (lvl >= NBGE_RX_THRESH)
lvl = NBGE_RX_THRESH - 1;
namelen = strlen(namebuf);
/*
* Now search all the interfaces for this name/number
*/
IFNET_FOREACH(ifp) {
if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
continue;
/* We got a match: update if doing auto-threshold-tuning */
if (bge_auto_thresh)
bge_set_thresh(ifp, lvl);
}
}
/*
* Handle events that have triggered interrupts.
*/
static void
bge_handle_events(struct bge_softc *sc)
{
return;
}
/*
* Memory management for jumbo frames.
*/
static int
bge_alloc_jumbo_mem(struct bge_softc *sc)
{
char *ptr, *kva;
bus_dma_segment_t seg;
int i, rseg, state, error;
struct bge_jpool_entry *entry;
state = error = 0;
/* Grab a big chunk o' storage. */
if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
return ENOBUFS;
}
state = 1;
if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bge_dev,
"can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
error = ENOBUFS;
goto out;
}
state = 2;
if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
error = ENOBUFS;
goto out;
}
state = 3;
if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
error = ENOBUFS;
goto out;
}
state = 4;
sc->bge_cdata.bge_jumbo_buf = (void *)kva;
DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
SLIST_INIT(&sc->bge_jfree_listhead);
SLIST_INIT(&sc->bge_jinuse_listhead);
/*
* Now divide it up into 9K pieces and save the addresses
* in an array.
*/
ptr = sc->bge_cdata.bge_jumbo_buf;
for (i = 0; i < BGE_JSLOTS; i++) {
sc->bge_cdata.bge_jslots[i] = ptr;
ptr += BGE_JLEN;
entry = malloc(sizeof(struct bge_jpool_entry),
M_DEVBUF, M_NOWAIT);
if (entry == NULL) {
aprint_error_dev(sc->bge_dev,
"no memory for jumbo buffer queue!\n");
error = ENOBUFS;
goto out;
}
entry->slot = i;
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
entry, jpool_entries);
}
out:
if (error != 0) {
switch (state) {
case 4:
bus_dmamap_unload(sc->bge_dmatag,
sc->bge_cdata.bge_rx_jumbo_map);
case 3:
bus_dmamap_destroy(sc->bge_dmatag,
sc->bge_cdata.bge_rx_jumbo_map);
case 2:
bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
case 1:
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
break;
default:
break;
}
}
return error;
}
/*
* Allocate a jumbo buffer.
*/
static void *
bge_jalloc(struct bge_softc *sc)
{
struct bge_jpool_entry *entry;
entry = SLIST_FIRST(&sc->bge_jfree_listhead);
if (entry == NULL) {
aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
return NULL;
}
SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
return (sc->bge_cdata.bge_jslots[entry->slot]);
}
/*
* Release a jumbo buffer.
*/
static void
bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
{
struct bge_jpool_entry *entry;
struct bge_softc *sc;
int i, s;
/* Extract the softc struct pointer. */
sc = (struct bge_softc *)arg;
if (sc == NULL)
panic("bge_jfree: can't find softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((char *)buf
- (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
if ((i < 0) || (i >= BGE_JSLOTS))
panic("bge_jfree: asked to free buffer that we don't manage!");
s = splvm();
entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
if (entry == NULL)
panic("bge_jfree: buffer not in use!");
entry->slot = i;
SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
if (__predict_true(m != NULL))
pool_cache_put(mb_cache, m);
splx(s);
}
/*
* Initialize a standard receive ring descriptor.
*/
static int
bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
bus_dmamap_t dmamap)
{
struct mbuf *m_new = NULL;
struct bge_rx_bd *r;
int error;
if (dmamap == NULL) {
error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
if (error != 0)
return error;
}
sc->bge_cdata.bge_rx_std_map[i] = dmamap;
if (m == NULL) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return ENOBUFS;
MCLGET(m_new, M_DONTWAIT);
if (!(m_new->m_flags & M_EXT)) {
m_freem(m_new);
return ENOBUFS;
}
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
m_new->m_data = m_new->m_ext.ext_buf;
}
if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
m_adj(m_new, ETHER_ALIGN);
if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
BUS_DMA_READ|BUS_DMA_NOWAIT))
return ENOBUFS;
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
sc->bge_cdata.bge_rx_std_chain[i] = m_new;
r = &sc->bge_rdata->bge_rx_std_ring[i];
BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
r->bge_flags = BGE_RXBDFLAG_END;
r->bge_len = m_new->m_len;
r->bge_idx = i;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_rx_std_ring) +
i * sizeof (struct bge_rx_bd),
sizeof (struct bge_rx_bd),
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
return 0;
}
/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int
bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
{
struct mbuf *m_new = NULL;
struct bge_rx_bd *r;
void *buf = NULL;
if (m == NULL) {
/* Allocate the mbuf. */
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return ENOBUFS;
/* Allocate the jumbo buffer */
buf = bge_jalloc(sc);
if (buf == NULL) {
m_freem(m_new);
aprint_error_dev(sc->bge_dev,
"jumbo allocation failed -- packet dropped!\n");
return ENOBUFS;
}
/* Attach the buffer to the mbuf. */
m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
bge_jfree, sc);
m_new->m_flags |= M_EXT_RW;
} else {
m_new = m;
buf = m_new->m_data = m_new->m_ext.ext_buf;
m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
}
if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
m_adj(m_new, ETHER_ALIGN);
bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
BUS_DMASYNC_PREREAD);
/* Set up the descriptor. */
r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
r->bge_len = m_new->m_len;
r->bge_idx = i;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
i * sizeof (struct bge_rx_bd),
sizeof (struct bge_rx_bd),
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
return 0;
}
/*
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
* that's 1MB or memory, which is a lot. For now, we fill only the first
* 256 ring entries and hope that our CPU is fast enough to keep up with
* the NIC.
*/
static int
bge_init_rx_ring_std(struct bge_softc *sc)
{
int i;
if (sc->bge_flags & BGEF_RXRING_VALID)
return 0;
for (i = 0; i < BGE_SSLOTS; i++) {
if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
return ENOBUFS;
}
sc->bge_std = i - 1;
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
sc->bge_flags |= BGEF_RXRING_VALID;
return 0;
}
static void
bge_free_rx_ring_std(struct bge_softc *sc)
{
int i;
if (!(sc->bge_flags & BGEF_RXRING_VALID))
return;
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
bus_dmamap_destroy(sc->bge_dmatag,
sc->bge_cdata.bge_rx_std_map[i]);
}
memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
sizeof(struct bge_rx_bd));
}
sc->bge_flags &= ~BGEF_RXRING_VALID;
}
static int
bge_init_rx_ring_jumbo(struct bge_softc *sc)
{
int i;
volatile struct bge_rcb *rcb;
if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
return 0;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
return ENOBUFS;
}
sc->bge_jumbo = i - 1;
sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
rcb->bge_maxlen_flags = 0;
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
return 0;
}
static void
bge_free_rx_ring_jumbo(struct bge_softc *sc)
{
int i;
if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
return;
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
}
memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
sizeof(struct bge_rx_bd));
}
sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
}
static void
bge_free_tx_ring(struct bge_softc *sc)
{
int i;
struct txdmamap_pool_entry *dma;
if (!(sc->bge_flags & BGEF_TXRING_VALID))
return;
for (i = 0; i < BGE_TX_RING_CNT; i++) {
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
m_freem(sc->bge_cdata.bge_tx_chain[i]);
sc->bge_cdata.bge_tx_chain[i] = NULL;
SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
link);
sc->txdma[i] = 0;
}
memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
sizeof(struct bge_tx_bd));
}
while ((dma = SLIST_FIRST(&sc->txdma_list))) {
SLIST_REMOVE_HEAD(&sc->txdma_list, link);
bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
free(dma, M_DEVBUF);
}
sc->bge_flags &= ~BGEF_TXRING_VALID;
}
static int
bge_init_tx_ring(struct bge_softc *sc)
{
struct ifnet *ifp = &sc->ethercom.ec_if;
int i;
bus_dmamap_t dmamap;
bus_size_t maxsegsz;
struct txdmamap_pool_entry *dma;
if (sc->bge_flags & BGEF_TXRING_VALID)
return 0;
sc->bge_txcnt = 0;
sc->bge_tx_saved_considx = 0;
/* Initialize transmit producer index for host-memory send ring. */
sc->bge_tx_prodidx = 0;
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
/* 5700 b2 errata */
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
/* NIC-memory send ring not used; initialize to zero. */
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
/* 5700 b2 errata */
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
/* Limit DMA segment size for some chips */
if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
(ifp->if_mtu <= ETHERMTU))
maxsegsz = 2048;
else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
maxsegsz = 4096;
else
maxsegsz = ETHER_MAX_LEN_JUMBO;
SLIST_INIT(&sc->txdma_list);
for (i = 0; i < BGE_TX_RING_CNT; i++) {
if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
BGE_NTXSEG, maxsegsz, 0, BUS_DMA_NOWAIT,
&dmamap))
return ENOBUFS;
if (dmamap == NULL)
panic("dmamap NULL in bge_init_tx_ring");
dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
if (dma == NULL) {
aprint_error_dev(sc->bge_dev,
"can't alloc txdmamap_pool_entry\n");
bus_dmamap_destroy(sc->bge_dmatag, dmamap);
return ENOMEM;
}
dma->dmamap = dmamap;
SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
}
sc->bge_flags |= BGEF_TXRING_VALID;
return 0;
}
static void
bge_setmulti(struct bge_softc *sc)
{
struct ethercom *ac = &sc->ethercom;
struct ifnet *ifp = &ac->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t hashes[4] = { 0, 0, 0, 0 };
uint32_t h;
int i;
if (ifp->if_flags & IFF_PROMISC)
goto allmulti;
/* Now program new ones. */
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
/* Just want the 7 least-significant bits. */
h &= 0x7f;
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
goto setit;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
setit:
for (i = 0; i < 4; i++)
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
}
static void
bge_sig_pre_reset(struct bge_softc *sc, int type)
{
/*
* Some chips don't like this so only do this if ASF is enabled
*/
if (sc->bge_asf_mode)
bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
switch (type) {
case BGE_RESET_START:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_START);
break;
case BGE_RESET_SHUTDOWN:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_UNLOAD);
break;
case BGE_RESET_SUSPEND:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_SUSPEND);
break;
}
}
if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
bge_ape_driver_state_change(sc, type);
}
static void
bge_sig_post_reset(struct bge_softc *sc, int type)
{
if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
switch (type) {
case BGE_RESET_START:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_START_DONE);
/* START DONE */
break;
case BGE_RESET_SHUTDOWN:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_UNLOAD_DONE);
break;
}
}
if (type == BGE_RESET_SHUTDOWN)
bge_ape_driver_state_change(sc, type);
}
static void
bge_sig_legacy(struct bge_softc *sc, int type)
{
if (sc->bge_asf_mode) {
switch (type) {
case BGE_RESET_START:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_START);
break;
case BGE_RESET_SHUTDOWN:
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
BGE_FW_DRV_STATE_UNLOAD);
break;
}
}
}
static void
bge_wait_for_event_ack(struct bge_softc *sc)
{
int i;
/* wait up to 2500usec */
for (i = 0; i < 250; i++) {
if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
BGE_RX_CPU_DRV_EVENT))
break;
DELAY(10);
}
}
static void
bge_stop_fw(struct bge_softc *sc)
{
if (sc->bge_asf_mode) {
bge_wait_for_event_ack(sc);
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
bge_wait_for_event_ack(sc);
}
}
static int
bge_poll_fw(struct bge_softc *sc)
{
uint32_t val;
int i;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
for (i = 0; i < BGE_TIMEOUT; i++) {
val = CSR_READ_4(sc, BGE_VCPU_STATUS);
if (val & BGE_VCPU_STATUS_INIT_DONE)
break;
DELAY(100);
}
if (i >= BGE_TIMEOUT) {
aprint_error_dev(sc->bge_dev, "reset timed out\n");
return -1;
}
} else if ((sc->bge_flags & BGEF_NO_EEPROM) == 0) {
/*
* Poll the value location we just wrote until
* we see the 1's complement of the magic number.
* This indicates that the firmware initialization
* is complete.
* XXX 1000ms for Flash and 10000ms for SEEPROM.
*/
for (i = 0; i < BGE_TIMEOUT; i++) {
val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
if (val == ~BGE_SRAM_FW_MB_MAGIC)
break;
DELAY(10);
}
if (i >= BGE_TIMEOUT) {
aprint_error_dev(sc->bge_dev,
"firmware handshake timed out, val = %x\n", val);
return -1;
}
}
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
/* tg3 says we have to wait extra time */
delay(10 * 1000);
}
return 0;
}
int
bge_phy_addr(struct bge_softc *sc)
{
struct pci_attach_args *pa = &(sc->bge_pa);
int phy_addr = 1;
/*
* PHY address mapping for various devices.
*
* | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
* ---------+-------+-------+-------+-------+
* BCM57XX | 1 | X | X | X |
* BCM5704 | 1 | X | 1 | X |
* BCM5717 | 1 | 8 | 2 | 9 |
* BCM5719 | 1 | 8 | 2 | 9 |
* BCM5720 | 1 | 8 | 2 | 9 |
*
* | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
* ---------+-------+-------+-------+-------+
* BCM57XX | X | X | X | X |
* BCM5704 | X | X | X | X |
* BCM5717 | X | X | X | X |
* BCM5719 | 3 | 10 | 4 | 11 |
* BCM5720 | X | X | X | X |
*
* Other addresses may respond but they are not
* IEEE compliant PHYs and should be ignored.
*/
switch (BGE_ASICREV(sc->bge_chipid)) {
case BGE_ASICREV_BCM5717:
case BGE_ASICREV_BCM5719:
case BGE_ASICREV_BCM5720:
phy_addr = pa->pa_function;
if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
} else {
phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
}
}
return phy_addr;
}
/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
static int
bge_chipinit(struct bge_softc *sc)
{
uint32_t dma_rw_ctl, mode_ctl, reg;
int i;
/* Set endianness before we access any non-PCI registers. */
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
BGE_INIT);
/*
* Clear the MAC statistics block in the NIC's
* internal memory.
*/
for (i = BGE_STATS_BLOCK;
i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
for (i = BGE_STATUS_BLOCK;
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
/* 5717 workaround from tg3 */
if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
/* Save */
mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
/* Temporary modify MODE_CTL to control TLP */
reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);
/* Control TLP */
reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
BGE_TLP_PHYCTL1);
CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);
/* Restore */
CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
}
if (BGE_IS_57765_FAMILY(sc)) {
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
/* Save */
mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
/* Temporary modify MODE_CTL to control TLP */
reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
CSR_WRITE_4(sc, BGE_MODE_CTL,
reg | BGE_MODECTL_PCIE_TLPADDR1);
/* Control TLP */
reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
BGE_TLP_PHYCTL5);
CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);
/* Restore */
CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
}
if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
reg | BGE_CPMU_PADRNG_CTL_RDIV2);
/* Save */
mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);
/* Temporary modify MODE_CTL to control TLP */
reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
CSR_WRITE_4(sc, BGE_MODE_CTL,
reg | BGE_MODECTL_PCIE_TLPADDR0);
/* Control TLP */
reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
BGE_TLP_FTSMAX);
reg &= ~BGE_TLP_FTSMAX_MSK;
CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
reg | BGE_TLP_FTSMAX_VAL);
/* Restore */
CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
}
reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
}
/* Set up the PCI DMA control register. */
dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
if (sc->bge_flags & BGEF_PCIE) {
/* Read watermark not used, 128 bytes for write. */
DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
device_xname(sc->bge_dev)));
if (sc->bge_mps >= 256)
dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
else
dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
} else if (sc->bge_flags & BGEF_PCIX) {
DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
device_xname(sc->bge_dev)));
/* PCI-X bus */
if (BGE_IS_5714_FAMILY(sc)) {
/* 256 bytes for read and write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
else
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
/* 1536 bytes for read, 384 bytes for write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
} else {
/* 384 bytes for read and write. */
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
(0x0F);
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
uint32_t tmp;
/* Set ONEDMA_ATONCE for hardware workaround. */
tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
if (tmp == 6 || tmp == 7)
dma_rw_ctl |=
BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
/* Set PCI-X DMA write workaround. */
dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
}
} else {
/* Conventional PCI bus: 256 bytes for read and write. */
DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
device_xname(sc->bge_dev)));
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
dma_rw_ctl |= 0x0F;
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
BGE_PCIDMARWCTL_ASRT_ALL_BE;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
if (BGE_IS_57765_PLUS(sc)) {
dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
/*
* Enable HW workaround for controllers that misinterpret
* a status tag update and leave interrupts permanently
* disabled.
*/
if (!BGE_IS_57765_FAMILY(sc) &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717)
dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
}
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
dma_rw_ctl);
/*
* Set up general mode register.
*/
mode_ctl = BGE_DMA_SWAP_OPTIONS;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
/* Retain Host-2-BMC settings written by APE firmware. */
mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
(BGE_MODECTL_BYTESWAP_B2HRX_DATA |
BGE_MODECTL_WORDSWAP_B2HRX_DATA |
BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
}
mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
BGE_MODECTL_TX_NO_PHDR_CSUM;
/*
* BCM5701 B5 have a bug causing data corruption when using
* 64-bit DMA reads, which can be terminated early and then
* completed later as 32-bit accesses, in combination with
* certain bridges.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
mode_ctl |= BGE_MODECTL_FORCE_PCI32;
/*
* Tell the firmware the driver is running
*/
if (sc->bge_asf_mode & ASF_STACKUP)
mode_ctl |= BGE_MODECTL_STACKUP;
CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
/*
* Disable memory write invalidate. Apparently it is not supported
* properly by these devices.
*/
PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
PCI_COMMAND_INVALIDATE_ENABLE);
#ifdef __brokenalpha__
/*
* Must insure that we do not cross an 8K (bytes) boundary
* for DMA reads. Our highest limit is 1K bytes. This is a
* restriction on some ALPHA platforms with early revision
* 21174 PCI chipsets, such as the AlphaPC 164lx
*/
PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
#endif
/* Set the timer prescaler (always 66MHz) */
CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
DELAY(40); /* XXX */
/* Put PHY into ready state */
BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
DELAY(40);
}
return 0;
}
static int
bge_blockinit(struct bge_softc *sc)
{
volatile struct bge_rcb *rcb;
bus_size_t rcb_addr;
struct ifnet *ifp = &sc->ethercom.ec_if;
bge_hostaddr taddr;
uint32_t dmactl, val;
int i, limit;
/*
* Initialize the memory window pointer register so that
* we can access the first 32K of internal NIC RAM. This will
* allow us to set up the TX send ring RCBs and the RX return
* ring RCBs, plus other things which live in NIC memory.
*/
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
if (!BGE_IS_5705_PLUS(sc)) {
/* 57XX step 33 */
/* Configure mbuf memory pool */
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
BGE_BUFFPOOL_1);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
else
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
/* 57XX step 34 */
/* Configure DMA resource pool */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
BGE_DMA_DESCRIPTORS);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
}
/* 5718 step 11, 57XX step 35 */
/*
* Configure mbuf pool watermarks. New broadcom docs strongly
* recommend these.
*/
if (BGE_IS_5717_PLUS(sc)) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
} else if (BGE_IS_5705_PLUS(sc)) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
}
} else {
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
}
/* 57XX step 36 */
/* Configure DMA resource watermarks */
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
/* 5718 step 13, 57XX step 38 */
/* Enable buffer manager */
val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
/*
* Change the arbitration algorithm of TXMBUF read request to
* round-robin instead of priority based for BCM5719. When
* TXFIFO is almost empty, RDMA will hold its request until
* TXFIFO is not almost empty.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
val |= BGE_BMANMODE_NO_TX_UNDERRUN;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
val |= BGE_BMANMODE_LOMBUF_ATTN;
CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
/* 57XX step 39 */
/* Poll for buffer manager start indication */
for (i = 0; i < BGE_TIMEOUT * 2; i++) {
DELAY(10);
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
break;
}
if (i == BGE_TIMEOUT * 2) {
aprint_error_dev(sc->bge_dev,
"buffer manager failed to start\n");
return ENXIO;
}
/* 57XX step 40 */
/* Enable flow-through queues */
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
/* Wait until queue initialization is complete */
for (i = 0; i < BGE_TIMEOUT * 2; i++) {
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
break;
DELAY(10);
}
if (i == BGE_TIMEOUT * 2) {
aprint_error_dev(sc->bge_dev,
"flow-through queue init failed\n");
return ENXIO;
}
/*
* Summary of rings supported by the controller:
*
* Standard Receive Producer Ring
* - This ring is used to feed receive buffers for "standard"
* sized frames (typically 1536 bytes) to the controller.
*
* Jumbo Receive Producer Ring
* - This ring is used to feed receive buffers for jumbo sized
* frames (i.e. anything bigger than the "standard" frames)
* to the controller.
*
* Mini Receive Producer Ring
* - This ring is used to feed receive buffers for "mini"
* sized frames to the controller.
* - This feature required external memory for the controller
* but was never used in a production system. Should always
* be disabled.
*
* Receive Return Ring
* - After the controller has placed an incoming frame into a
* receive buffer that buffer is moved into a receive return
* ring. The driver is then responsible to passing the
* buffer up to the stack. Many versions of the controller
* support multiple RR rings.
*
* Send Ring
* - This ring is used for outgoing frames. Many versions of
* the controller support multiple send rings.
*/
/* 5718 step 15, 57XX step 41 */
/* Initialize the standard RX ring control block */
rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
/* 5718 step 16 */
if (BGE_IS_57765_PLUS(sc)) {
/*
* Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
* Bits 15-2 : Maximum RX frame size
* Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
* Bit 0 : Reserved
*/
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
} else if (BGE_IS_5705_PLUS(sc)) {
/*
* Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
* Bits 15-2 : Reserved (should be 0)
* Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
* Bit 0 : Reserved
*/
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
} else {
/*
* Ring size is always XXX entries
* Bits 31-16: Maximum RX frame size
* Bits 15-2 : Reserved (should be 0)
* Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
* Bit 0 : Reserved
*/
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
else
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
/* Write the standard receive producer ring control block. */
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
/* Reset the standard receive producer ring producer index. */
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
/* 57XX step 42 */
/*
* Initialize the jumbo RX ring control block
* We set the 'ring disabled' bit in the flags
* field until we're actually ready to start
* using this ring (i.e. once we set the MTU
* high enough to require it).
*/
if (BGE_IS_JUMBO_CAPABLE(sc)) {
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
BGE_HOSTADDR(rcb->bge_hostaddr,
BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
else
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
rcb->bge_hostaddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
rcb->bge_hostaddr.bge_addr_lo);
/* Program the jumbo receive producer ring RCB parameters. */
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
rcb->bge_maxlen_flags);
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
/* Reset the jumbo receive producer ring producer index. */
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
}
/* 57XX step 43 */
/* Disable the mini receive producer ring RCB. */
if (BGE_IS_5700_FAMILY(sc)) {
/* Set up dummy disabled mini ring RCB */
rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
rcb->bge_maxlen_flags =
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
rcb->bge_maxlen_flags);
/* Reset the mini receive producer ring producer index. */
bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_info),
sizeof (struct bge_gib),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
(CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
}
/* 5718 step 14, 57XX step 44 */
/*
* The BD ring replenish thresholds control how often the
* hardware fetches new BD's from the producer rings in host
* memory. Setting the value too low on a busy system can
* starve the hardware and recue the throughpout.
*
* Set the BD ring replenish thresholds. The recommended
* values are 1/8th the number of descriptors allocated to
* each ring, but since we try to avoid filling the entire
* ring we set these to the minimal value of 8. This needs to
* be done on several of the supported chip revisions anyway,
* to work around HW bugs.
*/
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
if (BGE_IS_JUMBO_CAPABLE(sc))
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);
/* 5718 step 18 */
if (BGE_IS_5717_PLUS(sc)) {
CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
}
/* 57XX step 45 */
/*
* Disable all send rings by setting the 'ring disabled' bit
* in the flags field of all the TX send ring control blocks,
* located in NIC memory.
*/
if (BGE_IS_5700_FAMILY(sc)) {
/* 5700 to 5704 had 16 send rings. */
limit = BGE_TX_RINGS_EXTSSRAM_MAX;
} else if (BGE_IS_5717_PLUS(sc)) {
limit = BGE_TX_RINGS_5717_MAX;
} else if (BGE_IS_57765_FAMILY(sc)) {
limit = BGE_TX_RINGS_57765_MAX;
} else
limit = 1;
rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
for (i = 0; i < limit; i++) {
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
rcb_addr += sizeof(struct bge_rcb);
}
/* 57XX step 46 and 47 */
/* Configure send ring RCB 0 (we use only the first ring) */
rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
else
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
/* 57XX step 48 */
/*
* Disable all receive return rings by setting the
* 'ring diabled' bit in the flags field of all the receive
* return ring control blocks, located in NIC memory.
*/
if (BGE_IS_5717_PLUS(sc)) {
/* Should be 17, use 16 until we get an SRAM map. */
limit = 16;
} else if (BGE_IS_5700_FAMILY(sc))
limit = BGE_RX_RINGS_MAX;
else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
BGE_IS_57765_FAMILY(sc))
limit = 4;
else
limit = 1;
/* Disable all receive return rings */
rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
for (i = 0; i < limit; i++) {
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
BGE_RCB_FLAG_RING_DISABLED));
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
(i * (sizeof(uint64_t))), 0);
rcb_addr += sizeof(struct bge_rcb);
}
/* 57XX step 49 */
/*
* Set up receive return ring 0. Note that the NIC address
* for RX return rings is 0x0. The return rings live entirely
* within the host, so the nicaddr field in the RCB isn't used.
*/
rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
/* 5718 step 24, 57XX step 53 */
/* Set random backoff seed for TX */
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
(CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
BGE_TX_BACKOFF_SEED_MASK);
/* 5718 step 26, 57XX step 55 */
/* Set inter-packet gap */
val = 0x2620;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
(BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
/* 5718 step 27, 57XX step 56 */
/*
* Specify which ring to use for packets that don't match
* any RX rules.
*/
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
/* 5718 step 28, 57XX step 57 */
/*
* Configure number of RX lists. One interrupt distribution
* list, sixteen active lists, one bad frames class.
*/
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
/* 5718 step 29, 57XX step 58 */
/* Inialize RX list placement stats mask. */
if (BGE_IS_575X_PLUS(sc)) {
val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
} else
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
/* 5718 step 30, 57XX step 59 */
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
/* 5718 step 33, 57XX step 62 */
/* Disable host coalescing until we get it set up */
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
/* 5718 step 34, 57XX step 63 */
/* Poll to make sure it's shut down. */
for (i = 0; i < BGE_TIMEOUT * 2; i++) {
DELAY(10);
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
break;
}
if (i == BGE_TIMEOUT * 2) {
aprint_error_dev(sc->bge_dev,
"host coalescing engine failed to idle\n");
return ENXIO;
}
/* 5718 step 35, 36, 37 */
/* Set up host coalescing defaults */
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
if (!(BGE_IS_5705_PLUS(sc))) {
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
}
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
/* Set up address of statistics block */
if (BGE_IS_5700_FAMILY(sc)) {
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
}
/* 5718 step 38 */
/* Set up address of status block */
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
/* Set up status block size. */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
val = BGE_STATBLKSZ_FULL;
bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
} else {
val = BGE_STATBLKSZ_32BYTE;
bzero(&sc->bge_rdata->bge_status_block, 32);
}
/* 5718 step 39, 57XX step 73 */
/* Turn on host coalescing state machine */
CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
/* 5718 step 40, 57XX step 74 */
/* Turn on RX BD completion state machine and enable attentions */
CSR_WRITE_4(sc, BGE_RBDC_MODE,
BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
/* 5718 step 41, 57XX step 75 */
/* Turn on RX list placement state machine */
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
/* 57XX step 76 */
/* Turn on RX list selector state machine. */
if (!(BGE_IS_5705_PLUS(sc)))
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
BGE_MACMODE_FRMHDR_DMA_ENB;
if (sc->bge_flags & BGEF_FIBER_TBI)
val |= BGE_PORTMODE_TBI;
else if (sc->bge_flags & BGEF_FIBER_MII)
val |= BGE_PORTMODE_GMII;
else
val |= BGE_PORTMODE_MII;
/* 5718 step 42 and 43, 57XX step 77 and 78 */
/* Allow APE to send/receive frames. */
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
/* Turn on DMA, clear stats */
CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
/* 5718 step 44 */
DELAY(40);
/* 5718 step 45, 57XX step 79 */
/* Set misc. local control, enable interrupts on attentions */
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
if (BGE_IS_5717_PLUS(sc)) {
CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
/* 5718 step 46 */
DELAY(100);
}
/* 57XX step 81 */
/* Turn on DMA completion state machine */
if (!(BGE_IS_5705_PLUS(sc)))
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
/* 5718 step 47, 57XX step 82 */
val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
/* 5718 step 48 */
/* Enable host coalescing bug fix. */
if (BGE_IS_5755_PLUS(sc))
val |= BGE_WDMAMODE_STATUS_TAG_FIX;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
val |= BGE_WDMAMODE_BURST_ALL_DATA;
/* Turn on write DMA state machine */
CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
/* 5718 step 49 */
DELAY(40);
val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
if (sc->bge_flags & BGEF_PCIE)
val |= BGE_RDMAMODE_FIFO_LONG_BURST;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
if (ifp->if_mtu <= ETHERMTU)
val |= BGE_RDMAMODE_JMB_2K_MMRR;
}
if (sc->bge_flags & BGEF_TSO)
val |= BGE_RDMAMODE_TSO4_ENABLE;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
BGE_RDMAMODE_H2BNC_VLAN_DET;
/*
* Allow multiple outstanding read requests from
* non-LSO read DMA engine.
*/
val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
BGE_IS_57765_PLUS(sc)) {
dmactl = CSR_READ_4(sc, BGE_RDMA_RSRVCTRL);
/*
* Adjust tx margin to prevent TX data corruption and
* fix internal FIFO overflow.
*/
if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
BGE_RDMA_RSRVCTRL_TXMRGN_320B;
}
/*
* Enable fix for read DMA FIFO overruns.
* The fix is to limit the number of RX BDs
* the hardware would fetch at a fime.
*/
CSR_WRITE_4(sc, BGE_RDMA_RSRVCTRL, dmactl |
BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
/*
* Allow 4KB burst length reads for non-LSO frames.
* Enable 512B burst length reads for buffer descriptors.
*/
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
}
/* Turn on read DMA state machine */
CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
/* 5718 step 52 */
delay(40);
/* 5718 step 56, 57XX step 84 */
/* Turn on RX data completion state machine */
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
/* Turn on RX data and RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
/* 57XX step 85 */
/* Turn on Mbuf cluster free state machine */
if (!BGE_IS_5705_PLUS(sc))
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
/* 5718 step 57, 57XX step 86 */
/* Turn on send data completion state machine */
val = BGE_SDCMODE_ENABLE;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
val |= BGE_SDCMODE_CDELAY;
CSR_WRITE_4(sc, BGE_SDC_MODE, val);
/* 5718 step 58 */
/* Turn on send BD completion state machine */
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
/* 57XX step 88 */
/* Turn on RX BD initiator state machine */
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
/* 5718 step 60, 57XX step 90 */
/* Turn on send data initiator state machine */
if (sc->bge_flags & BGEF_TSO) {
/* XXX: magic value from Linux driver */
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
BGE_SDIMODE_HW_LSO_PRE_DMA);
} else
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
/* 5718 step 61, 57XX step 91 */
/* Turn on send BD initiator state machine */
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
/* 5718 step 62, 57XX step 92 */
/* Turn on send BD selector state machine */
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
/* 5718 step 31, 57XX step 60 */
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
/* 5718 step 32, 57XX step 61 */
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
/* ack/clear link change events */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
BGE_MACSTAT_LINK_CHANGED);
CSR_WRITE_4(sc, BGE_MI_STS, 0);
/*
* Enable attention when the link has changed state for
* devices that use auto polling.
*/
if (sc->bge_flags & BGEF_FIBER_TBI) {
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
} else {
/* 5718 step 68 */
BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
/* 5718 step 69 (optionally) */
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
}
/*
* Clear any pending link state attention.
* Otherwise some link state change events may be lost until attention
* is cleared by bge_intr() -> bge_link_upd() sequence.
* It's not necessary on newer BCM chips - perhaps enabling link
* state change attentions implies clearing pending attention.
*/
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
BGE_MACSTAT_LINK_CHANGED);
/* Enable link state change attentions. */
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
return 0;
}
static const struct bge_revision *
bge_lookup_rev(uint32_t chipid)
{
const struct bge_revision *br;
for (br = bge_revisions; br->br_name != NULL; br++) {
if (br->br_chipid == chipid)
return br;
}
for (br = bge_majorrevs; br->br_name != NULL; br++) {
if (br->br_chipid == BGE_ASICREV(chipid))
return br;
}
return NULL;
}
static const struct bge_product *
bge_lookup(const struct pci_attach_args *pa)
{
const struct bge_product *bp;
for (bp = bge_products; bp->bp_name != NULL; bp++) {
if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
PCI_PRODUCT(pa->pa_id) == bp->bp_product)
return bp;
}
return NULL;
}
static uint32_t
bge_chipid(const struct pci_attach_args *pa)
{
uint32_t id;
id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
>> BGE_PCIMISCCTL_ASICREV_SHIFT;
if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
switch (PCI_PRODUCT(pa->pa_id)) {
case PCI_PRODUCT_BROADCOM_BCM5717:
case PCI_PRODUCT_BROADCOM_BCM5718:
case PCI_PRODUCT_BROADCOM_BCM5719:
case PCI_PRODUCT_BROADCOM_BCM5720:
case PCI_PRODUCT_BROADCOM_BCM5724: /* ??? */
id = pci_conf_read(pa->pa_pc, pa->pa_tag,
BGE_PCI_GEN2_PRODID_ASICREV);
break;
case PCI_PRODUCT_BROADCOM_BCM57761:
case PCI_PRODUCT_BROADCOM_BCM57762:
case PCI_PRODUCT_BROADCOM_BCM57765:
case PCI_PRODUCT_BROADCOM_BCM57766:
case PCI_PRODUCT_BROADCOM_BCM57781:
case PCI_PRODUCT_BROADCOM_BCM57785:
case PCI_PRODUCT_BROADCOM_BCM57791:
case PCI_PRODUCT_BROADCOM_BCM57795:
id = pci_conf_read(pa->pa_pc, pa->pa_tag,
BGE_PCI_GEN15_PRODID_ASICREV);
break;
default:
id = pci_conf_read(pa->pa_pc, pa->pa_tag,
BGE_PCI_PRODID_ASICREV);
break;
}
}
return id;
}
/*
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match. Note
* that since the Broadcom controller contains VPD support, we
* can get the device name string from the controller itself instead
* of the compiled-in string. This is a little slow, but it guarantees
* we'll always announce the right product name.
*/
static int
bge_probe(device_t parent, cfdata_t match, void *aux)
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
if (bge_lookup(pa) != NULL)
return 1;
return 0;
}
static void
bge_attach(device_t parent, device_t self, void *aux)
{
struct bge_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
prop_dictionary_t dict;
const struct bge_product *bp;
const struct bge_revision *br;
pci_chipset_tag_t pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
uint32_t hwcfg, hwcfg2, hwcfg3, hwcfg4;
uint32_t command;
struct ifnet *ifp;
uint32_t misccfg, mimode;
void * kva;
u_char eaddr[ETHER_ADDR_LEN];
pcireg_t memtype, subid, reg;
bus_addr_t memaddr;
uint32_t pm_ctl;
bool no_seeprom;
int capmask;
bp = bge_lookup(pa);
KASSERT(bp != NULL);
sc->sc_pc = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
sc->bge_dev = self;
sc->bge_pa = *pa;
pc = sc->sc_pc;
subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
aprint_naive(": Ethernet controller\n");
aprint_normal(": %s\n", bp->bp_name);
/*
* Map control/status registers.
*/
DPRINTFN(5, ("Map control/status regs\n"));
command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
if (!(command & PCI_COMMAND_MEM_ENABLE)) {
aprint_error_dev(sc->bge_dev,
"failed to enable memory mapping!\n");
return;
}
DPRINTFN(5, ("pci_mem_find\n"));
memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
switch (memtype) {
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
if (pci_mapreg_map(pa, BGE_PCI_BAR0,
memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
&memaddr, &sc->bge_bsize) == 0)
break;
default:
aprint_error_dev(sc->bge_dev, "can't find mem space\n");
return;
}
DPRINTFN(5, ("pci_intr_map\n"));
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
return;
}
DPRINTFN(5, ("pci_intr_string\n"));
intrstr = pci_intr_string(pc, ih);
DPRINTFN(5, ("pci_intr_establish\n"));
sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
if (sc->bge_intrhand == NULL) {
aprint_error_dev(sc->bge_dev,
"couldn't establish interrupt%s%s\n",
intrstr ? " at " : "", intrstr ? intrstr : "");
return;
}
aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
/* Save various chip information. */
sc->bge_chipid = bge_chipid(pa);
sc->bge_phy_addr = bge_phy_addr(sc);
if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
&sc->bge_pciecap, NULL) != 0)
|| (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
/* PCIe */
sc->bge_flags |= BGEF_PCIE;
/* Extract supported maximum payload size. */
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
sc->bge_pciecap + PCIE_DCAP);
sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
sc->bge_expmrq = 2048;
else
sc->bge_expmrq = 4096;
bge_set_max_readrq(sc);
} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
BGE_PCISTATE_PCI_BUSMODE) == 0) {
/* PCI-X */
sc->bge_flags |= BGEF_PCIX;
if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
&sc->bge_pcixcap, NULL) == 0)
aprint_error_dev(sc->bge_dev,
"unable to find PCIX capability\n");
}
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
/*
* Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
* can clobber the chip's PCI config-space power control
* registers, leaving the card in D3 powersave state. We do
* not have memory-mapped registers in this state, so force
* device into D0 state before starting initialization.
*/
pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
DELAY(1000); /* 27 usec is allegedly sufficent */
}
/* Save chipset family. */
switch (BGE_ASICREV(sc->bge_chipid)) {
case BGE_ASICREV_BCM5717:
case BGE_ASICREV_BCM5719:
case BGE_ASICREV_BCM5720:
sc->bge_flags |= BGEF_5717_PLUS;
/* FALLTHROUGH */
case BGE_ASICREV_BCM57765:
case BGE_ASICREV_BCM57766:
if (!BGE_IS_5717_PLUS(sc))
sc->bge_flags |= BGEF_57765_FAMILY;
sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
/* Jumbo frame on BCM5719 A0 does not work. */
if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
(sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
break;
case BGE_ASICREV_BCM5755:
case BGE_ASICREV_BCM5761:
case BGE_ASICREV_BCM5784:
case BGE_ASICREV_BCM5785:
case BGE_ASICREV_BCM5787:
case BGE_ASICREV_BCM57780:
sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
break;
case BGE_ASICREV_BCM5700:
case BGE_ASICREV_BCM5701:
case BGE_ASICREV_BCM5703:
case BGE_ASICREV_BCM5704:
sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
break;
case BGE_ASICREV_BCM5714_A0:
case BGE_ASICREV_BCM5780:
case BGE_ASICREV_BCM5714:
sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
/* FALLTHROUGH */
case BGE_ASICREV_BCM5750:
case BGE_ASICREV_BCM5752:
case BGE_ASICREV_BCM5906:
sc->bge_flags |= BGEF_575X_PLUS;
/* FALLTHROUGH */
case BGE_ASICREV_BCM5705:
sc->bge_flags |= BGEF_5705_PLUS;
break;
}
/* Identify chips with APE processor. */
switch (BGE_ASICREV(sc->bge_chipid)) {
case BGE_ASICREV_BCM5717:
case BGE_ASICREV_BCM5719:
case BGE_ASICREV_BCM5720:
case BGE_ASICREV_BCM5761:
sc->bge_flags |= BGEF_APE;
break;
}
/*
* The 40bit DMA bug applies to the 5714/5715 controllers and is
* not actually a MAC controller bug but an issue with the embedded
* PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
*/
if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
sc->bge_flags |= BGEF_40BIT_BUG;
/* Chips with APE need BAR2 access for APE registers/memory. */
if ((sc->bge_flags & BGEF_APE) != 0) {
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
&sc->bge_apetag, &sc->bge_apehandle, NULL,
&sc->bge_apesize)) {
aprint_error_dev(sc->bge_dev,
"couldn't map BAR2 memory\n");
return;
}
/* Enable APE register/memory access by host driver. */
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);
bge_ape_lock_init(sc);
bge_ape_read_fw_ver(sc);
}
/* Identify the chips that use an CPMU. */
if (BGE_IS_5717_PLUS(sc) ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
sc->bge_flags |= BGEF_CPMU_PRESENT;
/* Set MI_MODE */
mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
mimode |= BGE_MIMODE_500KHZ_CONST;
else
mimode |= BGE_MIMODE_BASE;
CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
/*
* When using the BCM5701 in PCI-X mode, data corruption has
* been observed in the first few bytes of some received packets.
* Aligning the packet buffer in memory eliminates the corruption.
* Unfortunately, this misaligns the packet payloads. On platforms
* which do not support unaligned accesses, we will realign the
* payloads by copying the received packets.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
sc->bge_flags & BGEF_PCIX)
sc->bge_flags |= BGEF_RX_ALIGNBUG;
if (BGE_IS_5700_FAMILY(sc))
sc->bge_flags |= BGEF_JUMBO_CAPABLE;
misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
(misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
misccfg == BGE_MISCCFG_BOARD_ID_5788M))
sc->bge_flags |= BGEF_IS_5788;
/*
* Some controllers seem to require a special firmware to use
* TSO. But the firmware is not available to FreeBSD and Linux
* claims that the TSO performed by the firmware is slower than
* hardware based TSO. Moreover the firmware based TSO has one
* known bug which can't handle TSO if ethernet header + IP/TCP
* header is greater than 80 bytes. The workaround for the TSO
* bug exist but it seems it's too expensive than not using
* TSO at all. Some hardwares also have the TSO bug so limit
* the TSO to the controllers that are not affected TSO issues
* (e.g. 5755 or higher).
*/
if (BGE_IS_5755_PLUS(sc)) {
/*
* BCM5754 and BCM5787 shares the same ASIC id so
* explicit device id check is required.
*/
if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
(PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
sc->bge_flags |= BGEF_TSO;
}
capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
(misccfg == 0x4000 || misccfg == 0x8000)) ||
(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
(PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
capmask &= ~BMSR_EXTSTAT;
sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
(sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
/* Set various PHY bug flags. */
if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
PCI_VENDOR(subid) == PCI_VENDOR_DELL)
sc->bge_phy_flags |= BGEPHYF_NO_3LED;
if (BGE_IS_5705_PLUS(sc) &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
!BGE_IS_57765_PLUS(sc)) {
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
} else
sc->bge_phy_flags |= BGEPHYF_BER_BUG;
}
/*
* SEEPROM check.
* First check if firmware knows we do not have SEEPROM.
*/
if (prop_dictionary_get_bool(device_properties(self),
"without-seeprom", &no_seeprom) && no_seeprom)
sc->bge_flags |= BGEF_NO_EEPROM;
else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
sc->bge_flags |= BGEF_NO_EEPROM;
/* Now check the 'ROM failed' bit on the RX CPU */
else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
sc->bge_flags |= BGEF_NO_EEPROM;
sc->bge_asf_mode = 0;
/* No ASF if APE present. */
if ((sc->bge_flags & BGEF_APE) == 0) {
if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
BGE_SRAM_DATA_SIG_MAGIC)) {
if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
BGE_HWCFG_ASF) {
sc->bge_asf_mode |= ASF_ENABLE;
sc->bge_asf_mode |= ASF_STACKUP;
if (BGE_IS_575X_PLUS(sc))
sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
}
}
}
/*
* Reset NVRAM before bge_reset(). It's required to acquire NVRAM
* lock in bge_reset().
*/
CSR_WRITE_4(sc, BGE_EE_ADDR,
BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
delay(1000);
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
bge_stop_fw(sc);
bge_sig_pre_reset(sc, BGE_RESET_START);
if (bge_reset(sc))
aprint_error_dev(sc->bge_dev, "chip reset failed\n");
/*
* Read the hardware config word in the first 32k of NIC internal
* memory, or fall back to the config word in the EEPROM.
* Note: on some BCM5700 cards, this value appears to be unset.
*/
hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = 0;
if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
BGE_SRAM_DATA_SIG_MAGIC) {
uint32_t tmp;
hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
BGE_SRAM_DATA_VER_SHIFT;
if ((0 < tmp) && (tmp < 0x100))
hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
if (sc->bge_flags & BGEF_PCIE)
hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
if (BGE_ASICREV(sc->bge_chipid == BGE_ASICREV_BCM5785))
hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
} else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
bge_read_eeprom(sc, (void *)&hwcfg,
BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
hwcfg = be32toh(hwcfg);
}
aprint_normal_dev(sc->bge_dev, "HW config %08x, %08x, %08x, %08x\n",
hwcfg, hwcfg2, hwcfg3, hwcfg4);
bge_sig_legacy(sc, BGE_RESET_START);
bge_sig_post_reset(sc, BGE_RESET_START);
if (bge_chipinit(sc)) {
aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
bge_release_resources(sc);
return;
}
/*
* Get station address from the EEPROM.
*/
if (bge_get_eaddr(sc, eaddr)) {
aprint_error_dev(sc->bge_dev,
"failed to read station address\n");
bge_release_resources(sc);
return;
}
br = bge_lookup_rev(sc->bge_chipid);
if (br == NULL) {
aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
sc->bge_chipid);
} else {
aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
br->br_name, sc->bge_chipid);
}
aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
/* Allocate the general information block and ring buffers. */
if (pci_dma64_available(pa))
sc->bge_dmatag = pa->pa_dmat64;
else
sc->bge_dmatag = pa->pa_dmat;
/* 40bit DMA workaround */
if (sizeof(bus_addr_t) > 4) {
if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */
if (bus_dmatag_subregion(olddmatag, 0,
(bus_addr_t)(1ULL << 40), &(sc->bge_dmatag),
BUS_DMA_NOWAIT) != 0) {
aprint_error_dev(self,
"WARNING: failed to restrict dma range,"
" falling back to parent bus dma range\n");
sc->bge_dmatag = olddmatag;
}
}
}
DPRINTFN(5, ("bus_dmamem_alloc\n"));
if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
&sc->bge_ring_rseg, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
return;
}
DPRINTFN(5, ("bus_dmamem_map\n"));
if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->bge_dev,
"can't map DMA buffers (%zu bytes)\n",
sizeof(struct bge_ring_data));
bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
sc->bge_ring_rseg);
return;
}
DPRINTFN(5, ("bus_dmamem_create\n"));
if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
sizeof(struct bge_ring_data), 0,
BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
bus_dmamem_unmap(sc->bge_dmatag, kva,
sizeof(struct bge_ring_data));
bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
sc->bge_ring_rseg);
return;
}
DPRINTFN(5, ("bus_dmamem_load\n"));
if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
sizeof(struct bge_ring_data), NULL,
BUS_DMA_NOWAIT)) {
bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
bus_dmamem_unmap(sc->bge_dmatag, kva,
sizeof(struct bge_ring_data));
bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
sc->bge_ring_rseg);
return;
}
DPRINTFN(5, ("bzero\n"));
sc->bge_rdata = (struct bge_ring_data *)kva;
memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
/* Try to allocate memory for jumbo buffers. */
if (BGE_IS_JUMBO_CAPABLE(sc)) {
if (bge_alloc_jumbo_mem(sc)) {
aprint_error_dev(sc->bge_dev,
"jumbo buffer allocation failed\n");
} else
sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
}
/* Set default tuneable values. */
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
sc->bge_rx_coal_ticks = 150;
sc->bge_rx_max_coal_bds = 64;
sc->bge_tx_coal_ticks = 300;
sc->bge_tx_max_coal_bds = 400;
if (BGE_IS_5705_PLUS(sc)) {
sc->bge_tx_coal_ticks = (12 * 5);
sc->bge_tx_max_coal_bds = (12 * 5);
aprint_verbose_dev(sc->bge_dev,
"setting short Tx thresholds\n");
}
if (BGE_IS_5717_PLUS(sc))
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
else if (BGE_IS_5705_PLUS(sc))
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
else
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
/* Set up ifnet structure */
ifp = &sc->ethercom.ec_if;
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bge_ioctl;
ifp->if_stop = bge_stop;
ifp->if_start = bge_start;
ifp->if_init = bge_init;
ifp->if_watchdog = bge_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
IFQ_SET_READY(&ifp->if_snd);
DPRINTFN(5, ("strcpy if_xname\n"));
strcpy(ifp->if_xname, device_xname(sc->bge_dev));
if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
sc->ethercom.ec_if.if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
#if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
sc->ethercom.ec_if.if_capabilities |=
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
#endif
sc->ethercom.ec_capabilities |=
ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
if (sc->bge_flags & BGEF_TSO)
sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
/*
* Do MII setup.
*/
DPRINTFN(5, ("mii setup\n"));
sc->bge_mii.mii_ifp = ifp;
sc->bge_mii.mii_readreg = bge_miibus_readreg;
sc->bge_mii.mii_writereg = bge_miibus_writereg;
sc->bge_mii.mii_statchg = bge_miibus_statchg;
/*
* Figure out what sort of media we have by checking the hardware
* config word. Note: on some BCM5700 cards, this value appears to be
* unset. If that's the case, we have to rely on identifying the NIC
* by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
* The SysKonnect SK-9D41 is a 1000baseSX card.
*/
if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
(hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
if (BGE_IS_5714_FAMILY(sc))
sc->bge_flags |= BGEF_FIBER_MII;
else
sc->bge_flags |= BGEF_FIBER_TBI;
}
/* Set bge_phy_flags before prop_dictionary_set_uint32() */
if (BGE_IS_JUMBO_CAPABLE(sc))
sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;
/* set phyflags and chipid before mii_attach() */
dict = device_properties(self);
prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
if (sc->bge_flags & BGEF_FIBER_TBI) {
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
bge_ifmedia_sts);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
0, NULL);
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
/* Pretend the user requested this setting */
sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
} else {
/*
* Do transceiver setup and tell the firmware the
* driver is down so we can try to get access the
* probe if ASF is running. Retry a couple of times
* if we get a conflict with the ASF firmware accessing
* the PHY.
*/
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
bge_asf_driver_up(sc);
ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
bge_ifmedia_sts);
mii_attach(sc->bge_dev, &sc->bge_mii, capmask,
sc->bge_phy_addr, MII_OFFSET_ANY,
MIIF_DOPAUSE);
if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
aprint_error_dev(sc->bge_dev, "no PHY found!\n");
ifmedia_add(&sc->bge_mii.mii_media,
IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->bge_mii.mii_media,
IFM_ETHER|IFM_MANUAL);
} else
ifmedia_set(&sc->bge_mii.mii_media,
IFM_ETHER|IFM_AUTO);
/*
* Now tell the firmware we are going up after probing the PHY
*/
if (sc->bge_asf_mode & ASF_STACKUP)
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
}
/*
* Call MI attach routine.
*/
DPRINTFN(5, ("if_attach\n"));
if_attach(ifp);
DPRINTFN(5, ("ether_ifattach\n"));
ether_ifattach(ifp, eaddr);
ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
RND_TYPE_NET, 0);
#ifdef BGE_EVENT_COUNTERS
/*
* Attach event counters.
*/
evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->bge_dev), "intr");
evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
NULL, device_xname(sc->bge_dev), "tx_xoff");
evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
NULL, device_xname(sc->bge_dev), "tx_xon");
evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
NULL, device_xname(sc->bge_dev), "rx_xoff");
evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
NULL, device_xname(sc->bge_dev), "rx_xon");
evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
NULL, device_xname(sc->bge_dev), "rx_macctl");
evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
NULL, device_xname(sc->bge_dev), "xoffentered");
#endif /* BGE_EVENT_COUNTERS */
DPRINTFN(5, ("callout_init\n"));
callout_init(&sc->bge_timeout, 0);
if (pmf_device_register(self, NULL, NULL))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
bge_sysctl_init(sc);
#ifdef BGE_DEBUG
bge_debug_info(sc);
#endif
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
bge_detach(device_t self, int flags __unused)
{
struct bge_softc *sc = device_private(self);
struct ifnet *ifp = &sc->ethercom.ec_if;
int s;
s = splnet();
/* Stop the interface. Callouts are stopped in it. */
bge_stop(ifp, 1);
splx(s);
mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY);
ether_ifdetach(ifp);
if_detach(ifp);
bge_release_resources(sc);
return 0;
}
static void
bge_release_resources(struct bge_softc *sc)
{
/* Disestablish the interrupt handler */
if (sc->bge_intrhand != NULL) {
pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
sc->bge_intrhand = NULL;
}
if (sc->bge_dmatag != NULL) {
bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
sizeof(struct bge_ring_data));
bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_rseg);
}
/* Unmap the device registers */
if (sc->bge_bsize != 0) {
bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
sc->bge_bsize = 0;
}
/* Unmap the APE registers */
if (sc->bge_apesize != 0) {
bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
sc->bge_apesize);
sc->bge_apesize = 0;
}
}
static int
bge_reset(struct bge_softc *sc)
{
uint32_t cachesize, command;
uint32_t reset, mac_mode, mac_mode_mask;
pcireg_t devctl, reg;
int i, val;
void (*write_op)(struct bge_softc *, int, int);
/* Make mask for BGE_MAC_MODE register. */
mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
/* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
(BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
if (sc->bge_flags & BGEF_PCIE)
write_op = bge_writemem_direct;
else
write_op = bge_writemem_ind;
} else
write_op = bge_writereg_ind;
/* 57XX step 4 */
/* Acquire the NVM lock */
if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
for (i = 0; i < 8000; i++) {
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
BGE_NVRAMSWARB_GNT1)
break;
DELAY(20);
}
if (i == 8000) {
printf("%s: NVRAM lock timedout!\n",
device_xname(sc->bge_dev));
}
}
/* Take APE lock when performing reset. */
bge_ape_lock(sc, BGE_APE_LOCK_GRC);
/* 57XX step 3 */
/* Save some important PCI state. */
cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
/* 5718 reset step 3 */
command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
/* 5718 reset step 5, 57XX step 5b-5d */
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
/* XXX ???: Disable fastboot on controllers that support it. */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
BGE_IS_5755_PLUS(sc))
CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
/* 5718 reset step 2, 57XX step 6 */
/*
* Write the magic number to SRAM at offset 0xB50.
* When firmware finishes its initialization it will
* write ~BGE_MAGIC_NUMBER to the same location.
*/
bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
/* 5718 reset step 6, 57XX step 7 */
reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
/*
* XXX: from FreeBSD/Linux; no documentation
*/
if (sc->bge_flags & BGEF_PCIE) {
if (BGE_ASICREV(sc->bge_chipid != BGE_ASICREV_BCM5785) &&
!BGE_IS_57765_PLUS(sc) &&
(CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
(BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
/* PCI Express 1.0 system */
CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
BGE_PHY_PCIE_SCRAM_MODE);
}
if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
/*
* Prevent PCI Express link training
* during global reset.
*/
CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
reset |= (1 << 29);
}
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
i = CSR_READ_4(sc, BGE_VCPU_STATUS);
CSR_WRITE_4(sc, BGE_VCPU_STATUS,
i | BGE_VCPU_STATUS_DRV_RESET);
i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
}
/*
* Set GPHY Power Down Override to leave GPHY
* powered up in D0 uninitialized.
*/
if (BGE_IS_5705_PLUS(sc) &&
(sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
/* Issue global reset */
write_op(sc, BGE_MISC_CFG, reset);
/* 5718 reset step 7, 57XX step 8 */
if (sc->bge_flags & BGEF_PCIE)
delay(100*1000); /* too big */
else
delay(1000);
if (sc->bge_flags & BGEF_PCIE) {
if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
DELAY(500000);
/* XXX: Magic Numbers */
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
BGE_PCI_UNKNOWN0);
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
BGE_PCI_UNKNOWN0,
reg | (1 << 15));
}
devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
sc->bge_pciecap + PCIE_DCSR);
/* Clear enable no snoop and disable relaxed ordering. */
devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
PCIE_DCSR_ENA_NO_SNOOP);
/* Set PCIE max payload size to 128 for older PCIe devices */
if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
devctl &= ~(0x00e0);
/* Clear device status register. Write 1b to clear */
devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
| PCIE_DCSR_NFED | PCIE_DCSR_CED;
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
sc->bge_pciecap + PCIE_DCSR, devctl);
bge_set_max_readrq(sc);
}
/* From Linux: dummy read to flush PCI posted writes */
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
/*
* Reset some of the PCI state that got zapped by reset
* To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
* set, too.
*/
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
(sc->bge_flags & BGEF_PCIX) != 0)
val |= BGE_PCISTATE_RETRY_SAME_DMA;
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
/* 57xx step 11: disable PCI-X Relaxed Ordering. */
if (sc->bge_flags & BGEF_PCIX) {
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
+ PCIX_CMD);
/* Set max memory read byte count to 2K */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
reg &= ~PCIX_CMD_BYTECNT_MASK;
reg |= PCIX_CMD_BCNT_2048;
} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
/*
* For 5704, set max outstanding split transaction
* field to 0 (0 means it supports 1 request)
*/
reg &= ~(PCIX_CMD_SPLTRANS_MASK
| PCIX_CMD_BYTECNT_MASK);
reg |= PCIX_CMD_BCNT_2048;
}
pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
+ PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
}
/* 5718 reset step 10, 57XX step 12 */
/* Enable memory arbiter. */
if (BGE_IS_5714_FAMILY(sc)) {
val = CSR_READ_4(sc, BGE_MARB_MODE);
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
} else
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
/* XXX 5721, 5751 and 5752 */
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
/* Step 19: */
BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
/* Step 20: */
BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
}
/* 5718 reset step 13, 57XX step 17 */
/* Poll until the firmware initialization is complete */
bge_poll_fw(sc);
/* 5718 reset step 12, 57XX step 15 and 16 */
/* Fix up byte swapping */
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
/* 57XX step 21 */
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
pcireg_t msidata;
msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
BGE_PCI_MSI_DATA);
msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
msidata);
}
/* 57XX step 18 */
/* Write mac mode. */
val = CSR_READ_4(sc, BGE_MAC_MODE);
/* Restore mac_mode_mask's bits using mac_mode */
val = (val & ~mac_mode_mask) | mac_mode;
CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
DELAY(40);
bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
/*
* The 5704 in TBI mode apparently needs some special
* adjustment to insure the SERDES drive level is set
* to 1.2V.
*/
if (sc->bge_flags & BGEF_FIBER_TBI &&
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
uint32_t serdescfg;
serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
serdescfg = (serdescfg & ~0xFFF) | 0x880;
CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
}
if (sc->bge_flags & BGEF_PCIE &&
!BGE_IS_57765_PLUS(sc) &&
sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
uint32_t v;
/* Enable PCI Express bug fix */
v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
v | BGE_TLP_DATA_FIFO_PROTECT);
}
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
return 0;
}
/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle two possibilities here:
* 1) the frame is from the jumbo receive ring
* 2) the frame is from the standard receive ring
*/
static void
bge_rxeof(struct bge_softc *sc)
{
struct ifnet *ifp;
uint16_t rx_prod, rx_cons;
int stdcnt = 0, jumbocnt = 0;
bus_dmamap_t dmamap;
bus_addr_t offset, toff;
bus_size_t tlen;
int tosync;
rx_cons = sc->bge_rx_saved_considx;
rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
/* Nothing to do */
if (rx_cons == rx_prod)
return;
ifp = &sc->ethercom.ec_if;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_status_block),
sizeof (struct bge_status_block),
BUS_DMASYNC_POSTREAD);
offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
tosync = rx_prod - rx_cons;
if (tosync != 0)
rnd_add_uint32(&sc->rnd_source, tosync);
toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
if (tosync < 0) {
tlen = (sc->bge_return_ring_cnt - rx_cons) *
sizeof (struct bge_rx_bd);
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
toff, tlen, BUS_DMASYNC_POSTREAD);
tosync = -tosync;
}
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offset, tosync * sizeof (struct bge_rx_bd),
BUS_DMASYNC_POSTREAD);
while (rx_cons != rx_prod) {
struct bge_rx_bd *cur_rx;
uint32_t rxidx;
struct mbuf *m = NULL;
cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
rxidx = cur_rx->bge_idx;
BGE_INC(rx_cons, sc->bge_return_ring_cnt);
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
jumbocnt++;
bus_dmamap_sync(sc->bge_dmatag,
sc->bge_cdata.bge_rx_jumbo_map,
mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
BGE_JLEN, BUS_DMASYNC_POSTREAD);
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
ifp->if_ierrors++;
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
continue;
}
if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
NULL)== ENOBUFS) {
ifp->if_ierrors++;
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
continue;
}
} else {
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
stdcnt++;
dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
if (dmamap == NULL) {
ifp->if_ierrors++;
bge_newbuf_std(sc, sc->bge_std, m, dmamap);
continue;
}
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->bge_dmatag, dmamap);
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
ifp->if_ierrors++;
bge_newbuf_std(sc, sc->bge_std, m, dmamap);
continue;
}
if (bge_newbuf_std(sc, sc->bge_std,
NULL, dmamap) == ENOBUFS) {
ifp->if_ierrors++;
bge_newbuf_std(sc, sc->bge_std, m, dmamap);
continue;
}
}
ifp->if_ipackets++;
#ifndef __NO_STRICT_ALIGNMENT
/*
* XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
* the Rx buffer has the layer-2 header unaligned.
* If our CPU requires alignment, re-align by copying.
*/
if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
cur_rx->bge_len);
m->m_data += ETHER_ALIGN;
}
#endif
m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
m->m_pkthdr.rcvif = ifp;
/*
* Handle BPF listeners. Let the BPF user see the packet.
*/
bpf_mtap(ifp, m);
bge_rxcsum(sc, cur_rx, m);
/*
* If we received a packet with a vlan tag, pass it
* to vlan_input() instead of ether_input().
*/
if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
}
(*ifp->if_input)(ifp, m);
}
sc->bge_rx_saved_considx = rx_cons;
bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
if (stdcnt)
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
if (jumbocnt)
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
}
static void
bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
{
if (BGE_IS_57765_PLUS(sc)) {
if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
m->m_pkthdr.csum_flags = M_CSUM_IPv4;
if ((cur_rx->bge_error_flag &
BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
m->m_pkthdr.csum_data =
cur_rx->bge_tcp_udp_csum;
m->m_pkthdr.csum_flags |=
(M_CSUM_TCPv4|M_CSUM_UDPv4|
M_CSUM_DATA);
}
}
} else {
if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
m->m_pkthdr.csum_flags = M_CSUM_IPv4;
if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
/*
* Rx transport checksum-offload may also
* have bugs with packets which, when transmitted,
* were `runts' requiring padding.
*/
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
(/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
m->m_pkthdr.csum_data =
cur_rx->bge_tcp_udp_csum;
m->m_pkthdr.csum_flags |=
(M_CSUM_TCPv4|M_CSUM_UDPv4|
M_CSUM_DATA);
}
}
}
static void
bge_txeof(struct bge_softc *sc)
{
struct bge_tx_bd *cur_tx = NULL;
struct ifnet *ifp;
struct txdmamap_pool_entry *dma;
bus_addr_t offset, toff;
bus_size_t tlen;
int tosync;
struct mbuf *m;
ifp = &sc->ethercom.ec_if;
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_status_block),
sizeof (struct bge_status_block),
BUS_DMASYNC_POSTREAD);
offset = offsetof(struct bge_ring_data, bge_tx_ring);
tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
sc->bge_tx_saved_considx;
if (tosync != 0)
rnd_add_uint32(&sc->rnd_source, tosync);
toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
if (tosync < 0) {
tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
sizeof (struct bge_tx_bd);
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
tosync = -tosync;
}
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offset, tosync * sizeof (struct bge_tx_bd),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
/*
* Go through our tx ring and free mbufs for those
* frames that have been sent.
*/
while (sc->bge_tx_saved_considx !=
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
uint32_t idx = 0;
idx = sc->bge_tx_saved_considx;
cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
ifp->if_opackets++;
m = sc->bge_cdata.bge_tx_chain[idx];
if (m != NULL) {
sc->bge_cdata.bge_tx_chain[idx] = NULL;
dma = sc->txdma[idx];
bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
sc->txdma[idx] = NULL;
m_freem(m);
}
sc->bge_txcnt--;
BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
ifp->if_timer = 0;
}
if (cur_tx != NULL)
ifp->if_flags &= ~IFF_OACTIVE;
}
static int
bge_intr(void *xsc)
{
struct bge_softc *sc;
struct ifnet *ifp;
uint32_t statusword;
uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;
sc = xsc;
ifp = &sc->ethercom.ec_if;
/* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
if (BGE_IS_5717_PLUS(sc))
intrmask = 0;
/* It is possible for the interrupt to arrive before
* the status block is updated prior to the interrupt.
* Reading the PCI State register will confirm whether the
* interrupt is ours and will flush the status block.
*/
/* read status word from status block */
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
offsetof(struct bge_ring_data, bge_status_block),
sizeof (struct bge_status_block),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
statusword = sc->bge_rdata->bge_status_block.bge_status;
if ((statusword & BGE_STATFLAG_UPDATED) ||
(~CSR_READ_4(sc, BGE_PCI_PCISTATE) & intrmask)) {
/* Ack interrupt and stop others from occuring. */
bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
BGE_EVCNT_INCR(sc->bge_ev_intr);
/* clear status word */
sc->bge_rdata->bge_status_block.bge_status = 0;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
bge_link_upd(sc);
if (ifp->if_flags & IFF_RUNNING) {
/* Check RX return ring producer/consumer */
bge_rxeof(sc);
/* Check TX ring producer/consumer */
bge_txeof(sc);
}
if (sc->bge_pending_rxintr_change) {
uint32_t rx_ticks = sc->bge_rx_coal_ticks;
uint32_t rx_bds = sc->bge_rx_max_coal_bds;
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
DELAY(10);
(void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
DELAY(10);
(void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
sc->bge_pending_rxintr_change = 0;
}
bge_handle_events(sc);
/* Re-enable interrupts. */
bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
bge_start(ifp);
return 1;
} else
return 0;
}
static void
bge_asf_driver_up(struct bge_softc *sc)
{
if (sc->bge_asf_mode & ASF_STACKUP) {
/* Send ASF heartbeat aprox. every 2s */
if (sc->bge_asf_count)
sc->bge_asf_count --;
else {
sc->bge_asf_count = 2;
bge_wait_for_event_ack(sc);
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
BGE_FW_CMD_DRV_ALIVE);
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
BGE_FW_HB_TIMEOUT_SEC);
CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
BGE_RX_CPU_DRV_EVENT);
}
}
}
static void
bge_tick(void *xsc)
{
struct bge_softc *sc = xsc;
struct mii_data *mii = &sc->bge_mii;
int s;
s = splnet();
if (BGE_IS_5705_PLUS(sc))
bge_stats_update_regs(sc);
else
bge_stats_update(sc);
if (sc->bge_flags & BGEF_FIBER_TBI) {
/*
* Since in TBI mode auto-polling can't be used we should poll
* link status manually. Here we register pending link event
* and trigger interrupt.
*/
BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
} else {
/*
* Do not touch PHY if we have link up. This could break
* IPMI/ASF mode or produce extra input errors.
* (extra input errors was reported for bcm5701 & bcm5704).
*/
if (!BGE_STS_BIT(sc, BGE_STS_LINK))
mii_tick(mii);
}
bge_asf_driver_up(sc);
callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
splx(s);
}
static void
bge_stats_update_regs(struct bge_softc *sc)
{
struct ifnet *ifp = &sc->ethercom.ec_if;
ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
}
static void
bge_stats_update(struct bge_softc *sc)
{
struct ifnet *ifp = &sc->ethercom.ec_if;
bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
#define READ_STAT(sc, stats, stat) \
CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
ifp->if_collisions +=
(READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
ifp->if_collisions;
BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
READ_STAT(sc, stats, outXonSent.bge_addr_lo));
BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
READ_STAT(sc, stats,
xoffPauseFramesReceived.bge_addr_lo));
BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
READ_STAT(sc, stats,
macControlFramesReceived.bge_addr_lo));
BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
#undef READ_STAT
#ifdef notdef
ifp->if_collisions +=
(sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
ifp->if_collisions;
#endif
}
/*
* Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
* The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
* but when such padded frames employ the bge IP/TCP checksum offload,
* the hardware checksum assist gives incorrect results (possibly
* from incorporating its own padding into the UDP/TCP checksum; who knows).
* If we pad such runts with zeros, the onboard checksum comes out correct.
*/
static inline int
bge_cksum_pad(struct mbuf *pkt)
{
struct mbuf *last = NULL;
int padlen;
padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
/* if there's only the packet-header and we can pad there, use it. */
if (pkt->m_pkthdr.len == pkt->m_len &&
M_TRAILINGSPACE(pkt) >= padlen) {
last = pkt;
} else {
/*
* Walk packet chain to find last mbuf. We will either
* pad there, or append a new mbuf and pad it
* (thus perhaps avoiding the bcm5700 dma-min bug).
*/
for (last = pkt; last->m_next != NULL; last = last->m_next) {
continue; /* do nothing */
}
/* `last' now points to last in chain. */
if (M_TRAILINGSPACE(last) < padlen) {
/* Allocate new empty mbuf, pad it. Compact later. */
struct mbuf *n;
MGET(n, M_DONTWAIT, MT_DATA);
if (n == NULL)
return ENOBUFS;
n->m_len = 0;
last->m_next = n;
last = n;
}
}
KDASSERT(!M_READONLY(last));
KDASSERT(M_TRAILINGSPACE(last) >= padlen);
/* Now zero the pad area, to avoid the bge cksum-assist bug */
memset(mtod(last, char *) + last->m_len, 0, padlen);
last->m_len += padlen;
pkt->m_pkthdr.len += padlen;
return 0;
}
/*
* Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
*/
static inline int
bge_compact_dma_runt(struct mbuf *pkt)
{
struct mbuf *m, *prev;
int totlen;
prev = NULL;
totlen = 0;
for (m = pkt; m != NULL; prev = m,m = m->m_next) {
int mlen = m->m_len;
int shortfall = 8 - mlen ;
totlen += mlen;
if (mlen == 0)
continue;
if (mlen >= 8)
continue;
/* If we get here, mbuf data is too small for DMA engine.
* Try to fix by shuffling data to prev or next in chain.
* If that fails, do a compacting deep-copy of the whole chain.
*/
/* Internal frag. If fits in prev, copy it there. */
if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
prev->m_len += mlen;
m->m_len = 0;
/* XXX stitch chain */
prev->m_next = m_free(m);
m = prev;
continue;
}
else if (m->m_next != NULL &&
M_TRAILINGSPACE(m) >= shortfall &&
m->m_next->m_len >= (8 + shortfall)) {
/* m is writable and have enough data in next, pull up. */
memcpy(m->m_data + m->m_len, m->m_next->m_data,
shortfall);
m->m_len += shortfall;
m->m_next->m_len -= shortfall;
m->m_next->m_data += shortfall;
}
else if (m->m_next == NULL || 1) {
/* Got a runt at the very end of the packet.
* borrow data from the tail of the preceding mbuf and
* update its length in-place. (The original data is still
* valid, so we can do this even if prev is not writable.)
*/
/* if we'd make prev a runt, just move all of its data. */
KASSERT(prev != NULL /*, ("runt but null PREV")*/);
KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
if ((prev->m_len - shortfall) < 8)
shortfall = prev->m_len;
#ifdef notyet /* just do the safe slow thing for now */
if (!M_READONLY(m)) {
if (M_LEADINGSPACE(m) < shorfall) {
void *m_dat;
m_dat = (m->m_flags & M_PKTHDR) ?
m->m_pktdat : m->dat;
memmove(m_dat, mtod(m, void*), m->m_len);
m->m_data = m_dat;
}
} else
#endif /* just do the safe slow thing */
{
struct mbuf * n = NULL;
int newprevlen = prev->m_len - shortfall;
MGET(n, M_NOWAIT, MT_DATA);
if (n == NULL)
return ENOBUFS;
KASSERT(m->m_len + shortfall < MLEN
/*,
("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
/* first copy the data we're stealing from prev */
memcpy(n->m_data, prev->m_data + newprevlen,
shortfall);
/* update prev->m_len accordingly */
prev->m_len -= shortfall;
/* copy data from runt m */
memcpy(n->m_data + shortfall, m->m_data,
m->m_len);
/* n holds what we stole from prev, plus m */
n->m_len = shortfall + m->m_len;
/* stitch n into chain and free m */
n->m_next = m->m_next;
prev->m_next = n;
/* KASSERT(m->m_next == NULL); */
m->m_next = NULL;
m_free(m);
m = n; /* for continuing loop */
}
}
}
return 0;
}
/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int
bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
{
struct bge_tx_bd *f = NULL;
uint32_t frag, cur;
uint16_t csum_flags = 0;
uint16_t txbd_tso_flags = 0;
struct txdmamap_pool_entry *dma;
bus_dmamap_t dmamap;
int i = 0;
struct m_tag *mtag;
int use_tso, maxsegsize, error;
cur = frag = *txidx;
if (m_head->m_pkthdr.csum_flags) {
if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
}
/*
* If we were asked to do an outboard checksum, and the NIC
* has the bug where it sometimes adds in the Ethernet padding,
* explicitly pad with zeros so the cksum will be correct either way.
* (For now, do this for all chip versions, until newer
* are confirmed to not require the workaround.)
*/
if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
#ifdef notyet
(sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
#endif
m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
goto check_dma_bug;
if (bge_cksum_pad(m_head) != 0)
return ENOBUFS;
check_dma_bug:
if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
goto doit;
/*
* bcm5700 Revision B silicon cannot handle DMA descriptors with
* less than eight bytes. If we encounter a teeny mbuf
* at the end of a chain, we can pad. Otherwise, copy.
*/
if (bge_compact_dma_runt(m_head) != 0)
return ENOBUFS;
doit:
dma = SLIST_FIRST(&sc->txdma_list);
if (dma == NULL)
return ENOBUFS;
dmamap = dma->dmamap;
/*
* Set up any necessary TSO state before we start packing...
*/
use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
if (!use_tso) {
maxsegsize = 0;
} else { /* TSO setup */
unsigned mss;
struct ether_header *eh;
unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
struct mbuf * m0 = m_head;
struct ip *ip;
struct tcphdr *th;
int iphl, hlen;
/*
* XXX It would be nice if the mbuf pkthdr had offset
* fields for the protocol headers.
*/
eh = mtod(m0, struct ether_header *);
switch (htons(eh->ether_type)) {
case ETHERTYPE_IP:
offset = ETHER_HDR_LEN;
break;
case ETHERTYPE_VLAN:
offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
break;
default:
/*
* Don't support this protocol or encapsulation.
*/
return ENOBUFS;
}
/*
* TCP/IP headers are in the first mbuf; we can do
* this the easy way.
*/
iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
hlen = iphl + offset;
if (__predict_false(m0->m_len <
(hlen + sizeof(struct tcphdr)))) {
aprint_debug_dev(sc->bge_dev,
"TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
"not handled yet\n",
m0->m_len, hlen+ sizeof(struct tcphdr));
#ifdef NOTYET
/*
* XXX jonathan@NetBSD.org: untested.
* how to force this branch to be taken?
*/
BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
m_copydata(m0, offset, sizeof(ip), &ip);
m_copydata(m0, hlen, sizeof(th), &th);
ip.ip_len = 0;
m_copyback(m0, hlen + offsetof(struct ip, ip_len),
sizeof(ip.ip_len), &ip.ip_len);
th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
ip.ip_dst.s_addr, htons(IPPROTO_TCP));
m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
sizeof(th.th_sum), &th.th_sum);
hlen += th.th_off << 2;
iptcp_opt_words = hlen;
#else
/*
* if_wm "hard" case not yet supported, can we not
* mandate it out of existence?
*/
(void) ip; (void)th; (void) ip_tcp_hlen;
return ENOBUFS;
#endif
} else {
ip = (struct ip *) (mtod(m0, char *) + offset);
th = (struct tcphdr *) (mtod(m0, char *) + hlen);
ip_tcp_hlen = iphl + (th->th_off << 2);
/* Total IP/TCP options, in 32-bit words */
iptcp_opt_words = (ip_tcp_hlen
- sizeof(struct tcphdr)
- sizeof(struct ip)) >> 2;
}
if (BGE_IS_575X_PLUS(sc)) {
th->th_sum = 0;
csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
} else {
/*
* XXX jonathan@NetBSD.org: 5705 untested.
* Requires TSO firmware patch for 5701/5703/5704.
*/
th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
}
mss = m_head->m_pkthdr.segsz;
txbd_tso_flags |=
BGE_TXBDFLAG_CPU_PRE_DMA |
BGE_TXBDFLAG_CPU_POST_DMA;
/*
* Our NIC TSO-assist assumes TSO has standard, optionless
* IPv4 and TCP headers, which total 40 bytes. By default,
* the NIC copies 40 bytes of IP/TCP header from the
* supplied header into the IP/TCP header portion of
* each post-TSO-segment. If the supplied packet has IP or
* TCP options, we need to tell the NIC to copy those extra
* bytes into each post-TSO header, in addition to the normal
* 40-byte IP/TCP header (and to leave space accordingly).
* Unfortunately, the driver encoding of option length
* varies across different ASIC families.
*/
tcp_seg_flags = 0;
if (iptcp_opt_words) {
if (BGE_IS_5705_PLUS(sc)) {
tcp_seg_flags =
iptcp_opt_words << 11;
} else {
txbd_tso_flags |=
iptcp_opt_words << 12;
}
}
maxsegsize = mss | tcp_seg_flags;
ip->ip_len = htons(mss + ip_tcp_hlen);
} /* TSO setup */
/*
* Start packing the mbufs in this chain into
* the fragment pointers. Stop when we run out
* of fragments or hit the end of the mbuf chain.
*/
error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
BUS_DMA_NOWAIT);
if (error)
return ENOBUFS;
/*
* Sanity check: avoid coming within 16 descriptors
* of the end of the ring.
*/
if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
BGE_TSO_PRINTF(("%s: "
" dmamap_load_mbuf too close to ring wrap\n",
device_xname(sc->bge_dev)));
goto fail_unload;
}
mtag = sc->ethercom.ec_nvlans ?
m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
/* Iterate over dmap-map fragments. */
for (i = 0; i < dmamap->dm_nsegs; i++) {
f = &sc->bge_rdata->bge_tx_ring[frag];
if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
break;
BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
f->bge_len = dmamap->dm_segs[i].ds_len;
/*
* For 5751 and follow-ons, for TSO we must turn
* off checksum-assist flag in the tx-descr, and
* supply the ASIC-revision-specific encoding
* of TSO flags and segsize.
*/
if (use_tso) {
if (BGE_IS_575X_PLUS(sc) || i == 0) {
f->bge_rsvd = maxsegsize;
f->bge_flags = csum_flags | txbd_tso_flags;
} else {
f->bge_rsvd = 0;
f->bge_flags =
(csum_flags | txbd_tso_flags) & 0x0fff;
}
} else {
f->bge_rsvd = 0;
f->bge_flags = csum_flags;
}
if (mtag != NULL) {
f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
} else {
f->bge_vlan_tag = 0;
}
cur = frag;
BGE_INC(frag, BGE_TX_RING_CNT);
}
if (i < dmamap->dm_nsegs) {
BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
goto fail_unload;
}
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
if (frag == sc->bge_tx_saved_considx) {
BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
goto fail_unload;
}
sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
sc->bge_cdata.bge_tx_chain[cur] = m_head;
SLIST_REMOVE_HEAD(&sc->txdma_list, link);
sc->txdma[cur] = dma;
sc->bge_txcnt += dmamap->dm_nsegs;
*txidx = frag;
return 0;
fail_unload:
bus_dmamap_unload(sc->bge_dmatag, dmamap);
return ENOBUFS;
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
bge_start(struct ifnet *ifp)
{
struct bge_softc *sc;
struct mbuf *m_head = NULL;
uint32_t prodidx;
int pkts = 0;
sc = ifp->if_softc;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
prodidx = sc->bge_tx_prodidx;
while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
#if 0
/*
* XXX
* safety overkill. If this is a fragmented packet chain
* with delayed TCP/UDP checksums, then only encapsulate
* it if we have enough descriptors to handle the entire
* chain at once.
* (paranoia -- may not actually be needed)
*/
if (m_head->m_flags & M_FIRSTFRAG &&
m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
}
#endif
/*
* Pack the data into the transmit ring. If we
* don't have room, set the OACTIVE flag and wait
* for the NIC to drain the ring.
*/
if (bge_encap(sc, m_head, &prodidx)) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* now we are committed to transmit the packet */
IFQ_DEQUEUE(&ifp->if_snd, m_head);
pkts++;
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m_head);
}
if (pkts == 0)
return;
/* Transmit */
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
/* 5700 b2 errata */
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
sc->bge_tx_prodidx = prodidx;
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
static int
bge_init(struct ifnet *ifp)
{
struct bge_softc *sc = ifp->if_softc;
const uint16_t *m;
uint32_t mode, reg;
int s, error = 0;
s = splnet();
ifp = &sc->ethercom.ec_if;
/* Cancel pending I/O and flush buffers. */
bge_stop(ifp, 0);
bge_stop_fw(sc);
bge_sig_pre_reset(sc, BGE_RESET_START);
bge_reset(sc);
bge_sig_legacy(sc, BGE_RESET_START);
bge_sig_post_reset(sc, BGE_RESET_START);
bge_chipinit(sc);
/*
* Init the various state machines, ring
* control blocks and firmware.
*/
error = bge_blockinit(sc);
if (error != 0) {
aprint_error_dev(sc->bge_dev, "initialization error %d\n",
error);
splx(s);
return error;
}
ifp = &sc->ethercom.ec_if;
/* 5718 step 25, 57XX step 54 */
/* Specify MTU. */
CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
/* 5718 step 23 */
/* Load our MAC address. */
m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
/* Enable or disable promiscuous mode as needed. */
if (ifp->if_flags & IFF_PROMISC)
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
else
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
/* Program multicast filter. */
bge_setmulti(sc);
/* Init RX ring. */
bge_init_rx_ring_std(sc);
/*
* Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
* memory to insure that the chip has in fact read the first
* entry of the ring.
*/
if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
uint32_t v, i;
for (i = 0; i < 10; i++) {
DELAY(20);
v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
if (v == (MCLBYTES - ETHER_ALIGN))
break;
}
if (i == 10)
aprint_error_dev(sc->bge_dev,
"5705 A0 chip failed to load RX ring\n");
}
/* Init jumbo RX ring. */
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
bge_init_rx_ring_jumbo(sc);
/* Init our RX return ring index */
sc->bge_rx_saved_considx = 0;
/* Init TX ring. */
bge_init_tx_ring(sc);
/* 5718 step 63, 57XX step 94 */
/* Enable TX MAC state machine lockup fix. */
mode = CSR_READ_4(sc, BGE_TX_MODE);
if (BGE_IS_5755_PLUS(sc) ||
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
mode |= CSR_READ_4(sc, BGE_TX_MODE) &
(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
}
/* Turn on transmitter */
CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
/* 5718 step 64 */
DELAY(100);
/* 5718 step 65, 57XX step 95 */
/* Turn on receiver */
mode = CSR_READ_4(sc, BGE_RX_MODE);
if (BGE_IS_5755_PLUS(sc))
mode |= BGE_RXMODE_IPV6_ENABLE;
CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
/* 5718 step 66 */
DELAY(10);
/* 5718 step 12, 57XX step 37 */
/*
* XXX Doucments of 5718 series and 577xx say the recommended value
* is 1, but tg3 set 1 only on 57765 series.
*/
if (BGE_IS_57765_PLUS(sc))
reg = 1;
else
reg = 2;
CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);
/* Tell firmware we're alive. */
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
/* Enable host interrupts. */
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);
if ((error = bge_ifmedia_upd(ifp)) != 0)
goto out;
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
out:
sc->bge_if_flags = ifp->if_flags;
splx(s);
return error;
}
/*
* Set media options.
*/
static int
bge_ifmedia_upd(struct ifnet *ifp)
{
struct bge_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->bge_mii;
struct ifmedia *ifm = &sc->bge_ifmedia;
int rc;
/* If this is a 1000baseX NIC, enable the TBI port. */
if (sc->bge_flags & BGEF_FIBER_TBI) {
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return EINVAL;
switch (IFM_SUBTYPE(ifm->ifm_media)) {
case IFM_AUTO:
/*
* The BCM5704 ASIC appears to have a special
* mechanism for programming the autoneg
* advertisement registers in TBI mode.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
uint32_t sgdig;
sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
if (sgdig & BGE_SGDIGSTS_DONE) {
CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
sgdig |= BGE_SGDIGCFG_AUTO |
BGE_SGDIGCFG_PAUSE_CAP |
BGE_SGDIGCFG_ASYM_PAUSE;
CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
sgdig | BGE_SGDIGCFG_SEND);
DELAY(5);
CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
sgdig);
}
}
break;
case IFM_1000_SX:
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
BGE_CLRBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
} else {
BGE_SETBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_HALF_DUPLEX);
}
DELAY(40);
break;
default:
return EINVAL;
}
/* XXX 802.3x flow control for 1000BASE-SX */
return 0;
}
BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
if ((rc = mii_mediachg(mii)) == ENXIO)
return 0;
/*
* Force an interrupt so that we will call bge_link_upd
* if needed and clear any pending link state attention.
* Without this we are not getting any further interrupts
* for link state changes and thus will not UP the link and
* not be able to send in bge_start. The only way to get
* things working was to receive a packet and get a RX intr.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
sc->bge_flags & BGEF_IS_5788)
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
else
BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
return rc;
}
/*
* Report current media status.
*/
static void
bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bge_softc *sc = ifp->if_softc;
struct mii_data *mii = &sc->bge_mii;
if (sc->bge_flags & BGEF_FIBER_TBI) {
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (CSR_READ_4(sc, BGE_MAC_STS) &
BGE_MACSTAT_TBI_PCS_SYNCHED)
ifmr->ifm_status |= IFM_ACTIVE;
ifmr->ifm_active |= IFM_1000_SX;
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
ifmr->ifm_active |= IFM_HDX;
else
ifmr->ifm_active |= IFM_FDX;
return;
}
mii_pollstat(mii);
ifmr->ifm_status = mii->mii_media_status;
ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
sc->bge_flowflags;
}
static int
bge_ifflags_cb(struct ethercom *ec)
{
struct ifnet *ifp = &ec->ec_if;
struct bge_softc *sc = ifp->if_softc;
int change = ifp->if_flags ^ sc->bge_if_flags;
if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
return ENETRESET;
else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
return 0;
if ((ifp->if_flags & IFF_PROMISC) == 0)
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
else
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
bge_setmulti(sc);
sc->bge_if_flags = ifp->if_flags;
return 0;
}
static int
bge_ioctl(struct ifnet *ifp, u_long command, void *data)
{
struct bge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
struct mii_data *mii;
s = splnet();
switch (command) {
case SIOCSIFMEDIA:
/* XXX Flow control is not supported for 1000BASE-SX */
if (sc->bge_flags & BGEF_FIBER_TBI) {
ifr->ifr_media &= ~IFM_ETH_FMASK;
sc->bge_flowflags = 0;
}
/* Flow control requires full-duplex mode. */
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
(ifr->ifr_media & IFM_FDX) == 0) {
ifr->ifr_media &= ~IFM_ETH_FMASK;
}
if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
/* We can do both TXPAUSE and RXPAUSE. */
ifr->ifr_media |=
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
}
sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
}
/* FALLTHROUGH */
case SIOCGIFMEDIA:
if (sc->bge_flags & BGEF_FIBER_TBI) {
error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
command);
} else {
mii = &sc->bge_mii;
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
command);
}
break;
default:
if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
break;
error = 0;
if (command != SIOCADDMULTI && command != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING)
bge_setmulti(sc);
break;
}
splx(s);
return error;
}
static void
bge_watchdog(struct ifnet *ifp)
{
struct bge_softc *sc;
sc = ifp->if_softc;
aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
ifp->if_flags &= ~IFF_RUNNING;
bge_init(ifp);
ifp->if_oerrors++;
}
static void
bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
{
int i;
BGE_CLRBIT_FLUSH(sc, reg, bit);
for (i = 0; i < 1000; i++) {
delay(100);
if ((CSR_READ_4(sc, reg) & bit) == 0)
return;
}
/*
* Doesn't print only when the register is BGE_SRS_MODE. It occurs
* on some environment (and once after boot?)
*/
if (reg != BGE_SRS_MODE)
aprint_error_dev(sc->bge_dev,
"block failed to stop: reg 0x%lx, bit 0x%08x\n",
(u_long)reg, bit);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
bge_stop(struct ifnet *ifp, int disable)
{
struct bge_softc *sc = ifp->if_softc;
callout_stop(&sc->bge_timeout);
/* Disable host interrupts. */
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
/*
* Tell firmware we're shutting down.
*/
bge_stop_fw(sc);
bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
/*
* Disable all of the receiver blocks.
*/
bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
if (BGE_IS_5700_FAMILY(sc))
bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
/*
* Disable all of the transmit blocks.
*/
bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
if (BGE_IS_5700_FAMILY(sc))
bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
delay(40);
bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
/*
* Shut down all of the memory managers and related
* state machines.
*/
/* 5718 step 5a,5b */
bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
if (BGE_IS_5700_FAMILY(sc))
bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
/* 5718 step 5c,5d */
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
if (BGE_IS_5700_FAMILY(sc)) {
bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
}
bge_reset(sc);
bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
/*
* Keep the ASF firmware running if up.
*/
if (sc->bge_asf_mode & ASF_STACKUP)
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
else
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
/* Free the RX lists. */
bge_free_rx_ring_std(sc);
/* Free jumbo RX list. */
if (BGE_IS_JUMBO_CAPABLE(sc))
bge_free_rx_ring_jumbo(sc);
/* Free TX buffers. */
bge_free_tx_ring(sc);
/*
* Isolate/power down the PHY.
*/
if (!(sc->bge_flags & BGEF_FIBER_TBI))
mii_down(&sc->bge_mii);
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
/* Clear MAC's link state (PHY may still have link UP). */
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
}
static void
bge_link_upd(struct bge_softc *sc)
{
struct ifnet *ifp = &sc->ethercom.ec_if;
struct mii_data *mii = &sc->bge_mii;
uint32_t status;
int link;
/* Clear 'pending link event' flag */
BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
/*
* Process link state changes.
* Grrr. The link status word in the status block does
* not work correctly on the BCM5700 rev AX and BX chips,
* according to all available information. Hence, we have
* to enable MII interrupts in order to properly obtain
* async link changes. Unfortunately, this also means that
* we have to read the MAC status register to detect link
* changes, thereby adding an additional register access to
* the interrupt handler.
*/
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
status = CSR_READ_4(sc, BGE_MAC_STS);
if (status & BGE_MACSTAT_MI_INTERRUPT) {
mii_pollstat(mii);
if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
BGE_STS_SETBIT(sc, BGE_STS_LINK);
else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
(!(mii->mii_media_status & IFM_ACTIVE) ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
/* Clear the interrupt */
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
BGE_EVTENB_MI_INTERRUPT);
bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
BRGPHY_MII_ISR);
bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
BRGPHY_MII_IMR, BRGPHY_INTRS);
}
return;
}
if (sc->bge_flags & BGEF_FIBER_TBI) {
status = CSR_READ_4(sc, BGE_MAC_STS);
if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
BGE_STS_SETBIT(sc, BGE_STS_LINK);
if (BGE_ASICREV(sc->bge_chipid)
== BGE_ASICREV_BCM5704) {
BGE_CLRBIT(sc, BGE_MAC_MODE,
BGE_MACMODE_TBI_SEND_CFGS);
DELAY(40);
}
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
if_link_state_change(ifp, LINK_STATE_UP);
}
} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
if_link_state_change(ifp, LINK_STATE_DOWN);
}
} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
/*
* Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
* bit in status word always set. Workaround this bug by
* reading PHY link status directly.
*/
link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
BGE_STS_LINK : 0;
if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
mii_pollstat(mii);
if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
BGE_STS_SETBIT(sc, BGE_STS_LINK);
else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
(!(mii->mii_media_status & IFM_ACTIVE) ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
}
} else {
/*
* For controllers that call mii_tick, we have to poll
* link status.
*/
mii_pollstat(mii);
}
/* Clear the attention */
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
BGE_MACSTAT_LINK_CHANGED);
}
static int
bge_sysctl_verify(SYSCTLFN_ARGS)
{
int error, t;
struct sysctlnode node;
node = *rnode;
t = *(int*)rnode->sysctl_data;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
#if 0
DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
node.sysctl_num, rnode->sysctl_num));
#endif
if (node.sysctl_num == bge_rxthresh_nodenum) {
if (t < 0 || t >= NBGE_RX_THRESH)
return EINVAL;
bge_update_all_threshes(t);
} else
return EINVAL;
*(int*)rnode->sysctl_data = t;
return 0;
}
/*
* Set up sysctl(3) MIB, hw.bge.*.
*/
static void
bge_sysctl_init(struct bge_softc *sc)
{
int rc, bge_root_num;
const struct sysctlnode *node;
if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
goto out;
}
if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
0, CTLTYPE_NODE, "bge",
SYSCTL_DESCR("BGE interface controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
goto out;
}
bge_root_num = node->sysctl_num;
/* BGE Rx interrupt mitigation level */
if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
CTLFLAG_READWRITE,
CTLTYPE_INT, "rx_lvl",
SYSCTL_DESCR("BGE receive interrupt mitigation level"),
bge_sysctl_verify, 0,
&bge_rx_thresh_lvl,
0, CTL_HW, bge_root_num, CTL_CREATE,
CTL_EOL)) != 0) {
goto out;
}
bge_rxthresh_nodenum = node->sysctl_num;
return;
out:
aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}
#ifdef BGE_DEBUG
void
bge_debug_info(struct bge_softc *sc)
{
printf("Hardware Flags:\n");
if (BGE_IS_57765_PLUS(sc))
printf(" - 57765 Plus\n");
if (BGE_IS_5717_PLUS(sc))
printf(" - 5717 Plus\n");
if (BGE_IS_5755_PLUS(sc))
printf(" - 5755 Plus\n");
if (BGE_IS_575X_PLUS(sc))
printf(" - 575X Plus\n");
if (BGE_IS_5705_PLUS(sc))
printf(" - 5705 Plus\n");
if (BGE_IS_5714_FAMILY(sc))
printf(" - 5714 Family\n");
if (BGE_IS_5700_FAMILY(sc))
printf(" - 5700 Family\n");
if (sc->bge_flags & BGEF_IS_5788)
printf(" - 5788\n");
if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
printf(" - Supports Jumbo Frames\n");
if (sc->bge_flags & BGEF_NO_EEPROM)
printf(" - No EEPROM\n");
if (sc->bge_flags & BGEF_PCIX)
printf(" - PCI-X Bus\n");
if (sc->bge_flags & BGEF_PCIE)
printf(" - PCI Express Bus\n");
if (sc->bge_flags & BGEF_RX_ALIGNBUG)
printf(" - RX Alignment Bug\n");
if (sc->bge_flags & BGEF_APE)
printf(" - APE\n");
if (sc->bge_flags & BGEF_CPMU_PRESENT)
printf(" - CPMU\n");
if (sc->bge_flags & BGEF_TSO)
printf(" - TSO\n");
if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
printf(" - No 3 LEDs\n");
if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
printf(" - CRC bug\n");
if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
printf(" - ADC bug\n");
if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
printf(" - 5704 A0 bug\n");
if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
printf(" - jitter bug\n");
if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
printf(" - BER bug\n");
if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
printf(" - adjust trim\n");
if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
printf(" - no wirespeed\n");
}
#endif /* BGE_DEBUG */
static int
bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
{
prop_dictionary_t dict;
prop_data_t ea;
if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
return 1;
dict = device_properties(sc->bge_dev);
ea = prop_dictionary_get(dict, "mac-address");
if (ea != NULL) {
KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
return 0;
}
return 1;
}
static int
bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
{
uint32_t mac_addr;
mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
if ((mac_addr >> 16) == 0x484b) {
ether_addr[0] = (uint8_t)(mac_addr >> 8);
ether_addr[1] = (uint8_t)mac_addr;
mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
ether_addr[2] = (uint8_t)(mac_addr >> 24);
ether_addr[3] = (uint8_t)(mac_addr >> 16);
ether_addr[4] = (uint8_t)(mac_addr >> 8);
ether_addr[5] = (uint8_t)mac_addr;
return 0;
}
return 1;
}
static int
bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
{
int mac_offset = BGE_EE_MAC_OFFSET;
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
mac_offset = BGE_EE_MAC_OFFSET_5906;
return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
ETHER_ADDR_LEN));
}
static int
bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
{
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
return 1;
return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
ETHER_ADDR_LEN));
}
static int
bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
{
static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
/* NOTE: Order is critical */
bge_get_eaddr_fw,
bge_get_eaddr_mem,
bge_get_eaddr_nvram,
bge_get_eaddr_eeprom,
NULL
};
const bge_eaddr_fcn_t *func;
for (func = bge_eaddr_funcs; *func != NULL; ++func) {
if ((*func)(sc, eaddr) == 0)
break;
}
return (*func == NULL ? ENXIO : 0);
}