1423e65b26
VOP_UNLOCK(vp, flags) -> VOP_UNLOCK(vp): Remove the unneeded flags argument. Welcome to 5.99.32. Discussed on tech-kern.
1775 lines
44 KiB
C
1775 lines
44 KiB
C
/* $NetBSD: uipc_usrreq.c,v 1.130 2010/06/24 13:03:11 hannken Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998, 2000, 2004, 2008, 2009 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center, and by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: uipc_usrreq.c,v 1.130 2010/06/24 13:03:11 hannken Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/unpcb.h>
|
|
#include <sys/un.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/uidinfo.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kthread.h>
|
|
|
|
/*
|
|
* Unix communications domain.
|
|
*
|
|
* TODO:
|
|
* SEQPACKET, RDM
|
|
* rethink name space problems
|
|
* need a proper out-of-band
|
|
*
|
|
* Notes on locking:
|
|
*
|
|
* The generic rules noted in uipc_socket2.c apply. In addition:
|
|
*
|
|
* o We have a global lock, uipc_lock.
|
|
*
|
|
* o All datagram sockets are locked by uipc_lock.
|
|
*
|
|
* o For stream socketpairs, the two endpoints are created sharing the same
|
|
* independent lock. Sockets presented to PRU_CONNECT2 must already have
|
|
* matching locks.
|
|
*
|
|
* o Stream sockets created via socket() start life with their own
|
|
* independent lock.
|
|
*
|
|
* o Stream connections to a named endpoint are slightly more complicated.
|
|
* Sockets that have called listen() have their lock pointer mutated to
|
|
* the global uipc_lock. When establishing a connection, the connecting
|
|
* socket also has its lock mutated to uipc_lock, which matches the head
|
|
* (listening socket). We create a new socket for accept() to return, and
|
|
* that also shares the head's lock. Until the connection is completely
|
|
* done on both ends, all three sockets are locked by uipc_lock. Once the
|
|
* connection is complete, the association with the head's lock is broken.
|
|
* The connecting socket and the socket returned from accept() have their
|
|
* lock pointers mutated away from uipc_lock, and back to the connecting
|
|
* socket's original, independent lock. The head continues to be locked
|
|
* by uipc_lock.
|
|
*
|
|
* o If uipc_lock is determined to be a significant source of contention,
|
|
* it could easily be hashed out. It is difficult to simply make it an
|
|
* independent lock because of visibility / garbage collection issues:
|
|
* if a socket has been associated with a lock at any point, that lock
|
|
* must remain valid until the socket is no longer visible in the system.
|
|
* The lock must not be freed or otherwise destroyed until any sockets
|
|
* that had referenced it have also been destroyed.
|
|
*/
|
|
const struct sockaddr_un sun_noname = {
|
|
.sun_len = sizeof(sun_noname),
|
|
.sun_family = AF_LOCAL,
|
|
};
|
|
ino_t unp_ino; /* prototype for fake inode numbers */
|
|
|
|
struct mbuf *unp_addsockcred(struct lwp *, struct mbuf *);
|
|
static void unp_mark(file_t *);
|
|
static void unp_scan(struct mbuf *, void (*)(file_t *), int);
|
|
static void unp_discard_now(file_t *);
|
|
static void unp_discard_later(file_t *);
|
|
static void unp_thread(void *);
|
|
static void unp_thread_kick(void);
|
|
static kmutex_t *uipc_lock;
|
|
|
|
static kcondvar_t unp_thread_cv;
|
|
static lwp_t *unp_thread_lwp;
|
|
static SLIST_HEAD(,file) unp_thread_discard;
|
|
static int unp_defer;
|
|
|
|
/*
|
|
* Initialize Unix protocols.
|
|
*/
|
|
void
|
|
uipc_init(void)
|
|
{
|
|
int error;
|
|
|
|
uipc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&unp_thread_cv, "unpgc");
|
|
|
|
error = kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, unp_thread,
|
|
NULL, &unp_thread_lwp, "unpgc");
|
|
if (error != 0)
|
|
panic("uipc_init %d", error);
|
|
}
|
|
|
|
/*
|
|
* A connection succeeded: disassociate both endpoints from the head's
|
|
* lock, and make them share their own lock. There is a race here: for
|
|
* a very brief time one endpoint will be locked by a different lock
|
|
* than the other end. However, since the current thread holds the old
|
|
* lock (the listening socket's lock, the head) access can still only be
|
|
* made to one side of the connection.
|
|
*/
|
|
static void
|
|
unp_setpeerlocks(struct socket *so, struct socket *so2)
|
|
{
|
|
struct unpcb *unp;
|
|
kmutex_t *lock;
|
|
|
|
KASSERT(solocked2(so, so2));
|
|
|
|
/*
|
|
* Bail out if either end of the socket is not yet fully
|
|
* connected or accepted. We only break the lock association
|
|
* with the head when the pair of sockets stand completely
|
|
* on their own.
|
|
*/
|
|
KASSERT(so->so_head == NULL);
|
|
if (so2->so_head != NULL)
|
|
return;
|
|
|
|
/*
|
|
* Drop references to old lock. A third reference (from the
|
|
* queue head) must be held as we still hold its lock. Bonus:
|
|
* we don't need to worry about garbage collecting the lock.
|
|
*/
|
|
lock = so->so_lock;
|
|
KASSERT(lock == uipc_lock);
|
|
mutex_obj_free(lock);
|
|
mutex_obj_free(lock);
|
|
|
|
/*
|
|
* Grab stream lock from the initiator and share between the two
|
|
* endpoints. Issue memory barrier to ensure all modifications
|
|
* become globally visible before the lock change. so2 is
|
|
* assumed not to have a stream lock, because it was created
|
|
* purely for the server side to accept this connection and
|
|
* started out life using the domain-wide lock.
|
|
*/
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp->unp_streamlock != NULL);
|
|
KASSERT(sotounpcb(so2)->unp_streamlock == NULL);
|
|
lock = unp->unp_streamlock;
|
|
unp->unp_streamlock = NULL;
|
|
mutex_obj_hold(lock);
|
|
membar_exit();
|
|
/*
|
|
* possible race if lock is not held - see comment in
|
|
* uipc_usrreq(PRU_ACCEPT).
|
|
*/
|
|
KASSERT(mutex_owned(lock));
|
|
solockreset(so, lock);
|
|
solockreset(so2, lock);
|
|
}
|
|
|
|
/*
|
|
* Reset a socket's lock back to the domain-wide lock.
|
|
*/
|
|
static void
|
|
unp_resetlock(struct socket *so)
|
|
{
|
|
kmutex_t *olock, *nlock;
|
|
struct unpcb *unp;
|
|
|
|
KASSERT(solocked(so));
|
|
|
|
olock = so->so_lock;
|
|
nlock = uipc_lock;
|
|
if (olock == nlock)
|
|
return;
|
|
unp = sotounpcb(so);
|
|
KASSERT(unp->unp_streamlock == NULL);
|
|
unp->unp_streamlock = olock;
|
|
mutex_obj_hold(nlock);
|
|
mutex_enter(nlock);
|
|
solockreset(so, nlock);
|
|
mutex_exit(olock);
|
|
}
|
|
|
|
static void
|
|
unp_free(struct unpcb *unp)
|
|
{
|
|
|
|
if (unp->unp_addr)
|
|
free(unp->unp_addr, M_SONAME);
|
|
if (unp->unp_streamlock != NULL)
|
|
mutex_obj_free(unp->unp_streamlock);
|
|
free(unp, M_PCB);
|
|
}
|
|
|
|
int
|
|
unp_output(struct mbuf *m, struct mbuf *control, struct unpcb *unp,
|
|
struct lwp *l)
|
|
{
|
|
struct socket *so2;
|
|
const struct sockaddr_un *sun;
|
|
|
|
so2 = unp->unp_conn->unp_socket;
|
|
|
|
KASSERT(solocked(so2));
|
|
|
|
if (unp->unp_addr)
|
|
sun = unp->unp_addr;
|
|
else
|
|
sun = &sun_noname;
|
|
if (unp->unp_conn->unp_flags & UNP_WANTCRED)
|
|
control = unp_addsockcred(l, control);
|
|
if (sbappendaddr(&so2->so_rcv, (const struct sockaddr *)sun, m,
|
|
control) == 0) {
|
|
so2->so_rcv.sb_overflowed++;
|
|
unp_dispose(control);
|
|
m_freem(control);
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
} else {
|
|
sorwakeup(so2);
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
void
|
|
unp_setaddr(struct socket *so, struct mbuf *nam, bool peeraddr)
|
|
{
|
|
const struct sockaddr_un *sun;
|
|
struct unpcb *unp;
|
|
bool ext;
|
|
|
|
KASSERT(solocked(so));
|
|
unp = sotounpcb(so);
|
|
ext = false;
|
|
|
|
for (;;) {
|
|
sun = NULL;
|
|
if (peeraddr) {
|
|
if (unp->unp_conn && unp->unp_conn->unp_addr)
|
|
sun = unp->unp_conn->unp_addr;
|
|
} else {
|
|
if (unp->unp_addr)
|
|
sun = unp->unp_addr;
|
|
}
|
|
if (sun == NULL)
|
|
sun = &sun_noname;
|
|
nam->m_len = sun->sun_len;
|
|
if (nam->m_len > MLEN && !ext) {
|
|
sounlock(so);
|
|
MEXTMALLOC(nam, MAXPATHLEN * 2, M_WAITOK);
|
|
solock(so);
|
|
ext = true;
|
|
} else {
|
|
KASSERT(nam->m_len <= MAXPATHLEN * 2);
|
|
memcpy(mtod(nam, void *), sun, (size_t)nam->m_len);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*ARGSUSED*/
|
|
int
|
|
uipc_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
|
|
struct mbuf *control, struct lwp *l)
|
|
{
|
|
struct unpcb *unp = sotounpcb(so);
|
|
struct socket *so2;
|
|
struct proc *p;
|
|
u_int newhiwat;
|
|
int error = 0;
|
|
|
|
if (req == PRU_CONTROL)
|
|
return (EOPNOTSUPP);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (req != PRU_SEND && req != PRU_SENDOOB && control)
|
|
panic("uipc_usrreq: unexpected control mbuf");
|
|
#endif
|
|
p = l ? l->l_proc : NULL;
|
|
if (req != PRU_ATTACH) {
|
|
if (unp == NULL) {
|
|
error = EINVAL;
|
|
goto release;
|
|
}
|
|
KASSERT(solocked(so));
|
|
}
|
|
|
|
switch (req) {
|
|
|
|
case PRU_ATTACH:
|
|
if (unp != NULL) {
|
|
error = EISCONN;
|
|
break;
|
|
}
|
|
error = unp_attach(so);
|
|
break;
|
|
|
|
case PRU_DETACH:
|
|
unp_detach(unp);
|
|
break;
|
|
|
|
case PRU_BIND:
|
|
KASSERT(l != NULL);
|
|
error = unp_bind(so, nam, l);
|
|
break;
|
|
|
|
case PRU_LISTEN:
|
|
/*
|
|
* If the socket can accept a connection, it must be
|
|
* locked by uipc_lock.
|
|
*/
|
|
unp_resetlock(so);
|
|
if (unp->unp_vnode == NULL)
|
|
error = EINVAL;
|
|
break;
|
|
|
|
case PRU_CONNECT:
|
|
KASSERT(l != NULL);
|
|
error = unp_connect(so, nam, l);
|
|
break;
|
|
|
|
case PRU_CONNECT2:
|
|
error = unp_connect2(so, (struct socket *)nam, PRU_CONNECT2);
|
|
break;
|
|
|
|
case PRU_DISCONNECT:
|
|
unp_disconnect(unp);
|
|
break;
|
|
|
|
case PRU_ACCEPT:
|
|
KASSERT(so->so_lock == uipc_lock);
|
|
/*
|
|
* Mark the initiating STREAM socket as connected *ONLY*
|
|
* after it's been accepted. This prevents a client from
|
|
* overrunning a server and receiving ECONNREFUSED.
|
|
*/
|
|
if (unp->unp_conn == NULL)
|
|
break;
|
|
so2 = unp->unp_conn->unp_socket;
|
|
if (so2->so_state & SS_ISCONNECTING) {
|
|
KASSERT(solocked2(so, so->so_head));
|
|
KASSERT(solocked2(so2, so->so_head));
|
|
soisconnected(so2);
|
|
}
|
|
/*
|
|
* If the connection is fully established, break the
|
|
* association with uipc_lock and give the connected
|
|
* pair a seperate lock to share.
|
|
* There is a race here: sotounpcb(so2)->unp_streamlock
|
|
* is not locked, so when changing so2->so_lock
|
|
* another thread can grab it while so->so_lock is still
|
|
* pointing to the (locked) uipc_lock.
|
|
* this should be harmless, except that this makes
|
|
* solocked2() and solocked() unreliable.
|
|
* Another problem is that unp_setaddr() expects the
|
|
* the socket locked. Grabing sotounpcb(so2)->unp_streamlock
|
|
* fixes both issues.
|
|
*/
|
|
mutex_enter(sotounpcb(so2)->unp_streamlock);
|
|
unp_setpeerlocks(so2, so);
|
|
/*
|
|
* Only now return peer's address, as we may need to
|
|
* block in order to allocate memory.
|
|
*
|
|
* XXX Minor race: connection can be broken while
|
|
* lock is dropped in unp_setaddr(). We will return
|
|
* error == 0 and sun_noname as the peer address.
|
|
*/
|
|
unp_setaddr(so, nam, true);
|
|
/* so_lock now points to unp_streamlock */
|
|
mutex_exit(so2->so_lock);
|
|
break;
|
|
|
|
case PRU_SHUTDOWN:
|
|
socantsendmore(so);
|
|
unp_shutdown(unp);
|
|
break;
|
|
|
|
case PRU_RCVD:
|
|
switch (so->so_type) {
|
|
|
|
case SOCK_DGRAM:
|
|
panic("uipc 1");
|
|
/*NOTREACHED*/
|
|
|
|
case SOCK_STREAM:
|
|
#define rcv (&so->so_rcv)
|
|
#define snd (&so2->so_snd)
|
|
if (unp->unp_conn == 0)
|
|
break;
|
|
so2 = unp->unp_conn->unp_socket;
|
|
KASSERT(solocked2(so, so2));
|
|
/*
|
|
* Adjust backpressure on sender
|
|
* and wakeup any waiting to write.
|
|
*/
|
|
snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
|
|
unp->unp_mbcnt = rcv->sb_mbcnt;
|
|
newhiwat = snd->sb_hiwat + unp->unp_cc - rcv->sb_cc;
|
|
(void)chgsbsize(so2->so_uidinfo,
|
|
&snd->sb_hiwat, newhiwat, RLIM_INFINITY);
|
|
unp->unp_cc = rcv->sb_cc;
|
|
sowwakeup(so2);
|
|
#undef snd
|
|
#undef rcv
|
|
break;
|
|
|
|
default:
|
|
panic("uipc 2");
|
|
}
|
|
break;
|
|
|
|
case PRU_SEND:
|
|
/*
|
|
* Note: unp_internalize() rejects any control message
|
|
* other than SCM_RIGHTS, and only allows one. This
|
|
* has the side-effect of preventing a caller from
|
|
* forging SCM_CREDS.
|
|
*/
|
|
if (control) {
|
|
sounlock(so);
|
|
error = unp_internalize(&control);
|
|
solock(so);
|
|
if (error != 0) {
|
|
m_freem(control);
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
switch (so->so_type) {
|
|
|
|
case SOCK_DGRAM: {
|
|
KASSERT(so->so_lock == uipc_lock);
|
|
if (nam) {
|
|
if ((so->so_state & SS_ISCONNECTED) != 0)
|
|
error = EISCONN;
|
|
else {
|
|
/*
|
|
* Note: once connected, the
|
|
* socket's lock must not be
|
|
* dropped until we have sent
|
|
* the message and disconnected.
|
|
* This is necessary to prevent
|
|
* intervening control ops, like
|
|
* another connection.
|
|
*/
|
|
error = unp_connect(so, nam, l);
|
|
}
|
|
} else {
|
|
if ((so->so_state & SS_ISCONNECTED) == 0)
|
|
error = ENOTCONN;
|
|
}
|
|
if (error) {
|
|
unp_dispose(control);
|
|
m_freem(control);
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
KASSERT(p != NULL);
|
|
error = unp_output(m, control, unp, l);
|
|
if (nam)
|
|
unp_disconnect(unp);
|
|
break;
|
|
}
|
|
|
|
case SOCK_STREAM:
|
|
#define rcv (&so2->so_rcv)
|
|
#define snd (&so->so_snd)
|
|
if (unp->unp_conn == NULL) {
|
|
error = ENOTCONN;
|
|
break;
|
|
}
|
|
so2 = unp->unp_conn->unp_socket;
|
|
KASSERT(solocked2(so, so2));
|
|
if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
|
|
/*
|
|
* Credentials are passed only once on
|
|
* SOCK_STREAM.
|
|
*/
|
|
unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
|
|
control = unp_addsockcred(l, control);
|
|
}
|
|
/*
|
|
* Send to paired receive port, and then reduce
|
|
* send buffer hiwater marks to maintain backpressure.
|
|
* Wake up readers.
|
|
*/
|
|
if (control) {
|
|
if (sbappendcontrol(rcv, m, control) != 0)
|
|
control = NULL;
|
|
} else
|
|
sbappend(rcv, m);
|
|
snd->sb_mbmax -=
|
|
rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
|
|
unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
|
|
newhiwat = snd->sb_hiwat -
|
|
(rcv->sb_cc - unp->unp_conn->unp_cc);
|
|
(void)chgsbsize(so->so_uidinfo,
|
|
&snd->sb_hiwat, newhiwat, RLIM_INFINITY);
|
|
unp->unp_conn->unp_cc = rcv->sb_cc;
|
|
sorwakeup(so2);
|
|
#undef snd
|
|
#undef rcv
|
|
if (control != NULL) {
|
|
unp_dispose(control);
|
|
m_freem(control);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
panic("uipc 4");
|
|
}
|
|
break;
|
|
|
|
case PRU_ABORT:
|
|
(void)unp_drop(unp, ECONNABORTED);
|
|
|
|
KASSERT(so->so_head == NULL);
|
|
#ifdef DIAGNOSTIC
|
|
if (so->so_pcb == NULL)
|
|
panic("uipc 5: drop killed pcb");
|
|
#endif
|
|
unp_detach(unp);
|
|
break;
|
|
|
|
case PRU_SENSE:
|
|
((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
|
|
if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
|
|
so2 = unp->unp_conn->unp_socket;
|
|
KASSERT(solocked2(so, so2));
|
|
((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
|
|
}
|
|
((struct stat *) m)->st_dev = NODEV;
|
|
if (unp->unp_ino == 0)
|
|
unp->unp_ino = unp_ino++;
|
|
((struct stat *) m)->st_atimespec =
|
|
((struct stat *) m)->st_mtimespec =
|
|
((struct stat *) m)->st_ctimespec = unp->unp_ctime;
|
|
((struct stat *) m)->st_ino = unp->unp_ino;
|
|
return (0);
|
|
|
|
case PRU_RCVOOB:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
|
|
case PRU_SENDOOB:
|
|
m_freem(control);
|
|
m_freem(m);
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
|
|
case PRU_SOCKADDR:
|
|
unp_setaddr(so, nam, false);
|
|
break;
|
|
|
|
case PRU_PEERADDR:
|
|
unp_setaddr(so, nam, true);
|
|
break;
|
|
|
|
default:
|
|
panic("piusrreq");
|
|
}
|
|
|
|
release:
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Unix domain socket option processing.
|
|
*/
|
|
int
|
|
uipc_ctloutput(int op, struct socket *so, struct sockopt *sopt)
|
|
{
|
|
struct unpcb *unp = sotounpcb(so);
|
|
int optval = 0, error = 0;
|
|
|
|
KASSERT(solocked(so));
|
|
|
|
if (sopt->sopt_level != 0) {
|
|
error = ENOPROTOOPT;
|
|
} else switch (op) {
|
|
|
|
case PRCO_SETOPT:
|
|
switch (sopt->sopt_name) {
|
|
case LOCAL_CREDS:
|
|
case LOCAL_CONNWAIT:
|
|
error = sockopt_getint(sopt, &optval);
|
|
if (error)
|
|
break;
|
|
switch (sopt->sopt_name) {
|
|
#define OPTSET(bit) \
|
|
if (optval) \
|
|
unp->unp_flags |= (bit); \
|
|
else \
|
|
unp->unp_flags &= ~(bit);
|
|
|
|
case LOCAL_CREDS:
|
|
OPTSET(UNP_WANTCRED);
|
|
break;
|
|
case LOCAL_CONNWAIT:
|
|
OPTSET(UNP_CONNWAIT);
|
|
break;
|
|
}
|
|
break;
|
|
#undef OPTSET
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case PRCO_GETOPT:
|
|
sounlock(so);
|
|
switch (sopt->sopt_name) {
|
|
case LOCAL_PEEREID:
|
|
if (unp->unp_flags & UNP_EIDSVALID) {
|
|
error = sockopt_set(sopt,
|
|
&unp->unp_connid, sizeof(unp->unp_connid));
|
|
} else {
|
|
error = EINVAL;
|
|
}
|
|
break;
|
|
case LOCAL_CREDS:
|
|
#define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
|
|
|
|
optval = OPTBIT(UNP_WANTCRED);
|
|
error = sockopt_setint(sopt, optval);
|
|
break;
|
|
#undef OPTBIT
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
solock(so);
|
|
break;
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Both send and receive buffers are allocated PIPSIZ bytes of buffering
|
|
* for stream sockets, although the total for sender and receiver is
|
|
* actually only PIPSIZ.
|
|
* Datagram sockets really use the sendspace as the maximum datagram size,
|
|
* and don't really want to reserve the sendspace. Their recvspace should
|
|
* be large enough for at least one max-size datagram plus address.
|
|
*/
|
|
#define PIPSIZ 4096
|
|
u_long unpst_sendspace = PIPSIZ;
|
|
u_long unpst_recvspace = PIPSIZ;
|
|
u_long unpdg_sendspace = 2*1024; /* really max datagram size */
|
|
u_long unpdg_recvspace = 4*1024;
|
|
|
|
u_int unp_rights; /* files in flight */
|
|
u_int unp_rights_ratio = 2; /* limit, fraction of maxfiles */
|
|
|
|
int
|
|
unp_attach(struct socket *so)
|
|
{
|
|
struct unpcb *unp;
|
|
int error;
|
|
|
|
switch (so->so_type) {
|
|
case SOCK_STREAM:
|
|
if (so->so_lock == NULL) {
|
|
/*
|
|
* XXX Assuming that no socket locks are held,
|
|
* as this call may sleep.
|
|
*/
|
|
so->so_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
|
|
solock(so);
|
|
}
|
|
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
|
|
error = soreserve(so, unpst_sendspace, unpst_recvspace);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
break;
|
|
|
|
case SOCK_DGRAM:
|
|
if (so->so_lock == NULL) {
|
|
mutex_obj_hold(uipc_lock);
|
|
so->so_lock = uipc_lock;
|
|
solock(so);
|
|
}
|
|
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
|
|
error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
|
|
if (error != 0)
|
|
return (error);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
panic("unp_attach");
|
|
}
|
|
KASSERT(solocked(so));
|
|
unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
|
|
if (unp == NULL)
|
|
return (ENOBUFS);
|
|
memset(unp, 0, sizeof(*unp));
|
|
unp->unp_socket = so;
|
|
so->so_pcb = unp;
|
|
nanotime(&unp->unp_ctime);
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
unp_detach(struct unpcb *unp)
|
|
{
|
|
struct socket *so;
|
|
vnode_t *vp;
|
|
|
|
so = unp->unp_socket;
|
|
|
|
retry:
|
|
if ((vp = unp->unp_vnode) != NULL) {
|
|
sounlock(so);
|
|
/* Acquire v_interlock to protect against unp_connect(). */
|
|
/* XXXAD racy */
|
|
mutex_enter(&vp->v_interlock);
|
|
vp->v_socket = NULL;
|
|
vrelel(vp, 0);
|
|
solock(so);
|
|
unp->unp_vnode = NULL;
|
|
}
|
|
if (unp->unp_conn)
|
|
unp_disconnect(unp);
|
|
while (unp->unp_refs) {
|
|
KASSERT(solocked2(so, unp->unp_refs->unp_socket));
|
|
if (unp_drop(unp->unp_refs, ECONNRESET)) {
|
|
solock(so);
|
|
goto retry;
|
|
}
|
|
}
|
|
soisdisconnected(so);
|
|
so->so_pcb = NULL;
|
|
if (unp_rights) {
|
|
/*
|
|
* Normally the receive buffer is flushed later, in sofree,
|
|
* but if our receive buffer holds references to files that
|
|
* are now garbage, we will enqueue those file references to
|
|
* the garbage collector and kick it into action.
|
|
*/
|
|
sorflush(so);
|
|
unp_free(unp);
|
|
unp_thread_kick();
|
|
} else
|
|
unp_free(unp);
|
|
}
|
|
|
|
int
|
|
unp_bind(struct socket *so, struct mbuf *nam, struct lwp *l)
|
|
{
|
|
struct sockaddr_un *sun;
|
|
struct unpcb *unp;
|
|
vnode_t *vp;
|
|
struct vattr vattr;
|
|
size_t addrlen;
|
|
int error;
|
|
struct nameidata nd;
|
|
proc_t *p;
|
|
|
|
unp = sotounpcb(so);
|
|
if (unp->unp_vnode != NULL)
|
|
return (EINVAL);
|
|
if ((unp->unp_flags & UNP_BUSY) != 0) {
|
|
/*
|
|
* EALREADY may not be strictly accurate, but since this
|
|
* is a major application error it's hardly a big deal.
|
|
*/
|
|
return (EALREADY);
|
|
}
|
|
unp->unp_flags |= UNP_BUSY;
|
|
sounlock(so);
|
|
|
|
/*
|
|
* Allocate the new sockaddr. We have to allocate one
|
|
* extra byte so that we can ensure that the pathname
|
|
* is nul-terminated.
|
|
*/
|
|
p = l->l_proc;
|
|
addrlen = nam->m_len + 1;
|
|
sun = malloc(addrlen, M_SONAME, M_WAITOK);
|
|
m_copydata(nam, 0, nam->m_len, (void *)sun);
|
|
*(((char *)sun) + nam->m_len) = '\0';
|
|
|
|
NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT | TRYEMULROOT, UIO_SYSSPACE,
|
|
sun->sun_path);
|
|
|
|
/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
|
|
if ((error = namei(&nd)) != 0)
|
|
goto bad;
|
|
vp = nd.ni_vp;
|
|
if (vp != NULL) {
|
|
VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
|
|
if (nd.ni_dvp == vp)
|
|
vrele(nd.ni_dvp);
|
|
else
|
|
vput(nd.ni_dvp);
|
|
vrele(vp);
|
|
error = EADDRINUSE;
|
|
goto bad;
|
|
}
|
|
vattr_null(&vattr);
|
|
vattr.va_type = VSOCK;
|
|
vattr.va_mode = ACCESSPERMS & ~(p->p_cwdi->cwdi_cmask);
|
|
error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
|
|
if (error)
|
|
goto bad;
|
|
vp = nd.ni_vp;
|
|
solock(so);
|
|
vp->v_socket = unp->unp_socket;
|
|
unp->unp_vnode = vp;
|
|
unp->unp_addrlen = addrlen;
|
|
unp->unp_addr = sun;
|
|
unp->unp_connid.unp_pid = p->p_pid;
|
|
unp->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
|
|
unp->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
|
|
unp->unp_flags |= UNP_EIDSBIND;
|
|
VOP_UNLOCK(vp);
|
|
unp->unp_flags &= ~UNP_BUSY;
|
|
return (0);
|
|
|
|
bad:
|
|
free(sun, M_SONAME);
|
|
solock(so);
|
|
unp->unp_flags &= ~UNP_BUSY;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
unp_connect(struct socket *so, struct mbuf *nam, struct lwp *l)
|
|
{
|
|
struct sockaddr_un *sun;
|
|
vnode_t *vp;
|
|
struct socket *so2, *so3;
|
|
struct unpcb *unp, *unp2, *unp3;
|
|
size_t addrlen;
|
|
int error;
|
|
struct nameidata nd;
|
|
|
|
unp = sotounpcb(so);
|
|
if ((unp->unp_flags & UNP_BUSY) != 0) {
|
|
/*
|
|
* EALREADY may not be strictly accurate, but since this
|
|
* is a major application error it's hardly a big deal.
|
|
*/
|
|
return (EALREADY);
|
|
}
|
|
unp->unp_flags |= UNP_BUSY;
|
|
sounlock(so);
|
|
|
|
/*
|
|
* Allocate a temporary sockaddr. We have to allocate one extra
|
|
* byte so that we can ensure that the pathname is nul-terminated.
|
|
* When we establish the connection, we copy the other PCB's
|
|
* sockaddr to our own.
|
|
*/
|
|
addrlen = nam->m_len + 1;
|
|
sun = malloc(addrlen, M_SONAME, M_WAITOK);
|
|
m_copydata(nam, 0, nam->m_len, (void *)sun);
|
|
*(((char *)sun) + nam->m_len) = '\0';
|
|
|
|
NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, UIO_SYSSPACE,
|
|
sun->sun_path);
|
|
|
|
if ((error = namei(&nd)) != 0)
|
|
goto bad2;
|
|
vp = nd.ni_vp;
|
|
if (vp->v_type != VSOCK) {
|
|
error = ENOTSOCK;
|
|
goto bad;
|
|
}
|
|
if ((error = VOP_ACCESS(vp, VWRITE, l->l_cred)) != 0)
|
|
goto bad;
|
|
/* Acquire v_interlock to protect against unp_detach(). */
|
|
mutex_enter(&vp->v_interlock);
|
|
so2 = vp->v_socket;
|
|
if (so2 == NULL) {
|
|
mutex_exit(&vp->v_interlock);
|
|
error = ECONNREFUSED;
|
|
goto bad;
|
|
}
|
|
if (so->so_type != so2->so_type) {
|
|
mutex_exit(&vp->v_interlock);
|
|
error = EPROTOTYPE;
|
|
goto bad;
|
|
}
|
|
solock(so);
|
|
unp_resetlock(so);
|
|
mutex_exit(&vp->v_interlock);
|
|
if ((so->so_proto->pr_flags & PR_CONNREQUIRED) != 0) {
|
|
/*
|
|
* This may seem somewhat fragile but is OK: if we can
|
|
* see SO_ACCEPTCONN set on the endpoint, then it must
|
|
* be locked by the domain-wide uipc_lock.
|
|
*/
|
|
KASSERT((so->so_options & SO_ACCEPTCONN) == 0 ||
|
|
so2->so_lock == uipc_lock);
|
|
if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
|
|
(so3 = sonewconn(so2, 0)) == NULL) {
|
|
error = ECONNREFUSED;
|
|
sounlock(so);
|
|
goto bad;
|
|
}
|
|
unp2 = sotounpcb(so2);
|
|
unp3 = sotounpcb(so3);
|
|
if (unp2->unp_addr) {
|
|
unp3->unp_addr = malloc(unp2->unp_addrlen,
|
|
M_SONAME, M_WAITOK);
|
|
memcpy(unp3->unp_addr, unp2->unp_addr,
|
|
unp2->unp_addrlen);
|
|
unp3->unp_addrlen = unp2->unp_addrlen;
|
|
}
|
|
unp3->unp_flags = unp2->unp_flags;
|
|
unp3->unp_connid.unp_pid = l->l_proc->p_pid;
|
|
unp3->unp_connid.unp_euid = kauth_cred_geteuid(l->l_cred);
|
|
unp3->unp_connid.unp_egid = kauth_cred_getegid(l->l_cred);
|
|
unp3->unp_flags |= UNP_EIDSVALID;
|
|
if (unp2->unp_flags & UNP_EIDSBIND) {
|
|
unp->unp_connid = unp2->unp_connid;
|
|
unp->unp_flags |= UNP_EIDSVALID;
|
|
}
|
|
so2 = so3;
|
|
}
|
|
error = unp_connect2(so, so2, PRU_CONNECT);
|
|
sounlock(so);
|
|
bad:
|
|
vput(vp);
|
|
bad2:
|
|
free(sun, M_SONAME);
|
|
solock(so);
|
|
unp->unp_flags &= ~UNP_BUSY;
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
unp_connect2(struct socket *so, struct socket *so2, int req)
|
|
{
|
|
struct unpcb *unp = sotounpcb(so);
|
|
struct unpcb *unp2;
|
|
|
|
if (so2->so_type != so->so_type)
|
|
return (EPROTOTYPE);
|
|
|
|
/*
|
|
* All three sockets involved must be locked by same lock:
|
|
*
|
|
* local endpoint (so)
|
|
* remote endpoint (so2)
|
|
* queue head (so->so_head, only if PR_CONNREQUIRED)
|
|
*/
|
|
KASSERT(solocked2(so, so2));
|
|
KASSERT(so->so_head == NULL);
|
|
if (so2->so_head != NULL) {
|
|
KASSERT(so2->so_lock == uipc_lock);
|
|
KASSERT(solocked2(so2, so2->so_head));
|
|
}
|
|
|
|
unp2 = sotounpcb(so2);
|
|
unp->unp_conn = unp2;
|
|
switch (so->so_type) {
|
|
|
|
case SOCK_DGRAM:
|
|
unp->unp_nextref = unp2->unp_refs;
|
|
unp2->unp_refs = unp;
|
|
soisconnected(so);
|
|
break;
|
|
|
|
case SOCK_STREAM:
|
|
unp2->unp_conn = unp;
|
|
if (req == PRU_CONNECT &&
|
|
((unp->unp_flags | unp2->unp_flags) & UNP_CONNWAIT))
|
|
soisconnecting(so);
|
|
else
|
|
soisconnected(so);
|
|
soisconnected(so2);
|
|
/*
|
|
* If the connection is fully established, break the
|
|
* association with uipc_lock and give the connected
|
|
* pair a seperate lock to share. For CONNECT2, we
|
|
* require that the locks already match (the sockets
|
|
* are created that way).
|
|
*/
|
|
if (req == PRU_CONNECT) {
|
|
KASSERT(so2->so_head != NULL);
|
|
unp_setpeerlocks(so, so2);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
panic("unp_connect2");
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
unp_disconnect(struct unpcb *unp)
|
|
{
|
|
struct unpcb *unp2 = unp->unp_conn;
|
|
struct socket *so;
|
|
|
|
if (unp2 == 0)
|
|
return;
|
|
unp->unp_conn = 0;
|
|
so = unp->unp_socket;
|
|
switch (so->so_type) {
|
|
case SOCK_DGRAM:
|
|
if (unp2->unp_refs == unp)
|
|
unp2->unp_refs = unp->unp_nextref;
|
|
else {
|
|
unp2 = unp2->unp_refs;
|
|
for (;;) {
|
|
KASSERT(solocked2(so, unp2->unp_socket));
|
|
if (unp2 == 0)
|
|
panic("unp_disconnect");
|
|
if (unp2->unp_nextref == unp)
|
|
break;
|
|
unp2 = unp2->unp_nextref;
|
|
}
|
|
unp2->unp_nextref = unp->unp_nextref;
|
|
}
|
|
unp->unp_nextref = 0;
|
|
so->so_state &= ~SS_ISCONNECTED;
|
|
break;
|
|
|
|
case SOCK_STREAM:
|
|
KASSERT(solocked2(so, unp2->unp_socket));
|
|
soisdisconnected(so);
|
|
unp2->unp_conn = 0;
|
|
soisdisconnected(unp2->unp_socket);
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifdef notdef
|
|
unp_abort(struct unpcb *unp)
|
|
{
|
|
unp_detach(unp);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
unp_shutdown(struct unpcb *unp)
|
|
{
|
|
struct socket *so;
|
|
|
|
if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
|
|
(so = unp->unp_conn->unp_socket))
|
|
socantrcvmore(so);
|
|
}
|
|
|
|
bool
|
|
unp_drop(struct unpcb *unp, int errno)
|
|
{
|
|
struct socket *so = unp->unp_socket;
|
|
|
|
KASSERT(solocked(so));
|
|
|
|
so->so_error = errno;
|
|
unp_disconnect(unp);
|
|
if (so->so_head) {
|
|
so->so_pcb = NULL;
|
|
/* sofree() drops the socket lock */
|
|
sofree(so);
|
|
unp_free(unp);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifdef notdef
|
|
unp_drain(void)
|
|
{
|
|
|
|
}
|
|
#endif
|
|
|
|
int
|
|
unp_externalize(struct mbuf *rights, struct lwp *l)
|
|
{
|
|
struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
|
|
struct proc *p = l->l_proc;
|
|
int i, *fdp;
|
|
file_t **rp;
|
|
file_t *fp;
|
|
int nfds, error = 0;
|
|
|
|
nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
|
|
sizeof(file_t *);
|
|
rp = (file_t **)CMSG_DATA(cm);
|
|
|
|
fdp = malloc(nfds * sizeof(int), M_TEMP, M_WAITOK);
|
|
rw_enter(&p->p_cwdi->cwdi_lock, RW_READER);
|
|
|
|
/* Make sure the recipient should be able to see the files.. */
|
|
if (p->p_cwdi->cwdi_rdir != NULL) {
|
|
rp = (file_t **)CMSG_DATA(cm);
|
|
for (i = 0; i < nfds; i++) {
|
|
fp = *rp++;
|
|
/*
|
|
* If we are in a chroot'ed directory, and
|
|
* someone wants to pass us a directory, make
|
|
* sure it's inside the subtree we're allowed
|
|
* to access.
|
|
*/
|
|
if (fp->f_type == DTYPE_VNODE) {
|
|
vnode_t *vp = (vnode_t *)fp->f_data;
|
|
if ((vp->v_type == VDIR) &&
|
|
!vn_isunder(vp, p->p_cwdi->cwdi_rdir, l)) {
|
|
error = EPERM;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
restart:
|
|
rp = (file_t **)CMSG_DATA(cm);
|
|
if (error != 0) {
|
|
for (i = 0; i < nfds; i++) {
|
|
fp = *rp;
|
|
*rp++ = 0;
|
|
unp_discard_now(fp);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* First loop -- allocate file descriptor table slots for the
|
|
* new files.
|
|
*/
|
|
for (i = 0; i < nfds; i++) {
|
|
fp = *rp++;
|
|
if ((error = fd_alloc(p, 0, &fdp[i])) != 0) {
|
|
/*
|
|
* Back out what we've done so far.
|
|
*/
|
|
for (--i; i >= 0; i--) {
|
|
fd_abort(p, NULL, fdp[i]);
|
|
}
|
|
if (error == ENOSPC) {
|
|
fd_tryexpand(p);
|
|
error = 0;
|
|
} else {
|
|
/*
|
|
* This is the error that has historically
|
|
* been returned, and some callers may
|
|
* expect it.
|
|
*/
|
|
error = EMSGSIZE;
|
|
}
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now that adding them has succeeded, update all of the
|
|
* file passing state and affix the descriptors.
|
|
*/
|
|
rp = (file_t **)CMSG_DATA(cm);
|
|
for (i = 0; i < nfds; i++) {
|
|
fp = *rp++;
|
|
atomic_dec_uint(&unp_rights);
|
|
fd_affix(p, fp, fdp[i]);
|
|
mutex_enter(&fp->f_lock);
|
|
fp->f_msgcount--;
|
|
mutex_exit(&fp->f_lock);
|
|
/*
|
|
* Note that fd_affix() adds a reference to the file.
|
|
* The file may already have been closed by another
|
|
* LWP in the process, so we must drop the reference
|
|
* added by unp_internalize() with closef().
|
|
*/
|
|
closef(fp);
|
|
}
|
|
|
|
/*
|
|
* Copy temporary array to message and adjust length, in case of
|
|
* transition from large file_t pointers to ints.
|
|
*/
|
|
memcpy(CMSG_DATA(cm), fdp, nfds * sizeof(int));
|
|
cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
|
|
rights->m_len = CMSG_SPACE(nfds * sizeof(int));
|
|
out:
|
|
rw_exit(&p->p_cwdi->cwdi_lock);
|
|
free(fdp, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
unp_internalize(struct mbuf **controlp)
|
|
{
|
|
filedesc_t *fdescp = curlwp->l_fd;
|
|
struct mbuf *control = *controlp;
|
|
struct cmsghdr *newcm, *cm = mtod(control, struct cmsghdr *);
|
|
file_t **rp, **files;
|
|
file_t *fp;
|
|
int i, fd, *fdp;
|
|
int nfds, error;
|
|
u_int maxmsg;
|
|
|
|
error = 0;
|
|
newcm = NULL;
|
|
|
|
/* Sanity check the control message header. */
|
|
if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
|
|
cm->cmsg_len > control->m_len ||
|
|
cm->cmsg_len < CMSG_ALIGN(sizeof(*cm)))
|
|
return (EINVAL);
|
|
|
|
/*
|
|
* Verify that the file descriptors are valid, and acquire
|
|
* a reference to each.
|
|
*/
|
|
nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
|
|
fdp = (int *)CMSG_DATA(cm);
|
|
maxmsg = maxfiles / unp_rights_ratio;
|
|
for (i = 0; i < nfds; i++) {
|
|
fd = *fdp++;
|
|
if (atomic_inc_uint_nv(&unp_rights) > maxmsg) {
|
|
atomic_dec_uint(&unp_rights);
|
|
nfds = i;
|
|
error = EAGAIN;
|
|
goto out;
|
|
}
|
|
if ((fp = fd_getfile(fd)) == NULL) {
|
|
atomic_dec_uint(&unp_rights);
|
|
nfds = i;
|
|
error = EBADF;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* Allocate new space and copy header into it. */
|
|
newcm = malloc(CMSG_SPACE(nfds * sizeof(file_t *)), M_MBUF, M_WAITOK);
|
|
if (newcm == NULL) {
|
|
error = E2BIG;
|
|
goto out;
|
|
}
|
|
memcpy(newcm, cm, sizeof(struct cmsghdr));
|
|
files = (file_t **)CMSG_DATA(newcm);
|
|
|
|
/*
|
|
* Transform the file descriptors into file_t pointers, in
|
|
* reverse order so that if pointers are bigger than ints, the
|
|
* int won't get until we're done. No need to lock, as we have
|
|
* already validated the descriptors with fd_getfile().
|
|
*/
|
|
fdp = (int *)CMSG_DATA(cm) + nfds;
|
|
rp = files + nfds;
|
|
for (i = 0; i < nfds; i++) {
|
|
fp = fdescp->fd_dt->dt_ff[*--fdp]->ff_file;
|
|
KASSERT(fp != NULL);
|
|
mutex_enter(&fp->f_lock);
|
|
*--rp = fp;
|
|
fp->f_count++;
|
|
fp->f_msgcount++;
|
|
mutex_exit(&fp->f_lock);
|
|
}
|
|
|
|
out:
|
|
/* Release descriptor references. */
|
|
fdp = (int *)CMSG_DATA(cm);
|
|
for (i = 0; i < nfds; i++) {
|
|
fd_putfile(*fdp++);
|
|
if (error != 0) {
|
|
atomic_dec_uint(&unp_rights);
|
|
}
|
|
}
|
|
|
|
if (error == 0) {
|
|
if (control->m_flags & M_EXT) {
|
|
m_freem(control);
|
|
*controlp = control = m_get(M_WAIT, MT_CONTROL);
|
|
}
|
|
MEXTADD(control, newcm, CMSG_SPACE(nfds * sizeof(file_t *)),
|
|
M_MBUF, NULL, NULL);
|
|
cm = newcm;
|
|
/*
|
|
* Adjust message & mbuf to note amount of space
|
|
* actually used.
|
|
*/
|
|
cm->cmsg_len = CMSG_LEN(nfds * sizeof(file_t *));
|
|
control->m_len = CMSG_SPACE(nfds * sizeof(file_t *));
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
struct mbuf *
|
|
unp_addsockcred(struct lwp *l, struct mbuf *control)
|
|
{
|
|
struct cmsghdr *cmp;
|
|
struct sockcred *sc;
|
|
struct mbuf *m, *n;
|
|
int len, space, i;
|
|
|
|
len = CMSG_LEN(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
|
|
space = CMSG_SPACE(SOCKCREDSIZE(kauth_cred_ngroups(l->l_cred)));
|
|
|
|
m = m_get(M_WAIT, MT_CONTROL);
|
|
if (space > MLEN) {
|
|
if (space > MCLBYTES)
|
|
MEXTMALLOC(m, space, M_WAITOK);
|
|
else
|
|
m_clget(m, M_WAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_free(m);
|
|
return (control);
|
|
}
|
|
}
|
|
|
|
m->m_len = space;
|
|
m->m_next = NULL;
|
|
cmp = mtod(m, struct cmsghdr *);
|
|
sc = (struct sockcred *)CMSG_DATA(cmp);
|
|
cmp->cmsg_len = len;
|
|
cmp->cmsg_level = SOL_SOCKET;
|
|
cmp->cmsg_type = SCM_CREDS;
|
|
sc->sc_uid = kauth_cred_getuid(l->l_cred);
|
|
sc->sc_euid = kauth_cred_geteuid(l->l_cred);
|
|
sc->sc_gid = kauth_cred_getgid(l->l_cred);
|
|
sc->sc_egid = kauth_cred_getegid(l->l_cred);
|
|
sc->sc_ngroups = kauth_cred_ngroups(l->l_cred);
|
|
for (i = 0; i < sc->sc_ngroups; i++)
|
|
sc->sc_groups[i] = kauth_cred_group(l->l_cred, i);
|
|
|
|
/*
|
|
* If a control message already exists, append us to the end.
|
|
*/
|
|
if (control != NULL) {
|
|
for (n = control; n->m_next != NULL; n = n->m_next)
|
|
;
|
|
n->m_next = m;
|
|
} else
|
|
control = m;
|
|
|
|
return (control);
|
|
}
|
|
|
|
/*
|
|
* Do a mark-sweep GC of files in the system, to free up any which are
|
|
* caught in flight to an about-to-be-closed socket. Additionally,
|
|
* process deferred file closures.
|
|
*/
|
|
static void
|
|
unp_gc(file_t *dp)
|
|
{
|
|
extern struct domain unixdomain;
|
|
file_t *fp, *np;
|
|
struct socket *so, *so1;
|
|
u_int i, old, new;
|
|
bool didwork;
|
|
|
|
KASSERT(curlwp == unp_thread_lwp);
|
|
KASSERT(mutex_owned(&filelist_lock));
|
|
|
|
/*
|
|
* First, process deferred file closures.
|
|
*/
|
|
while (!SLIST_EMPTY(&unp_thread_discard)) {
|
|
fp = SLIST_FIRST(&unp_thread_discard);
|
|
KASSERT(fp->f_unpcount > 0);
|
|
KASSERT(fp->f_count > 0);
|
|
KASSERT(fp->f_msgcount > 0);
|
|
KASSERT(fp->f_count >= fp->f_unpcount);
|
|
KASSERT(fp->f_count >= fp->f_msgcount);
|
|
KASSERT(fp->f_msgcount >= fp->f_unpcount);
|
|
SLIST_REMOVE_HEAD(&unp_thread_discard, f_unplist);
|
|
i = fp->f_unpcount;
|
|
fp->f_unpcount = 0;
|
|
mutex_exit(&filelist_lock);
|
|
for (; i != 0; i--) {
|
|
unp_discard_now(fp);
|
|
}
|
|
mutex_enter(&filelist_lock);
|
|
}
|
|
|
|
/*
|
|
* Clear mark bits. Ensure that we don't consider new files
|
|
* entering the file table during this loop (they will not have
|
|
* FSCAN set).
|
|
*/
|
|
unp_defer = 0;
|
|
LIST_FOREACH(fp, &filehead, f_list) {
|
|
for (old = fp->f_flag;; old = new) {
|
|
new = atomic_cas_uint(&fp->f_flag, old,
|
|
(old | FSCAN) & ~(FMARK|FDEFER));
|
|
if (__predict_true(old == new)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Iterate over the set of sockets, marking ones believed (based on
|
|
* refcount) to be referenced from a process, and marking for rescan
|
|
* sockets which are queued on a socket. Recan continues descending
|
|
* and searching for sockets referenced by sockets (FDEFER), until
|
|
* there are no more socket->socket references to be discovered.
|
|
*/
|
|
do {
|
|
didwork = false;
|
|
for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
|
|
KASSERT(mutex_owned(&filelist_lock));
|
|
np = LIST_NEXT(fp, f_list);
|
|
mutex_enter(&fp->f_lock);
|
|
if ((fp->f_flag & FDEFER) != 0) {
|
|
atomic_and_uint(&fp->f_flag, ~FDEFER);
|
|
unp_defer--;
|
|
KASSERT(fp->f_count != 0);
|
|
} else {
|
|
if (fp->f_count == 0 ||
|
|
(fp->f_flag & FMARK) != 0 ||
|
|
fp->f_count == fp->f_msgcount ||
|
|
fp->f_unpcount != 0) {
|
|
mutex_exit(&fp->f_lock);
|
|
continue;
|
|
}
|
|
}
|
|
atomic_or_uint(&fp->f_flag, FMARK);
|
|
|
|
if (fp->f_type != DTYPE_SOCKET ||
|
|
(so = fp->f_data) == NULL ||
|
|
so->so_proto->pr_domain != &unixdomain ||
|
|
(so->so_proto->pr_flags & PR_RIGHTS) == 0) {
|
|
mutex_exit(&fp->f_lock);
|
|
continue;
|
|
}
|
|
|
|
/* Gain file ref, mark our position, and unlock. */
|
|
didwork = true;
|
|
LIST_INSERT_AFTER(fp, dp, f_list);
|
|
fp->f_count++;
|
|
mutex_exit(&fp->f_lock);
|
|
mutex_exit(&filelist_lock);
|
|
|
|
/*
|
|
* Mark files referenced from sockets queued on the
|
|
* accept queue as well.
|
|
*/
|
|
solock(so);
|
|
unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
|
|
if ((so->so_options & SO_ACCEPTCONN) != 0) {
|
|
TAILQ_FOREACH(so1, &so->so_q0, so_qe) {
|
|
unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
|
|
}
|
|
TAILQ_FOREACH(so1, &so->so_q, so_qe) {
|
|
unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
|
|
}
|
|
}
|
|
sounlock(so);
|
|
|
|
/* Re-lock and restart from where we left off. */
|
|
closef(fp);
|
|
mutex_enter(&filelist_lock);
|
|
np = LIST_NEXT(dp, f_list);
|
|
LIST_REMOVE(dp, f_list);
|
|
}
|
|
/*
|
|
* Bail early if we did nothing in the loop above. Could
|
|
* happen because of concurrent activity causing unp_defer
|
|
* to get out of sync.
|
|
*/
|
|
} while (unp_defer != 0 && didwork);
|
|
|
|
/*
|
|
* Sweep pass.
|
|
*
|
|
* We grab an extra reference to each of the files that are
|
|
* not otherwise accessible and then free the rights that are
|
|
* stored in messages on them.
|
|
*/
|
|
for (fp = LIST_FIRST(&filehead); fp != NULL; fp = np) {
|
|
KASSERT(mutex_owned(&filelist_lock));
|
|
np = LIST_NEXT(fp, f_list);
|
|
mutex_enter(&fp->f_lock);
|
|
|
|
/*
|
|
* Ignore non-sockets.
|
|
* Ignore dead sockets, or sockets with pending close.
|
|
* Ignore sockets obviously referenced elsewhere.
|
|
* Ignore sockets marked as referenced by our scan.
|
|
* Ignore new sockets that did not exist during the scan.
|
|
*/
|
|
if (fp->f_type != DTYPE_SOCKET ||
|
|
fp->f_count == 0 || fp->f_unpcount != 0 ||
|
|
fp->f_count != fp->f_msgcount ||
|
|
(fp->f_flag & (FMARK | FSCAN)) != FSCAN) {
|
|
mutex_exit(&fp->f_lock);
|
|
continue;
|
|
}
|
|
|
|
/* Gain file ref, mark our position, and unlock. */
|
|
LIST_INSERT_AFTER(fp, dp, f_list);
|
|
fp->f_count++;
|
|
mutex_exit(&fp->f_lock);
|
|
mutex_exit(&filelist_lock);
|
|
|
|
/*
|
|
* Flush all data from the socket's receive buffer.
|
|
* This will cause files referenced only by the
|
|
* socket to be queued for close.
|
|
*/
|
|
so = fp->f_data;
|
|
solock(so);
|
|
sorflush(so);
|
|
sounlock(so);
|
|
|
|
/* Re-lock and restart from where we left off. */
|
|
closef(fp);
|
|
mutex_enter(&filelist_lock);
|
|
np = LIST_NEXT(dp, f_list);
|
|
LIST_REMOVE(dp, f_list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Garbage collector thread. While SCM_RIGHTS messages are in transit,
|
|
* wake once per second to garbage collect. Run continually while we
|
|
* have deferred closes to process.
|
|
*/
|
|
static void
|
|
unp_thread(void *cookie)
|
|
{
|
|
file_t *dp;
|
|
|
|
/* Allocate a dummy file for our scans. */
|
|
if ((dp = fgetdummy()) == NULL) {
|
|
panic("unp_thread");
|
|
}
|
|
|
|
mutex_enter(&filelist_lock);
|
|
for (;;) {
|
|
KASSERT(mutex_owned(&filelist_lock));
|
|
if (SLIST_EMPTY(&unp_thread_discard)) {
|
|
if (unp_rights != 0) {
|
|
(void)cv_timedwait(&unp_thread_cv,
|
|
&filelist_lock, hz);
|
|
} else {
|
|
cv_wait(&unp_thread_cv, &filelist_lock);
|
|
}
|
|
}
|
|
unp_gc(dp);
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/*
|
|
* Kick the garbage collector into action if there is something for
|
|
* it to process.
|
|
*/
|
|
static void
|
|
unp_thread_kick(void)
|
|
{
|
|
|
|
if (!SLIST_EMPTY(&unp_thread_discard) || unp_rights != 0) {
|
|
mutex_enter(&filelist_lock);
|
|
cv_signal(&unp_thread_cv);
|
|
mutex_exit(&filelist_lock);
|
|
}
|
|
}
|
|
|
|
void
|
|
unp_dispose(struct mbuf *m)
|
|
{
|
|
|
|
if (m)
|
|
unp_scan(m, unp_discard_later, 1);
|
|
}
|
|
|
|
void
|
|
unp_scan(struct mbuf *m0, void (*op)(file_t *), int discard)
|
|
{
|
|
struct mbuf *m;
|
|
file_t **rp, *fp;
|
|
struct cmsghdr *cm;
|
|
int i, qfds;
|
|
|
|
while (m0) {
|
|
for (m = m0; m; m = m->m_next) {
|
|
if (m->m_type != MT_CONTROL ||
|
|
m->m_len < sizeof(*cm)) {
|
|
continue;
|
|
}
|
|
cm = mtod(m, struct cmsghdr *);
|
|
if (cm->cmsg_level != SOL_SOCKET ||
|
|
cm->cmsg_type != SCM_RIGHTS)
|
|
continue;
|
|
qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
|
|
/ sizeof(file_t *);
|
|
rp = (file_t **)CMSG_DATA(cm);
|
|
for (i = 0; i < qfds; i++) {
|
|
fp = *rp;
|
|
if (discard) {
|
|
*rp = 0;
|
|
}
|
|
(*op)(fp);
|
|
rp++;
|
|
}
|
|
}
|
|
m0 = m0->m_nextpkt;
|
|
}
|
|
}
|
|
|
|
void
|
|
unp_mark(file_t *fp)
|
|
{
|
|
|
|
if (fp == NULL)
|
|
return;
|
|
|
|
/* If we're already deferred, don't screw up the defer count */
|
|
mutex_enter(&fp->f_lock);
|
|
if (fp->f_flag & (FMARK | FDEFER)) {
|
|
mutex_exit(&fp->f_lock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Minimize the number of deferrals... Sockets are the only type of
|
|
* file which can hold references to another file, so just mark
|
|
* other files, and defer unmarked sockets for the next pass.
|
|
*/
|
|
if (fp->f_type == DTYPE_SOCKET) {
|
|
unp_defer++;
|
|
KASSERT(fp->f_count != 0);
|
|
atomic_or_uint(&fp->f_flag, FDEFER);
|
|
} else {
|
|
atomic_or_uint(&fp->f_flag, FMARK);
|
|
}
|
|
mutex_exit(&fp->f_lock);
|
|
}
|
|
|
|
static void
|
|
unp_discard_now(file_t *fp)
|
|
{
|
|
|
|
if (fp == NULL)
|
|
return;
|
|
|
|
KASSERT(fp->f_count > 0);
|
|
KASSERT(fp->f_msgcount > 0);
|
|
|
|
mutex_enter(&fp->f_lock);
|
|
fp->f_msgcount--;
|
|
mutex_exit(&fp->f_lock);
|
|
atomic_dec_uint(&unp_rights);
|
|
(void)closef(fp);
|
|
}
|
|
|
|
static void
|
|
unp_discard_later(file_t *fp)
|
|
{
|
|
|
|
if (fp == NULL)
|
|
return;
|
|
|
|
KASSERT(fp->f_count > 0);
|
|
KASSERT(fp->f_msgcount > 0);
|
|
|
|
mutex_enter(&filelist_lock);
|
|
if (fp->f_unpcount++ == 0) {
|
|
SLIST_INSERT_HEAD(&unp_thread_discard, fp, f_unplist);
|
|
}
|
|
mutex_exit(&filelist_lock);
|
|
}
|