NetBSD/sys/ufs/ffs/ffs_vfsops.c
hannken 1423e65b26 Clean up vnode lock operations pass 2:
VOP_UNLOCK(vp, flags) -> VOP_UNLOCK(vp): Remove the unneeded flags argument.

Welcome to 5.99.32.

Discussed on tech-kern.
2010-06-24 12:58:48 +00:00

2176 lines
54 KiB
C

/* $NetBSD: ffs_vfsops.c,v 1.259 2010/06/24 13:03:19 hannken Exp $ */
/*-
* Copyright (c) 2008, 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Wasabi Systems, Inc, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1989, 1991, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ffs_vfsops.c 8.31 (Berkeley) 5/20/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ffs_vfsops.c,v 1.259 2010/06/24 13:03:19 hannken Exp $");
#if defined(_KERNEL_OPT)
#include "opt_ffs.h"
#include "opt_quota.h"
#include "opt_wapbl.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/socket.h>
#include <sys/mount.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/mbuf.h>
#include <sys/file.h>
#include <sys/disklabel.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/lock.h>
#include <sys/sysctl.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/wapbl.h>
#include <sys/fstrans.h>
#include <sys/module.h>
#include <miscfs/genfs/genfs.h>
#include <miscfs/specfs/specdev.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufs_bswap.h>
#include <ufs/ufs/ufs_wapbl.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
MODULE(MODULE_CLASS_VFS, ffs, NULL);
static int ffs_vfs_fsync(vnode_t *, int);
static struct sysctllog *ffs_sysctl_log;
/* how many times ffs_init() was called */
int ffs_initcount = 0;
extern const struct vnodeopv_desc ffs_vnodeop_opv_desc;
extern const struct vnodeopv_desc ffs_specop_opv_desc;
extern const struct vnodeopv_desc ffs_fifoop_opv_desc;
const struct vnodeopv_desc * const ffs_vnodeopv_descs[] = {
&ffs_vnodeop_opv_desc,
&ffs_specop_opv_desc,
&ffs_fifoop_opv_desc,
NULL,
};
struct vfsops ffs_vfsops = {
MOUNT_FFS,
sizeof (struct ufs_args),
ffs_mount,
ufs_start,
ffs_unmount,
ufs_root,
ufs_quotactl,
ffs_statvfs,
ffs_sync,
ffs_vget,
ffs_fhtovp,
ffs_vptofh,
ffs_init,
ffs_reinit,
ffs_done,
ffs_mountroot,
ffs_snapshot,
ffs_extattrctl,
ffs_suspendctl,
genfs_renamelock_enter,
genfs_renamelock_exit,
ffs_vfs_fsync,
ffs_vnodeopv_descs,
0,
{ NULL, NULL },
};
static const struct genfs_ops ffs_genfsops = {
.gop_size = ffs_gop_size,
.gop_alloc = ufs_gop_alloc,
.gop_write = genfs_gop_write,
.gop_markupdate = ufs_gop_markupdate,
};
static const struct ufs_ops ffs_ufsops = {
.uo_itimes = ffs_itimes,
.uo_update = ffs_update,
.uo_truncate = ffs_truncate,
.uo_valloc = ffs_valloc,
.uo_vfree = ffs_vfree,
.uo_balloc = ffs_balloc,
.uo_unmark_vnode = (void (*)(vnode_t *))nullop,
};
static int
ffs_modcmd(modcmd_t cmd, void *arg)
{
int error;
#if 0
extern int doasyncfree;
#endif
extern int ffs_log_changeopt;
switch (cmd) {
case MODULE_CMD_INIT:
error = vfs_attach(&ffs_vfsops);
if (error != 0)
break;
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "vfs", NULL,
NULL, 0, NULL, 0,
CTL_VFS, CTL_EOL);
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "ffs",
SYSCTL_DESCR("Berkeley Fast File System"),
NULL, 0, NULL, 0,
CTL_VFS, 1, CTL_EOL);
/*
* @@@ should we even bother with these first three?
*/
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "doclusterread", NULL,
sysctl_notavail, 0, NULL, 0,
CTL_VFS, 1, FFS_CLUSTERREAD, CTL_EOL);
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "doclusterwrite", NULL,
sysctl_notavail, 0, NULL, 0,
CTL_VFS, 1, FFS_CLUSTERWRITE, CTL_EOL);
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "doreallocblks", NULL,
sysctl_notavail, 0, NULL, 0,
CTL_VFS, 1, FFS_REALLOCBLKS, CTL_EOL);
#if 0
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "doasyncfree",
SYSCTL_DESCR("Release dirty blocks asynchronously"),
NULL, 0, &doasyncfree, 0,
CTL_VFS, 1, FFS_ASYNCFREE, CTL_EOL);
#endif
sysctl_createv(&ffs_sysctl_log, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "log_changeopt",
SYSCTL_DESCR("Log changes in optimization strategy"),
NULL, 0, &ffs_log_changeopt, 0,
CTL_VFS, 1, FFS_LOG_CHANGEOPT, CTL_EOL);
break;
case MODULE_CMD_FINI:
error = vfs_detach(&ffs_vfsops);
if (error != 0)
break;
sysctl_teardown(&ffs_sysctl_log);
break;
default:
error = ENOTTY;
break;
}
return (error);
}
pool_cache_t ffs_inode_cache;
pool_cache_t ffs_dinode1_cache;
pool_cache_t ffs_dinode2_cache;
static void ffs_oldfscompat_read(struct fs *, struct ufsmount *, daddr_t);
static void ffs_oldfscompat_write(struct fs *, struct ufsmount *);
/*
* Called by main() when ffs is going to be mounted as root.
*/
int
ffs_mountroot(void)
{
struct fs *fs;
struct mount *mp;
struct lwp *l = curlwp; /* XXX */
struct ufsmount *ump;
int error;
if (device_class(root_device) != DV_DISK)
return (ENODEV);
if ((error = vfs_rootmountalloc(MOUNT_FFS, "root_device", &mp))) {
vrele(rootvp);
return (error);
}
/*
* We always need to be able to mount the root file system.
*/
mp->mnt_flag |= MNT_FORCE;
if ((error = ffs_mountfs(rootvp, mp, l)) != 0) {
vfs_unbusy(mp, false, NULL);
vfs_destroy(mp);
return (error);
}
mp->mnt_flag &= ~MNT_FORCE;
mutex_enter(&mountlist_lock);
CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
mutex_exit(&mountlist_lock);
ump = VFSTOUFS(mp);
fs = ump->um_fs;
memset(fs->fs_fsmnt, 0, sizeof(fs->fs_fsmnt));
(void)copystr(mp->mnt_stat.f_mntonname, fs->fs_fsmnt, MNAMELEN - 1, 0);
(void)ffs_statvfs(mp, &mp->mnt_stat);
vfs_unbusy(mp, false, NULL);
setrootfstime((time_t)fs->fs_time);
return (0);
}
/*
* VFS Operations.
*
* mount system call
*/
int
ffs_mount(struct mount *mp, const char *path, void *data, size_t *data_len)
{
struct lwp *l = curlwp;
struct vnode *devvp = NULL;
struct ufs_args *args = data;
struct ufsmount *ump = NULL;
struct fs *fs;
int error = 0, flags, update;
mode_t accessmode;
if (*data_len < sizeof *args)
return EINVAL;
if (mp->mnt_flag & MNT_GETARGS) {
ump = VFSTOUFS(mp);
if (ump == NULL)
return EIO;
args->fspec = NULL;
*data_len = sizeof *args;
return 0;
}
update = mp->mnt_flag & MNT_UPDATE;
/* Check arguments */
if (args->fspec != NULL) {
/*
* Look up the name and verify that it's sane.
*/
error = namei_simple_user(args->fspec,
NSM_FOLLOW_NOEMULROOT, &devvp);
if (error != 0)
return (error);
if (!update) {
/*
* Be sure this is a valid block device
*/
if (devvp->v_type != VBLK)
error = ENOTBLK;
else if (bdevsw_lookup(devvp->v_rdev) == NULL)
error = ENXIO;
} else {
/*
* Be sure we're still naming the same device
* used for our initial mount
*/
ump = VFSTOUFS(mp);
if (devvp != ump->um_devvp) {
if (devvp->v_rdev != ump->um_devvp->v_rdev)
error = EINVAL;
else {
vrele(devvp);
devvp = ump->um_devvp;
vref(devvp);
}
}
}
} else {
if (!update) {
/* New mounts must have a filename for the device */
return (EINVAL);
} else {
/* Use the extant mount */
ump = VFSTOUFS(mp);
devvp = ump->um_devvp;
vref(devvp);
}
}
/*
* If mount by non-root, then verify that user has necessary
* permissions on the device.
*
* Permission to update a mount is checked higher, so here we presume
* updating the mount is okay (for example, as far as securelevel goes)
* which leaves us with the normal check.
*/
if (error == 0) {
accessmode = VREAD;
if (update ?
(mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
(mp->mnt_flag & MNT_RDONLY) == 0)
accessmode |= VWRITE;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = genfs_can_mount(devvp, accessmode, l->l_cred);
VOP_UNLOCK(devvp);
}
if (error) {
vrele(devvp);
return (error);
}
#ifdef WAPBL
/* WAPBL can only be enabled on a r/w mount. */
if ((mp->mnt_flag & MNT_RDONLY) && !(mp->mnt_iflag & IMNT_WANTRDWR)) {
mp->mnt_flag &= ~MNT_LOG;
}
#else /* !WAPBL */
mp->mnt_flag &= ~MNT_LOG;
#endif /* !WAPBL */
if (!update) {
int xflags;
if (mp->mnt_flag & MNT_RDONLY)
xflags = FREAD;
else
xflags = FREAD | FWRITE;
error = VOP_OPEN(devvp, xflags, FSCRED);
if (error)
goto fail;
error = ffs_mountfs(devvp, mp, l);
if (error) {
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
(void)VOP_CLOSE(devvp, xflags, NOCRED);
VOP_UNLOCK(devvp);
goto fail;
}
ump = VFSTOUFS(mp);
fs = ump->um_fs;
} else {
/*
* Update the mount.
*/
/*
* The initial mount got a reference on this
* device, so drop the one obtained via
* namei(), above.
*/
vrele(devvp);
ump = VFSTOUFS(mp);
fs = ump->um_fs;
if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
/*
* Changing from r/w to r/o
*/
flags = WRITECLOSE;
if (mp->mnt_flag & MNT_FORCE)
flags |= FORCECLOSE;
error = ffs_flushfiles(mp, flags, l);
if (error == 0)
error = UFS_WAPBL_BEGIN(mp);
if (error == 0 &&
ffs_cgupdate(ump, MNT_WAIT) == 0 &&
fs->fs_clean & FS_WASCLEAN) {
if (mp->mnt_flag & MNT_SOFTDEP)
fs->fs_flags &= ~FS_DOSOFTDEP;
fs->fs_clean = FS_ISCLEAN;
(void) ffs_sbupdate(ump, MNT_WAIT);
}
if (error == 0)
UFS_WAPBL_END(mp);
if (error)
return (error);
}
#ifdef WAPBL
if ((mp->mnt_flag & MNT_LOG) == 0) {
error = ffs_wapbl_stop(mp, mp->mnt_flag & MNT_FORCE);
if (error)
return error;
}
#endif /* WAPBL */
if (fs->fs_ronly == 0 && (mp->mnt_flag & MNT_RDONLY)) {
/*
* Finish change from r/w to r/o
*/
fs->fs_ronly = 1;
fs->fs_fmod = 0;
}
if (mp->mnt_flag & MNT_RELOAD) {
error = ffs_reload(mp, l->l_cred, l);
if (error)
return (error);
}
if (fs->fs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
/*
* Changing from read-only to read/write
*/
fs->fs_ronly = 0;
fs->fs_clean <<= 1;
fs->fs_fmod = 1;
#ifdef WAPBL
if (fs->fs_flags & FS_DOWAPBL) {
printf("%s: replaying log to disk\n",
fs->fs_fsmnt);
KDASSERT(mp->mnt_wapbl_replay);
error = wapbl_replay_write(mp->mnt_wapbl_replay,
devvp);
if (error) {
return error;
}
wapbl_replay_stop(mp->mnt_wapbl_replay);
fs->fs_clean = FS_WASCLEAN;
}
#endif /* WAPBL */
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
}
#ifdef WAPBL
error = ffs_wapbl_start(mp);
if (error)
return error;
#endif /* WAPBL */
if (args->fspec == NULL)
return 0;
}
error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
if (error == 0)
(void)strncpy(fs->fs_fsmnt, mp->mnt_stat.f_mntonname,
sizeof(fs->fs_fsmnt));
fs->fs_flags &= ~FS_DOSOFTDEP;
if (fs->fs_fmod != 0) { /* XXX */
int err;
fs->fs_fmod = 0;
if (fs->fs_clean & FS_WASCLEAN)
fs->fs_time = time_second;
else {
printf("%s: file system not clean (fs_clean=%#x); "
"please fsck(8)\n", mp->mnt_stat.f_mntfromname,
fs->fs_clean);
printf("%s: lost blocks %" PRId64 " files %d\n",
mp->mnt_stat.f_mntfromname, fs->fs_pendingblocks,
fs->fs_pendinginodes);
}
err = UFS_WAPBL_BEGIN(mp);
if (err == 0) {
(void) ffs_cgupdate(ump, MNT_WAIT);
UFS_WAPBL_END(mp);
}
}
if ((mp->mnt_flag & MNT_SOFTDEP) != 0) {
printf("%s: `-o softdep' is no longer supported, "
"consider `-o log'\n", mp->mnt_stat.f_mntfromname);
mp->mnt_flag &= ~MNT_SOFTDEP;
}
return (error);
fail:
vrele(devvp);
return (error);
}
/*
* Reload all incore data for a filesystem (used after running fsck on
* the root filesystem and finding things to fix). The filesystem must
* be mounted read-only.
*
* Things to do to update the mount:
* 1) invalidate all cached meta-data.
* 2) re-read superblock from disk.
* 3) re-read summary information from disk.
* 4) invalidate all inactive vnodes.
* 5) invalidate all cached file data.
* 6) re-read inode data for all active vnodes.
*/
int
ffs_reload(struct mount *mp, kauth_cred_t cred, struct lwp *l)
{
struct vnode *vp, *mvp, *devvp;
struct inode *ip;
void *space;
struct buf *bp;
struct fs *fs, *newfs;
struct partinfo dpart;
int i, bsize, blks, error;
int32_t *lp;
struct ufsmount *ump;
daddr_t sblockloc;
if ((mp->mnt_flag & MNT_RDONLY) == 0)
return (EINVAL);
ump = VFSTOUFS(mp);
/*
* Step 1: invalidate all cached meta-data.
*/
devvp = ump->um_devvp;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = vinvalbuf(devvp, 0, cred, l, 0, 0);
VOP_UNLOCK(devvp);
if (error)
panic("ffs_reload: dirty1");
/*
* Step 2: re-read superblock from disk.
*/
fs = ump->um_fs;
/* XXX we don't handle possibility that superblock moved. */
error = bread(devvp, fs->fs_sblockloc / DEV_BSIZE, fs->fs_sbsize,
NOCRED, 0, &bp);
if (error) {
brelse(bp, 0);
return (error);
}
newfs = malloc(fs->fs_sbsize, M_UFSMNT, M_WAITOK);
memcpy(newfs, bp->b_data, fs->fs_sbsize);
#ifdef FFS_EI
if (ump->um_flags & UFS_NEEDSWAP) {
ffs_sb_swap((struct fs*)bp->b_data, newfs);
fs->fs_flags |= FS_SWAPPED;
} else
#endif
fs->fs_flags &= ~FS_SWAPPED;
if ((newfs->fs_magic != FS_UFS1_MAGIC &&
newfs->fs_magic != FS_UFS2_MAGIC)||
newfs->fs_bsize > MAXBSIZE ||
newfs->fs_bsize < sizeof(struct fs)) {
brelse(bp, 0);
free(newfs, M_UFSMNT);
return (EIO); /* XXX needs translation */
}
/* Store off old fs_sblockloc for fs_oldfscompat_read. */
sblockloc = fs->fs_sblockloc;
/*
* Copy pointer fields back into superblock before copying in XXX
* new superblock. These should really be in the ufsmount. XXX
* Note that important parameters (eg fs_ncg) are unchanged.
*/
newfs->fs_csp = fs->fs_csp;
newfs->fs_maxcluster = fs->fs_maxcluster;
newfs->fs_contigdirs = fs->fs_contigdirs;
newfs->fs_ronly = fs->fs_ronly;
newfs->fs_active = fs->fs_active;
memcpy(fs, newfs, (u_int)fs->fs_sbsize);
brelse(bp, 0);
free(newfs, M_UFSMNT);
/* Recheck for apple UFS filesystem */
ump->um_flags &= ~UFS_ISAPPLEUFS;
/* First check to see if this is tagged as an Apple UFS filesystem
* in the disklabel
*/
if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
(dpart.part->p_fstype == FS_APPLEUFS)) {
ump->um_flags |= UFS_ISAPPLEUFS;
}
#ifdef APPLE_UFS
else {
/* Manually look for an apple ufs label, and if a valid one
* is found, then treat it like an Apple UFS filesystem anyway
*/
error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
APPLEUFS_LABEL_SIZE, cred, 0, &bp);
if (error) {
brelse(bp, 0);
return (error);
}
error = ffs_appleufs_validate(fs->fs_fsmnt,
(struct appleufslabel *)bp->b_data, NULL);
if (error == 0)
ump->um_flags |= UFS_ISAPPLEUFS;
brelse(bp, 0);
bp = NULL;
}
#else
if (ump->um_flags & UFS_ISAPPLEUFS)
return (EIO);
#endif
if (UFS_MPISAPPLEUFS(ump)) {
/* see comment about NeXT below */
ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
mp->mnt_iflag |= IMNT_DTYPE;
} else {
ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
ump->um_dirblksiz = DIRBLKSIZ;
if (ump->um_maxsymlinklen > 0)
mp->mnt_iflag |= IMNT_DTYPE;
else
mp->mnt_iflag &= ~IMNT_DTYPE;
}
ffs_oldfscompat_read(fs, ump, sblockloc);
mutex_enter(&ump->um_lock);
ump->um_maxfilesize = fs->fs_maxfilesize;
if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
mp->mnt_stat.f_mntonname, fs->fs_flags,
(mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
if ((mp->mnt_flag & MNT_FORCE) == 0) {
mutex_exit(&ump->um_lock);
return (EINVAL);
}
}
if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
mutex_exit(&ump->um_lock);
ffs_statvfs(mp, &mp->mnt_stat);
/*
* Step 3: re-read summary information from disk.
*/
blks = howmany(fs->fs_cssize, fs->fs_fsize);
space = fs->fs_csp;
for (i = 0; i < blks; i += fs->fs_frag) {
bsize = fs->fs_bsize;
if (i + fs->fs_frag > blks)
bsize = (blks - i) * fs->fs_fsize;
error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
NOCRED, 0, &bp);
if (error) {
brelse(bp, 0);
return (error);
}
#ifdef FFS_EI
if (UFS_FSNEEDSWAP(fs))
ffs_csum_swap((struct csum *)bp->b_data,
(struct csum *)space, bsize);
else
#endif
memcpy(space, bp->b_data, (size_t)bsize);
space = (char *)space + bsize;
brelse(bp, 0);
}
if (fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
/*
* We no longer know anything about clusters per cylinder group.
*/
if (fs->fs_contigsumsize > 0) {
lp = fs->fs_maxcluster;
for (i = 0; i < fs->fs_ncg; i++)
*lp++ = fs->fs_contigsumsize;
}
/* Allocate a marker vnode. */
if ((mvp = vnalloc(mp)) == NULL)
return ENOMEM;
/*
* NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
* and vclean() can be called indirectly
*/
mutex_enter(&mntvnode_lock);
loop:
for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = vunmark(mvp)) {
vmark(mvp, vp);
if (vp->v_mount != mp || vismarker(vp))
continue;
/*
* Step 4: invalidate all inactive vnodes.
*/
if (vrecycle(vp, &mntvnode_lock, l)) {
mutex_enter(&mntvnode_lock);
(void)vunmark(mvp);
goto loop;
}
/*
* Step 5: invalidate all cached file data.
*/
mutex_enter(&vp->v_interlock);
mutex_exit(&mntvnode_lock);
if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) {
(void)vunmark(mvp);
goto loop;
}
if (vinvalbuf(vp, 0, cred, l, 0, 0))
panic("ffs_reload: dirty2");
/*
* Step 6: re-read inode data for all active vnodes.
*/
ip = VTOI(vp);
error = bread(devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, NOCRED, 0, &bp);
if (error) {
brelse(bp, 0);
vput(vp);
(void)vunmark(mvp);
break;
}
ffs_load_inode(bp, ip, fs, ip->i_number);
brelse(bp, 0);
vput(vp);
mutex_enter(&mntvnode_lock);
}
mutex_exit(&mntvnode_lock);
vnfree(mvp);
return (error);
}
/*
* Possible superblock locations ordered from most to least likely.
*/
static const int sblock_try[] = SBLOCKSEARCH;
/*
* Common code for mount and mountroot
*/
int
ffs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
{
struct ufsmount *ump;
struct buf *bp;
struct fs *fs;
dev_t dev;
struct partinfo dpart;
void *space;
daddr_t sblockloc, fsblockloc;
int blks, fstype;
int error, i, bsize, ronly, bset = 0;
#ifdef FFS_EI
int needswap = 0; /* keep gcc happy */
#endif
int32_t *lp;
kauth_cred_t cred;
u_int32_t sbsize = 8192; /* keep gcc happy*/
dev = devvp->v_rdev;
cred = l ? l->l_cred : NOCRED;
/* Flush out any old buffers remaining from a previous use. */
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
VOP_UNLOCK(devvp);
if (error)
return (error);
ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
bp = NULL;
ump = NULL;
fs = NULL;
sblockloc = 0;
fstype = 0;
error = fstrans_mount(mp);
if (error)
return error;
ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK);
memset(ump, 0, sizeof *ump);
mutex_init(&ump->um_lock, MUTEX_DEFAULT, IPL_NONE);
error = ffs_snapshot_init(ump);
if (error)
goto out;
ump->um_ops = &ffs_ufsops;
#ifdef WAPBL
sbagain:
#endif
/*
* Try reading the superblock in each of its possible locations.
*/
for (i = 0; ; i++) {
if (bp != NULL) {
brelse(bp, BC_NOCACHE);
bp = NULL;
}
if (sblock_try[i] == -1) {
error = EINVAL;
fs = NULL;
goto out;
}
error = bread(devvp, sblock_try[i] / DEV_BSIZE, SBLOCKSIZE, cred,
0, &bp);
if (error) {
fs = NULL;
goto out;
}
fs = (struct fs*)bp->b_data;
fsblockloc = sblockloc = sblock_try[i];
if (fs->fs_magic == FS_UFS1_MAGIC) {
sbsize = fs->fs_sbsize;
fstype = UFS1;
#ifdef FFS_EI
needswap = 0;
} else if (fs->fs_magic == bswap32(FS_UFS1_MAGIC)) {
sbsize = bswap32(fs->fs_sbsize);
fstype = UFS1;
needswap = 1;
#endif
} else if (fs->fs_magic == FS_UFS2_MAGIC) {
sbsize = fs->fs_sbsize;
fstype = UFS2;
#ifdef FFS_EI
needswap = 0;
} else if (fs->fs_magic == bswap32(FS_UFS2_MAGIC)) {
sbsize = bswap32(fs->fs_sbsize);
fstype = UFS2;
needswap = 1;
#endif
} else
continue;
/* fs->fs_sblockloc isn't defined for old filesystems */
if (fstype == UFS1 && !(fs->fs_old_flags & FS_FLAGS_UPDATED)) {
if (sblockloc == SBLOCK_UFS2)
/*
* This is likely to be the first alternate
* in a filesystem with 64k blocks.
* Don't use it.
*/
continue;
fsblockloc = sblockloc;
} else {
fsblockloc = fs->fs_sblockloc;
#ifdef FFS_EI
if (needswap)
fsblockloc = bswap64(fsblockloc);
#endif
}
/* Check we haven't found an alternate superblock */
if (fsblockloc != sblockloc)
continue;
/* Validate size of superblock */
if (sbsize > MAXBSIZE || sbsize < sizeof(struct fs))
continue;
/* Ok seems to be a good superblock */
break;
}
fs = malloc((u_long)sbsize, M_UFSMNT, M_WAITOK);
memcpy(fs, bp->b_data, sbsize);
ump->um_fs = fs;
#ifdef FFS_EI
if (needswap) {
ffs_sb_swap((struct fs*)bp->b_data, fs);
fs->fs_flags |= FS_SWAPPED;
} else
#endif
fs->fs_flags &= ~FS_SWAPPED;
#ifdef WAPBL
if ((mp->mnt_wapbl_replay == 0) && (fs->fs_flags & FS_DOWAPBL)) {
error = ffs_wapbl_replay_start(mp, fs, devvp);
if (error && (mp->mnt_flag & MNT_FORCE) == 0)
goto out;
if (!error) {
if (!ronly) {
/* XXX fsmnt may be stale. */
printf("%s: replaying log to disk\n",
fs->fs_fsmnt);
error = wapbl_replay_write(mp->mnt_wapbl_replay,
devvp);
if (error)
goto out;
wapbl_replay_stop(mp->mnt_wapbl_replay);
fs->fs_clean = FS_WASCLEAN;
} else {
/* XXX fsmnt may be stale */
printf("%s: replaying log to memory\n",
fs->fs_fsmnt);
}
/* Force a re-read of the superblock */
brelse(bp, BC_INVAL);
bp = NULL;
free(fs, M_UFSMNT);
fs = NULL;
goto sbagain;
}
}
#else /* !WAPBL */
if ((fs->fs_flags & FS_DOWAPBL) && (mp->mnt_flag & MNT_FORCE) == 0) {
error = EPERM;
goto out;
}
#endif /* !WAPBL */
ffs_oldfscompat_read(fs, ump, sblockloc);
ump->um_maxfilesize = fs->fs_maxfilesize;
if (fs->fs_flags & ~(FS_KNOWN_FLAGS | FS_INTERNAL)) {
uprintf("%s: unknown ufs flags: 0x%08"PRIx32"%s\n",
mp->mnt_stat.f_mntonname, fs->fs_flags,
(mp->mnt_flag & MNT_FORCE) ? "" : ", not mounting");
if ((mp->mnt_flag & MNT_FORCE) == 0) {
error = EINVAL;
goto out;
}
}
if (fs->fs_pendingblocks != 0 || fs->fs_pendinginodes != 0) {
fs->fs_pendingblocks = 0;
fs->fs_pendinginodes = 0;
}
ump->um_fstype = fstype;
if (fs->fs_sbsize < SBLOCKSIZE)
brelse(bp, BC_INVAL);
else
brelse(bp, 0);
bp = NULL;
/* First check to see if this is tagged as an Apple UFS filesystem
* in the disklabel
*/
if ((VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred) == 0) &&
(dpart.part->p_fstype == FS_APPLEUFS)) {
ump->um_flags |= UFS_ISAPPLEUFS;
}
#ifdef APPLE_UFS
else {
/* Manually look for an apple ufs label, and if a valid one
* is found, then treat it like an Apple UFS filesystem anyway
*/
error = bread(devvp, (daddr_t)(APPLEUFS_LABEL_OFFSET / DEV_BSIZE),
APPLEUFS_LABEL_SIZE, cred, 0, &bp);
if (error)
goto out;
error = ffs_appleufs_validate(fs->fs_fsmnt,
(struct appleufslabel *)bp->b_data, NULL);
if (error == 0) {
ump->um_flags |= UFS_ISAPPLEUFS;
}
brelse(bp, 0);
bp = NULL;
}
#else
if (ump->um_flags & UFS_ISAPPLEUFS) {
error = EINVAL;
goto out;
}
#endif
#if 0
/*
* XXX This code changes the behaviour of mounting dirty filesystems, to
* XXX require "mount -f ..." to mount them. This doesn't match what
* XXX mount(8) describes and is disabled for now.
*/
/*
* If the file system is not clean, don't allow it to be mounted
* unless MNT_FORCE is specified. (Note: MNT_FORCE is always set
* for the root file system.)
*/
if (fs->fs_flags & FS_DOWAPBL) {
/*
* wapbl normally expects to be FS_WASCLEAN when the FS_DOWAPBL
* bit is set, although there's a window in unmount where it
* could be FS_ISCLEAN
*/
if ((mp->mnt_flag & MNT_FORCE) == 0 &&
(fs->fs_clean & (FS_WASCLEAN | FS_ISCLEAN)) == 0) {
error = EPERM;
goto out;
}
} else
if ((fs->fs_clean & FS_ISCLEAN) == 0 &&
(mp->mnt_flag & MNT_FORCE) == 0) {
error = EPERM;
goto out;
}
#endif
/*
* verify that we can access the last block in the fs
* if we're mounting read/write.
*/
if (!ronly) {
error = bread(devvp, fsbtodb(fs, fs->fs_size - 1), fs->fs_fsize,
cred, 0, &bp);
if (bp->b_bcount != fs->fs_fsize)
error = EINVAL;
if (error) {
bset = BC_INVAL;
goto out;
}
brelse(bp, BC_INVAL);
bp = NULL;
}
fs->fs_ronly = ronly;
/* Don't bump fs_clean if we're replaying journal */
if (!((fs->fs_flags & FS_DOWAPBL) && (fs->fs_clean & FS_WASCLEAN)))
if (ronly == 0) {
fs->fs_clean <<= 1;
fs->fs_fmod = 1;
}
bsize = fs->fs_cssize;
blks = howmany(bsize, fs->fs_fsize);
if (fs->fs_contigsumsize > 0)
bsize += fs->fs_ncg * sizeof(int32_t);
bsize += fs->fs_ncg * sizeof(*fs->fs_contigdirs);
space = malloc((u_long)bsize, M_UFSMNT, M_WAITOK);
fs->fs_csp = space;
for (i = 0; i < blks; i += fs->fs_frag) {
bsize = fs->fs_bsize;
if (i + fs->fs_frag > blks)
bsize = (blks - i) * fs->fs_fsize;
error = bread(devvp, fsbtodb(fs, fs->fs_csaddr + i), bsize,
cred, 0, &bp);
if (error) {
free(fs->fs_csp, M_UFSMNT);
goto out;
}
#ifdef FFS_EI
if (needswap)
ffs_csum_swap((struct csum *)bp->b_data,
(struct csum *)space, bsize);
else
#endif
memcpy(space, bp->b_data, (u_int)bsize);
space = (char *)space + bsize;
brelse(bp, 0);
bp = NULL;
}
if (fs->fs_contigsumsize > 0) {
fs->fs_maxcluster = lp = space;
for (i = 0; i < fs->fs_ncg; i++)
*lp++ = fs->fs_contigsumsize;
space = lp;
}
bsize = fs->fs_ncg * sizeof(*fs->fs_contigdirs);
fs->fs_contigdirs = space;
space = (char *)space + bsize;
memset(fs->fs_contigdirs, 0, bsize);
/* Compatibility for old filesystems - XXX */
if (fs->fs_avgfilesize <= 0)
fs->fs_avgfilesize = AVFILESIZ;
if (fs->fs_avgfpdir <= 0)
fs->fs_avgfpdir = AFPDIR;
fs->fs_active = NULL;
mp->mnt_data = ump;
mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_FFS);
mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
mp->mnt_stat.f_namemax = FFS_MAXNAMLEN;
if (UFS_MPISAPPLEUFS(ump)) {
/* NeXT used to keep short symlinks in the inode even
* when using FS_42INODEFMT. In that case fs->fs_maxsymlinklen
* is probably -1, but we still need to be able to identify
* short symlinks.
*/
ump->um_maxsymlinklen = APPLEUFS_MAXSYMLINKLEN;
ump->um_dirblksiz = APPLEUFS_DIRBLKSIZ;
mp->mnt_iflag |= IMNT_DTYPE;
} else {
ump->um_maxsymlinklen = fs->fs_maxsymlinklen;
ump->um_dirblksiz = DIRBLKSIZ;
if (ump->um_maxsymlinklen > 0)
mp->mnt_iflag |= IMNT_DTYPE;
else
mp->mnt_iflag &= ~IMNT_DTYPE;
}
mp->mnt_fs_bshift = fs->fs_bshift;
mp->mnt_dev_bshift = DEV_BSHIFT; /* XXX */
mp->mnt_flag |= MNT_LOCAL;
mp->mnt_iflag |= IMNT_MPSAFE;
#ifdef FFS_EI
if (needswap)
ump->um_flags |= UFS_NEEDSWAP;
#endif
ump->um_mountp = mp;
ump->um_dev = dev;
ump->um_devvp = devvp;
ump->um_nindir = fs->fs_nindir;
ump->um_lognindir = ffs(fs->fs_nindir) - 1;
ump->um_bptrtodb = fs->fs_fshift - DEV_BSHIFT;
ump->um_seqinc = fs->fs_frag;
for (i = 0; i < MAXQUOTAS; i++)
ump->um_quotas[i] = NULLVP;
devvp->v_specmountpoint = mp;
if (ronly == 0 && fs->fs_snapinum[0] != 0)
ffs_snapshot_mount(mp);
#ifdef WAPBL
if (!ronly) {
KDASSERT(fs->fs_ronly == 0);
/*
* ffs_wapbl_start() needs mp->mnt_stat initialised if it
* needs to create a new log file in-filesystem.
*/
ffs_statvfs(mp, &mp->mnt_stat);
error = ffs_wapbl_start(mp);
if (error) {
free(fs->fs_csp, M_UFSMNT);
goto out;
}
}
#endif /* WAPBL */
#ifdef UFS_EXTATTR
/*
* Initialize file-backed extended attributes on UFS1 file
* systems.
*/
if (ump->um_fstype == UFS1) {
ufs_extattr_uepm_init(&ump->um_extattr);
#ifdef UFS_EXTATTR_AUTOSTART
/*
* XXX Just ignore errors. Not clear that we should
* XXX fail the mount in this case.
*/
(void) ufs_extattr_autostart(mp, l);
#endif
}
#endif /* UFS_EXTATTR */
return (0);
out:
#ifdef WAPBL
if (mp->mnt_wapbl_replay) {
wapbl_replay_stop(mp->mnt_wapbl_replay);
wapbl_replay_free(mp->mnt_wapbl_replay);
mp->mnt_wapbl_replay = 0;
}
#endif
fstrans_unmount(mp);
if (fs)
free(fs, M_UFSMNT);
devvp->v_specmountpoint = NULL;
if (bp)
brelse(bp, bset);
if (ump) {
if (ump->um_oldfscompat)
free(ump->um_oldfscompat, M_UFSMNT);
mutex_destroy(&ump->um_lock);
free(ump, M_UFSMNT);
mp->mnt_data = NULL;
}
return (error);
}
/*
* Sanity checks for loading old filesystem superblocks.
* See ffs_oldfscompat_write below for unwound actions.
*
* XXX - Parts get retired eventually.
* Unfortunately new bits get added.
*/
static void
ffs_oldfscompat_read(struct fs *fs, struct ufsmount *ump, daddr_t sblockloc)
{
off_t maxfilesize;
int32_t *extrasave;
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
return;
if (!ump->um_oldfscompat)
ump->um_oldfscompat = malloc(512 + 3*sizeof(int32_t),
M_UFSMNT, M_WAITOK);
memcpy(ump->um_oldfscompat, &fs->fs_old_postbl_start, 512);
extrasave = ump->um_oldfscompat;
extrasave += 512/sizeof(int32_t);
extrasave[0] = fs->fs_old_npsect;
extrasave[1] = fs->fs_old_interleave;
extrasave[2] = fs->fs_old_trackskew;
/* These fields will be overwritten by their
* original values in fs_oldfscompat_write, so it is harmless
* to modify them here.
*/
fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
fs->fs_maxbsize = fs->fs_bsize;
fs->fs_time = fs->fs_old_time;
fs->fs_size = fs->fs_old_size;
fs->fs_dsize = fs->fs_old_dsize;
fs->fs_csaddr = fs->fs_old_csaddr;
fs->fs_sblockloc = sblockloc;
fs->fs_flags = fs->fs_old_flags | (fs->fs_flags & FS_INTERNAL);
if (fs->fs_old_postblformat == FS_42POSTBLFMT) {
fs->fs_old_nrpos = 8;
fs->fs_old_npsect = fs->fs_old_nsect;
fs->fs_old_interleave = 1;
fs->fs_old_trackskew = 0;
}
if (fs->fs_old_inodefmt < FS_44INODEFMT) {
fs->fs_maxfilesize = (u_quad_t) 1LL << 39;
fs->fs_qbmask = ~fs->fs_bmask;
fs->fs_qfmask = ~fs->fs_fmask;
}
maxfilesize = (u_int64_t)0x80000000 * fs->fs_bsize - 1;
if (fs->fs_maxfilesize > maxfilesize)
fs->fs_maxfilesize = maxfilesize;
/* Compatibility for old filesystems */
if (fs->fs_avgfilesize <= 0)
fs->fs_avgfilesize = AVFILESIZ;
if (fs->fs_avgfpdir <= 0)
fs->fs_avgfpdir = AFPDIR;
#if 0
if (bigcgs) {
fs->fs_save_cgsize = fs->fs_cgsize;
fs->fs_cgsize = fs->fs_bsize;
}
#endif
}
/*
* Unwinding superblock updates for old filesystems.
* See ffs_oldfscompat_read above for details.
*
* XXX - Parts get retired eventually.
* Unfortunately new bits get added.
*/
static void
ffs_oldfscompat_write(struct fs *fs, struct ufsmount *ump)
{
int32_t *extrasave;
if ((fs->fs_magic != FS_UFS1_MAGIC) ||
(fs->fs_old_flags & FS_FLAGS_UPDATED))
return;
fs->fs_old_time = fs->fs_time;
fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
fs->fs_old_flags = fs->fs_flags;
#if 0
if (bigcgs) {
fs->fs_cgsize = fs->fs_save_cgsize;
}
#endif
memcpy(&fs->fs_old_postbl_start, ump->um_oldfscompat, 512);
extrasave = ump->um_oldfscompat;
extrasave += 512/sizeof(int32_t);
fs->fs_old_npsect = extrasave[0];
fs->fs_old_interleave = extrasave[1];
fs->fs_old_trackskew = extrasave[2];
}
/*
* unmount vfs operation
*/
int
ffs_unmount(struct mount *mp, int mntflags)
{
struct lwp *l = curlwp;
struct ufsmount *ump = VFSTOUFS(mp);
struct fs *fs = ump->um_fs;
int error, flags;
#ifdef WAPBL
extern int doforce;
#endif
flags = 0;
if (mntflags & MNT_FORCE)
flags |= FORCECLOSE;
if ((error = ffs_flushfiles(mp, flags, l)) != 0)
return (error);
error = UFS_WAPBL_BEGIN(mp);
if (error == 0)
if (fs->fs_ronly == 0 &&
ffs_cgupdate(ump, MNT_WAIT) == 0 &&
fs->fs_clean & FS_WASCLEAN) {
fs->fs_clean = FS_ISCLEAN;
fs->fs_fmod = 0;
(void) ffs_sbupdate(ump, MNT_WAIT);
}
if (error == 0)
UFS_WAPBL_END(mp);
#ifdef WAPBL
KASSERT(!(mp->mnt_wapbl_replay && mp->mnt_wapbl));
if (mp->mnt_wapbl_replay) {
KDASSERT(fs->fs_ronly);
wapbl_replay_stop(mp->mnt_wapbl_replay);
wapbl_replay_free(mp->mnt_wapbl_replay);
mp->mnt_wapbl_replay = 0;
}
error = ffs_wapbl_stop(mp, doforce && (mntflags & MNT_FORCE));
if (error) {
return error;
}
#endif /* WAPBL */
#ifdef UFS_EXTATTR
if (ump->um_fstype == UFS1) {
ufs_extattr_stop(mp, l);
ufs_extattr_uepm_destroy(&ump->um_extattr);
}
#endif /* UFS_EXTATTR */
if (ump->um_devvp->v_type != VBAD)
ump->um_devvp->v_specmountpoint = NULL;
vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
(void)VOP_CLOSE(ump->um_devvp, fs->fs_ronly ? FREAD : FREAD | FWRITE,
NOCRED);
vput(ump->um_devvp);
free(fs->fs_csp, M_UFSMNT);
free(fs, M_UFSMNT);
if (ump->um_oldfscompat != NULL)
free(ump->um_oldfscompat, M_UFSMNT);
mutex_destroy(&ump->um_lock);
ffs_snapshot_fini(ump);
free(ump, M_UFSMNT);
mp->mnt_data = NULL;
mp->mnt_flag &= ~MNT_LOCAL;
fstrans_unmount(mp);
return (0);
}
/*
* Flush out all the files in a filesystem.
*/
int
ffs_flushfiles(struct mount *mp, int flags, struct lwp *l)
{
extern int doforce;
struct ufsmount *ump;
int error;
if (!doforce)
flags &= ~FORCECLOSE;
ump = VFSTOUFS(mp);
#ifdef QUOTA
if (mp->mnt_flag & MNT_QUOTA) {
int i;
if ((error = vflush(mp, NULLVP, SKIPSYSTEM | flags)) != 0)
return (error);
for (i = 0; i < MAXQUOTAS; i++) {
if (ump->um_quotas[i] == NULLVP)
continue;
quotaoff(l, mp, i);
}
/*
* Here we fall through to vflush again to ensure
* that we have gotten rid of all the system vnodes.
*/
}
#endif
if ((error = vflush(mp, 0, SKIPSYSTEM | flags)) != 0)
return (error);
ffs_snapshot_unmount(mp);
/*
* Flush all the files.
*/
error = vflush(mp, NULLVP, flags);
if (error)
return (error);
/*
* Flush filesystem metadata.
*/
vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_FSYNC(ump->um_devvp, l->l_cred, FSYNC_WAIT, 0, 0);
VOP_UNLOCK(ump->um_devvp);
if (flags & FORCECLOSE) /* XXXDBJ */
error = 0;
#ifdef WAPBL
if (error)
return error;
if (mp->mnt_wapbl) {
error = wapbl_flush(mp->mnt_wapbl, 1);
if (flags & FORCECLOSE)
error = 0;
}
#endif
return (error);
}
/*
* Get file system statistics.
*/
int
ffs_statvfs(struct mount *mp, struct statvfs *sbp)
{
struct ufsmount *ump;
struct fs *fs;
ump = VFSTOUFS(mp);
fs = ump->um_fs;
mutex_enter(&ump->um_lock);
sbp->f_bsize = fs->fs_bsize;
sbp->f_frsize = fs->fs_fsize;
sbp->f_iosize = fs->fs_bsize;
sbp->f_blocks = fs->fs_dsize;
sbp->f_bfree = blkstofrags(fs, fs->fs_cstotal.cs_nbfree) +
fs->fs_cstotal.cs_nffree + dbtofsb(fs, fs->fs_pendingblocks);
sbp->f_bresvd = ((u_int64_t) fs->fs_dsize * (u_int64_t)
fs->fs_minfree) / (u_int64_t) 100;
if (sbp->f_bfree > sbp->f_bresvd)
sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
else
sbp->f_bavail = 0;
sbp->f_files = fs->fs_ncg * fs->fs_ipg - ROOTINO;
sbp->f_ffree = fs->fs_cstotal.cs_nifree + fs->fs_pendinginodes;
sbp->f_favail = sbp->f_ffree;
sbp->f_fresvd = 0;
mutex_exit(&ump->um_lock);
copy_statvfs_info(sbp, mp);
return (0);
}
/*
* Go through the disk queues to initiate sandbagged IO;
* go through the inodes to write those that have been modified;
* initiate the writing of the super block if it has been modified.
*
* Note: we are always called with the filesystem marked `MPBUSY'.
*/
int
ffs_sync(struct mount *mp, int waitfor, kauth_cred_t cred)
{
struct vnode *vp, *mvp, *nvp;
struct inode *ip;
struct ufsmount *ump = VFSTOUFS(mp);
struct fs *fs;
int lk_flags, error, allerror = 0;
bool is_suspending;
fs = ump->um_fs;
if (fs->fs_fmod != 0 && fs->fs_ronly != 0) { /* XXX */
printf("fs = %s\n", fs->fs_fsmnt);
panic("update: rofs mod");
}
/* Allocate a marker vnode. */
if ((mvp = vnalloc(mp)) == NULL)
return (ENOMEM);
fstrans_start(mp, FSTRANS_SHARED);
is_suspending = (fstrans_getstate(mp) == FSTRANS_SUSPENDING);
/*
* We can't lock vnodes while the file system is suspending because
* threads waiting on fstrans may have locked vnodes.
*/
if (is_suspending)
lk_flags = LK_INTERLOCK;
else
lk_flags = LK_EXCLUSIVE | LK_NOWAIT | LK_INTERLOCK;
/*
* Write back each (modified) inode.
*/
mutex_enter(&mntvnode_lock);
loop:
/*
* NOTE: not using the TAILQ_FOREACH here since in this loop vgone()
* and vclean() can be called indirectly
*/
for (vp = TAILQ_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
nvp = TAILQ_NEXT(vp, v_mntvnodes);
/*
* If the vnode that we are about to sync is no longer
* associated with this mount point, start over.
*/
if (vp->v_mount != mp)
goto loop;
/*
* Don't interfere with concurrent scans of this FS.
*/
if (vismarker(vp))
continue;
mutex_enter(&vp->v_interlock);
ip = VTOI(vp);
/*
* Skip the vnode/inode if inaccessible.
*/
if (ip == NULL || (vp->v_iflag & (VI_XLOCK | VI_CLEAN)) != 0 ||
vp->v_type == VNON) {
mutex_exit(&vp->v_interlock);
continue;
}
/*
* We deliberately update inode times here. This will
* prevent a massive queue of updates accumulating, only
* to be handled by a call to unmount.
*
* XXX It would be better to have the syncer trickle these
* out. Adjustment needed to allow registering vnodes for
* sync when the vnode is clean, but the inode dirty. Or
* have ufs itself trickle out inode updates.
*
* If doing a lazy sync, we don't care about metadata or
* data updates, because they are handled by each vnode's
* synclist entry. In this case we are only interested in
* writing back modified inodes.
*/
if ((ip->i_flag & (IN_ACCESS | IN_CHANGE | IN_UPDATE |
IN_MODIFY | IN_MODIFIED | IN_ACCESSED)) == 0 &&
(waitfor == MNT_LAZY || (LIST_EMPTY(&vp->v_dirtyblkhd) &&
UVM_OBJ_IS_CLEAN(&vp->v_uobj)))) {
mutex_exit(&vp->v_interlock);
continue;
}
if (vp->v_type == VBLK && is_suspending) {
mutex_exit(&vp->v_interlock);
continue;
}
vmark(mvp, vp);
mutex_exit(&mntvnode_lock);
error = vget(vp, lk_flags);
if (error) {
mutex_enter(&mntvnode_lock);
nvp = vunmark(mvp);
if (error == ENOENT) {
goto loop;
}
continue;
}
if (waitfor == MNT_LAZY) {
error = UFS_WAPBL_BEGIN(vp->v_mount);
if (!error) {
error = ffs_update(vp, NULL, NULL,
UPDATE_CLOSE);
UFS_WAPBL_END(vp->v_mount);
}
} else {
error = VOP_FSYNC(vp, cred, FSYNC_NOLOG |
(waitfor == MNT_WAIT ? FSYNC_WAIT : 0), 0, 0);
}
if (error)
allerror = error;
if (is_suspending)
vrele(vp);
else
vput(vp);
mutex_enter(&mntvnode_lock);
nvp = vunmark(mvp);
}
mutex_exit(&mntvnode_lock);
/*
* Force stale file system control information to be flushed.
*/
if (waitfor != MNT_LAZY && (ump->um_devvp->v_numoutput > 0 ||
!LIST_EMPTY(&ump->um_devvp->v_dirtyblkhd))) {
vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
if ((error = VOP_FSYNC(ump->um_devvp, cred,
(waitfor == MNT_WAIT ? FSYNC_WAIT : 0) | FSYNC_NOLOG,
0, 0)) != 0)
allerror = error;
VOP_UNLOCK(ump->um_devvp);
if (allerror == 0 && waitfor == MNT_WAIT && !mp->mnt_wapbl) {
mutex_enter(&mntvnode_lock);
goto loop;
}
}
#ifdef QUOTA
qsync(mp);
#endif
/*
* Write back modified superblock.
*/
if (fs->fs_fmod != 0) {
fs->fs_fmod = 0;
fs->fs_time = time_second;
error = UFS_WAPBL_BEGIN(mp);
if (error)
allerror = error;
else {
if ((error = ffs_cgupdate(ump, waitfor)))
allerror = error;
UFS_WAPBL_END(mp);
}
}
#ifdef WAPBL
if (mp->mnt_wapbl) {
error = wapbl_flush(mp->mnt_wapbl, 0);
if (error)
allerror = error;
}
#endif
fstrans_done(mp);
vnfree(mvp);
return (allerror);
}
/*
* Look up a FFS dinode number to find its incore vnode, otherwise read it
* in from disk. If it is in core, wait for the lock bit to clear, then
* return the inode locked. Detection and handling of mount points must be
* done by the calling routine.
*/
int
ffs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
{
struct fs *fs;
struct inode *ip;
struct ufsmount *ump;
struct buf *bp;
struct vnode *vp;
dev_t dev;
int error;
ump = VFSTOUFS(mp);
dev = ump->um_dev;
retry:
if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
return (0);
/* Allocate a new vnode/inode. */
if ((error = getnewvnode(VT_UFS, mp, ffs_vnodeop_p, &vp)) != 0) {
*vpp = NULL;
return (error);
}
ip = pool_cache_get(ffs_inode_cache, PR_WAITOK);
/*
* If someone beat us to it, put back the freshly allocated
* vnode/inode pair and retry.
*/
mutex_enter(&ufs_hashlock);
if (ufs_ihashget(dev, ino, 0) != NULL) {
mutex_exit(&ufs_hashlock);
ungetnewvnode(vp);
pool_cache_put(ffs_inode_cache, ip);
goto retry;
}
vp->v_vflag |= VV_LOCKSWORK;
/*
* XXX MFS ends up here, too, to allocate an inode. Should we
* XXX create another pool for MFS inodes?
*/
memset(ip, 0, sizeof(struct inode));
vp->v_data = ip;
ip->i_vnode = vp;
ip->i_ump = ump;
ip->i_fs = fs = ump->um_fs;
ip->i_dev = dev;
ip->i_number = ino;
#ifdef QUOTA
ufsquota_init(ip);
#endif
/*
* Initialize genfs node, we might proceed to destroy it in
* error branches.
*/
genfs_node_init(vp, &ffs_genfsops);
/*
* Put it onto its hash chain and lock it so that other requests for
* this inode will block if they arrive while we are sleeping waiting
* for old data structures to be purged or for the contents of the
* disk portion of this inode to be read.
*/
ufs_ihashins(ip);
mutex_exit(&ufs_hashlock);
/* Read in the disk contents for the inode, copy into the inode. */
error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ino)),
(int)fs->fs_bsize, NOCRED, 0, &bp);
if (error) {
/*
* The inode does not contain anything useful, so it would
* be misleading to leave it on its hash chain. With mode
* still zero, it will be unlinked and returned to the free
* list by vput().
*/
vput(vp);
brelse(bp, 0);
*vpp = NULL;
return (error);
}
if (ip->i_ump->um_fstype == UFS1)
ip->i_din.ffs1_din = pool_cache_get(ffs_dinode1_cache,
PR_WAITOK);
else
ip->i_din.ffs2_din = pool_cache_get(ffs_dinode2_cache,
PR_WAITOK);
ffs_load_inode(bp, ip, fs, ino);
brelse(bp, 0);
/*
* Initialize the vnode from the inode, check for aliases.
* Note that the underlying vnode may have changed.
*/
ufs_vinit(mp, ffs_specop_p, ffs_fifoop_p, &vp);
/*
* Finish inode initialization now that aliasing has been resolved.
*/
ip->i_devvp = ump->um_devvp;
vref(ip->i_devvp);
/*
* Ensure that uid and gid are correct. This is a temporary
* fix until fsck has been changed to do the update.
*/
if (fs->fs_old_inodefmt < FS_44INODEFMT) { /* XXX */
ip->i_uid = ip->i_ffs1_ouid; /* XXX */
ip->i_gid = ip->i_ffs1_ogid; /* XXX */
} /* XXX */
uvm_vnp_setsize(vp, ip->i_size);
*vpp = vp;
return (0);
}
/*
* File handle to vnode
*
* Have to be really careful about stale file handles:
* - check that the inode number is valid
* - call ffs_vget() to get the locked inode
* - check for an unallocated inode (i_mode == 0)
* - check that the given client host has export rights and return
* those rights via. exflagsp and credanonp
*/
int
ffs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
{
struct ufid ufh;
struct fs *fs;
if (fhp->fid_len != sizeof(struct ufid))
return EINVAL;
memcpy(&ufh, fhp, sizeof(ufh));
fs = VFSTOUFS(mp)->um_fs;
if (ufh.ufid_ino < ROOTINO ||
ufh.ufid_ino >= fs->fs_ncg * fs->fs_ipg)
return (ESTALE);
return (ufs_fhtovp(mp, &ufh, vpp));
}
/*
* Vnode pointer to File handle
*/
/* ARGSUSED */
int
ffs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
{
struct inode *ip;
struct ufid ufh;
if (*fh_size < sizeof(struct ufid)) {
*fh_size = sizeof(struct ufid);
return E2BIG;
}
ip = VTOI(vp);
*fh_size = sizeof(struct ufid);
memset(&ufh, 0, sizeof(ufh));
ufh.ufid_len = sizeof(struct ufid);
ufh.ufid_ino = ip->i_number;
ufh.ufid_gen = ip->i_gen;
memcpy(fhp, &ufh, sizeof(ufh));
return (0);
}
void
ffs_init(void)
{
if (ffs_initcount++ > 0)
return;
ffs_inode_cache = pool_cache_init(sizeof(struct inode), 0, 0, 0,
"ffsino", NULL, IPL_NONE, NULL, NULL, NULL);
ffs_dinode1_cache = pool_cache_init(sizeof(struct ufs1_dinode), 0, 0, 0,
"ffsdino1", NULL, IPL_NONE, NULL, NULL, NULL);
ffs_dinode2_cache = pool_cache_init(sizeof(struct ufs2_dinode), 0, 0, 0,
"ffsdino2", NULL, IPL_NONE, NULL, NULL, NULL);
ufs_init();
}
void
ffs_reinit(void)
{
ufs_reinit();
}
void
ffs_done(void)
{
if (--ffs_initcount > 0)
return;
ufs_done();
pool_cache_destroy(ffs_dinode2_cache);
pool_cache_destroy(ffs_dinode1_cache);
pool_cache_destroy(ffs_inode_cache);
}
/*
* Write a superblock and associated information back to disk.
*/
int
ffs_sbupdate(struct ufsmount *mp, int waitfor)
{
struct fs *fs = mp->um_fs;
struct buf *bp;
int error = 0;
u_int32_t saveflag;
error = ffs_getblk(mp->um_devvp,
fs->fs_sblockloc / DEV_BSIZE, FFS_NOBLK,
fs->fs_sbsize, false, &bp);
if (error)
return error;
saveflag = fs->fs_flags & FS_INTERNAL;
fs->fs_flags &= ~FS_INTERNAL;
memcpy(bp->b_data, fs, fs->fs_sbsize);
ffs_oldfscompat_write((struct fs *)bp->b_data, mp);
#ifdef FFS_EI
if (mp->um_flags & UFS_NEEDSWAP)
ffs_sb_swap((struct fs *)bp->b_data, (struct fs *)bp->b_data);
#endif
fs->fs_flags |= saveflag;
if (waitfor == MNT_WAIT)
error = bwrite(bp);
else
bawrite(bp);
return (error);
}
int
ffs_cgupdate(struct ufsmount *mp, int waitfor)
{
struct fs *fs = mp->um_fs;
struct buf *bp;
int blks;
void *space;
int i, size, error = 0, allerror = 0;
allerror = ffs_sbupdate(mp, waitfor);
blks = howmany(fs->fs_cssize, fs->fs_fsize);
space = fs->fs_csp;
for (i = 0; i < blks; i += fs->fs_frag) {
size = fs->fs_bsize;
if (i + fs->fs_frag > blks)
size = (blks - i) * fs->fs_fsize;
error = ffs_getblk(mp->um_devvp, fsbtodb(fs, fs->fs_csaddr + i),
FFS_NOBLK, size, false, &bp);
if (error)
break;
#ifdef FFS_EI
if (mp->um_flags & UFS_NEEDSWAP)
ffs_csum_swap((struct csum*)space,
(struct csum*)bp->b_data, size);
else
#endif
memcpy(bp->b_data, space, (u_int)size);
space = (char *)space + size;
if (waitfor == MNT_WAIT)
error = bwrite(bp);
else
bawrite(bp);
}
if (!allerror && error)
allerror = error;
return (allerror);
}
int
ffs_extattrctl(struct mount *mp, int cmd, struct vnode *vp,
int attrnamespace, const char *attrname)
{
#ifdef UFS_EXTATTR
/*
* File-backed extended attributes are only supported on UFS1.
* UFS2 has native extended attributes.
*/
if (VFSTOUFS(mp)->um_fstype == UFS1)
return (ufs_extattrctl(mp, cmd, vp, attrnamespace, attrname));
#endif
return (vfs_stdextattrctl(mp, cmd, vp, attrnamespace, attrname));
}
int
ffs_suspendctl(struct mount *mp, int cmd)
{
int error;
struct lwp *l = curlwp;
switch (cmd) {
case SUSPEND_SUSPEND:
if ((error = fstrans_setstate(mp, FSTRANS_SUSPENDING)) != 0)
return error;
error = ffs_sync(mp, MNT_WAIT, l->l_proc->p_cred);
if (error == 0)
error = fstrans_setstate(mp, FSTRANS_SUSPENDED);
#ifdef WAPBL
if (error == 0 && mp->mnt_wapbl)
error = wapbl_flush(mp->mnt_wapbl, 1);
#endif
if (error != 0) {
(void) fstrans_setstate(mp, FSTRANS_NORMAL);
return error;
}
return 0;
case SUSPEND_RESUME:
return fstrans_setstate(mp, FSTRANS_NORMAL);
default:
return EINVAL;
}
}
/*
* Synch vnode for a mounted file system. This is called for foreign
* vnodes, i.e. non-ffs.
*/
static int
ffs_vfs_fsync(vnode_t *vp, int flags)
{
int error, passes, skipmeta, i, pflags;
buf_t *bp, *nbp;
#ifdef WAPBL
struct mount *mp;
#endif
KASSERT(vp->v_type == VBLK);
KASSERT(vp->v_specmountpoint != NULL);
/*
* Flush all dirty data associated with the vnode.
*/
pflags = PGO_ALLPAGES | PGO_CLEANIT;
if ((flags & FSYNC_WAIT) != 0)
pflags |= PGO_SYNCIO;
mutex_enter(&vp->v_interlock);
error = VOP_PUTPAGES(vp, 0, 0, pflags);
if (error)
return error;
#ifdef WAPBL
mp = vp->v_specmountpoint;
if (mp && mp->mnt_wapbl) {
/*
* Don't bother writing out metadata if the syncer is
* making the request. We will let the sync vnode
* write it out in a single burst through a call to
* VFS_SYNC().
*/
if ((flags & (FSYNC_DATAONLY | FSYNC_LAZY | FSYNC_NOLOG)) != 0)
return 0;
/*
* Don't flush the log if the vnode being flushed
* contains no dirty buffers that could be in the log.
*/
if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
error = wapbl_flush(mp->mnt_wapbl, 0);
if (error)
return error;
}
if ((flags & FSYNC_WAIT) != 0) {
mutex_enter(&vp->v_interlock);
while (vp->v_numoutput)
cv_wait(&vp->v_cv, &vp->v_interlock);
mutex_exit(&vp->v_interlock);
}
return 0;
}
#endif /* WAPBL */
/*
* Write out metadata for non-logging file systems. XXX This block
* should be simplified now that softdep is gone.
*/
passes = NIADDR + 1;
skipmeta = 0;
if (flags & FSYNC_WAIT)
skipmeta = 1;
loop:
mutex_enter(&bufcache_lock);
LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
bp->b_cflags &= ~BC_SCANNED;
}
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
if (bp->b_cflags & (BC_BUSY | BC_SCANNED))
continue;
if ((bp->b_oflags & BO_DELWRI) == 0)
panic("ffs_fsync: not dirty");
if (skipmeta && bp->b_lblkno < 0)
continue;
bp->b_cflags |= BC_BUSY | BC_VFLUSH | BC_SCANNED;
mutex_exit(&bufcache_lock);
/*
* On our final pass through, do all I/O synchronously
* so that we can find out if our flush is failing
* because of write errors.
*/
if (passes > 0 || !(flags & FSYNC_WAIT))
(void) bawrite(bp);
else if ((error = bwrite(bp)) != 0)
return (error);
/*
* Since we unlocked during the I/O, we need
* to start from a known point.
*/
mutex_enter(&bufcache_lock);
nbp = LIST_FIRST(&vp->v_dirtyblkhd);
}
mutex_exit(&bufcache_lock);
if (skipmeta) {
skipmeta = 0;
goto loop;
}
if ((flags & FSYNC_WAIT) != 0) {
mutex_enter(&vp->v_interlock);
while (vp->v_numoutput) {
cv_wait(&vp->v_cv, &vp->v_interlock);
}
mutex_exit(&vp->v_interlock);
if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
/*
* Block devices associated with filesystems may
* have new I/O requests posted for them even if
* the vnode is locked, so no amount of trying will
* get them clean. Thus we give block devices a
* good effort, then just give up. For all other file
* types, go around and try again until it is clean.
*/
if (passes > 0) {
passes--;
goto loop;
}
#ifdef DIAGNOSTIC
if (vp->v_type != VBLK)
vprint("ffs_fsync: dirty", vp);
#endif
}
}
if (error == 0 && (flags & FSYNC_CACHE) != 0) {
(void)VOP_IOCTL(vp, DIOCCACHESYNC, &i, FWRITE,
kauth_cred_get());
}
return error;
}