311 lines
8.4 KiB
C
311 lines
8.4 KiB
C
/* $NetBSD: n_lgamma.c,v 1.3 1998/10/20 02:26:12 matt Exp $ */
|
|
/*-
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef lint
|
|
#if 0
|
|
static char sccsid[] = "@(#)lgamma.c 8.2 (Berkeley) 11/30/93";
|
|
#endif
|
|
#endif /* not lint */
|
|
|
|
/*
|
|
* Coded by Peter McIlroy, Nov 1992;
|
|
*
|
|
* The financial support of UUNET Communications Services is greatfully
|
|
* acknowledged.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <errno.h>
|
|
|
|
#include "mathimpl.h"
|
|
|
|
/* Log gamma function.
|
|
* Error: x > 0 error < 1.3ulp.
|
|
* x > 4, error < 1ulp.
|
|
* x > 9, error < .6ulp.
|
|
* x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
|
|
* Method:
|
|
* x > 6:
|
|
* Use the asymptotic expansion (Stirling's Formula)
|
|
* 0 < x < 6:
|
|
* Use gamma(x+1) = x*gamma(x) for argument reduction.
|
|
* Use rational approximation in
|
|
* the range 1.2, 2.5
|
|
* Two approximations are used, one centered at the
|
|
* minimum to ensure monotonicity; one centered at 2
|
|
* to maintain small relative error.
|
|
* x < 0:
|
|
* Use the reflection formula,
|
|
* G(1-x)G(x) = PI/sin(PI*x)
|
|
* Special values:
|
|
* non-positive integer returns +Inf.
|
|
* NaN returns NaN
|
|
*/
|
|
static int endian;
|
|
#if defined(__vax__) || defined(tahoe)
|
|
#define _IEEE 0
|
|
/* double and float have same size exponent field */
|
|
#define TRUNC(x) x = (double) (float) (x)
|
|
#else
|
|
#define _IEEE 1
|
|
#define TRUNC(x) *(((int *) &x) + endian) &= 0xf8000000
|
|
#define infnan(x) 0.0
|
|
#endif
|
|
|
|
static double small_lgam(double);
|
|
static double large_lgam(double);
|
|
static double neg_lgam(double);
|
|
static double one = 1.0;
|
|
int signgam;
|
|
|
|
#define UNDERFL (1e-1020 * 1e-1020)
|
|
|
|
#define LEFT (1.0 - (x0 + .25))
|
|
#define RIGHT (x0 - .218)
|
|
/*
|
|
* Constants for approximation in [1.244,1.712]
|
|
*/
|
|
#define x0 0.461632144968362356785
|
|
#define x0_lo -.000000000000000015522348162858676890521
|
|
#define a0_hi -0.12148629128932952880859
|
|
#define a0_lo .0000000007534799204229502
|
|
#define r0 -2.771227512955130520e-002
|
|
#define r1 -2.980729795228150847e-001
|
|
#define r2 -3.257411333183093394e-001
|
|
#define r3 -1.126814387531706041e-001
|
|
#define r4 -1.129130057170225562e-002
|
|
#define r5 -2.259650588213369095e-005
|
|
#define s0 1.714457160001714442e+000
|
|
#define s1 2.786469504618194648e+000
|
|
#define s2 1.564546365519179805e+000
|
|
#define s3 3.485846389981109850e-001
|
|
#define s4 2.467759345363656348e-002
|
|
/*
|
|
* Constants for approximation in [1.71, 2.5]
|
|
*/
|
|
#define a1_hi 4.227843350984671344505727574870e-01
|
|
#define a1_lo 4.670126436531227189e-18
|
|
#define p0 3.224670334241133695662995251041e-01
|
|
#define p1 3.569659696950364669021382724168e-01
|
|
#define p2 1.342918716072560025853732668111e-01
|
|
#define p3 1.950702176409779831089963408886e-02
|
|
#define p4 8.546740251667538090796227834289e-04
|
|
#define q0 1.000000000000000444089209850062e+00
|
|
#define q1 1.315850076960161985084596381057e+00
|
|
#define q2 6.274644311862156431658377186977e-01
|
|
#define q3 1.304706631926259297049597307705e-01
|
|
#define q4 1.102815279606722369265536798366e-02
|
|
#define q5 2.512690594856678929537585620579e-04
|
|
#define q6 -1.003597548112371003358107325598e-06
|
|
/*
|
|
* Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
|
|
*/
|
|
#define lns2pi .418938533204672741780329736405
|
|
#define pb0 8.33333333333333148296162562474e-02
|
|
#define pb1 -2.77777777774548123579378966497e-03
|
|
#define pb2 7.93650778754435631476282786423e-04
|
|
#define pb3 -5.95235082566672847950717262222e-04
|
|
#define pb4 8.41428560346653702135821806252e-04
|
|
#define pb5 -1.89773526463879200348872089421e-03
|
|
#define pb6 5.69394463439411649408050664078e-03
|
|
#define pb7 -1.44705562421428915453880392761e-02
|
|
|
|
__pure double
|
|
lgamma(double x)
|
|
{
|
|
double r;
|
|
|
|
signgam = 1;
|
|
endian = ((*(int *) &one)) ? 1 : 0;
|
|
|
|
if (!finite(x)) {
|
|
if (_IEEE)
|
|
return (x+x);
|
|
else return (infnan(EDOM));
|
|
}
|
|
|
|
if (x > 6 + RIGHT) {
|
|
r = large_lgam(x);
|
|
return (r);
|
|
} else if (x > 1e-16)
|
|
return (small_lgam(x));
|
|
else if (x > -1e-16) {
|
|
if (x < 0)
|
|
signgam = -1, x = -x;
|
|
return (-log(x));
|
|
} else
|
|
return (neg_lgam(x));
|
|
}
|
|
|
|
static double
|
|
large_lgam(double x)
|
|
{
|
|
double z, p, x1;
|
|
struct Double t, u, v;
|
|
u = __log__D(x);
|
|
u.a -= 1.0;
|
|
if (x > 1e15) {
|
|
v.a = x - 0.5;
|
|
TRUNC(v.a);
|
|
v.b = (x - v.a) - 0.5;
|
|
t.a = u.a*v.a;
|
|
t.b = x*u.b + v.b*u.a;
|
|
if (_IEEE == 0 && !finite(t.a))
|
|
return(infnan(ERANGE));
|
|
return(t.a + t.b);
|
|
}
|
|
x1 = 1./x;
|
|
z = x1*x1;
|
|
p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
|
|
/* error in approximation = 2.8e-19 */
|
|
|
|
p = p*x1; /* error < 2.3e-18 absolute */
|
|
/* 0 < p < 1/64 (at x = 5.5) */
|
|
v.a = x = x - 0.5;
|
|
TRUNC(v.a); /* truncate v.a to 26 bits. */
|
|
v.b = x - v.a;
|
|
t.a = v.a*u.a; /* t = (x-.5)*(log(x)-1) */
|
|
t.b = v.b*u.a + x*u.b;
|
|
t.b += p; t.b += lns2pi; /* return t + lns2pi + p */
|
|
return (t.a + t.b);
|
|
}
|
|
|
|
static double
|
|
small_lgam(double x)
|
|
{
|
|
int x_int;
|
|
double y, z, t, r = 0, p, q, hi, lo;
|
|
struct Double rr;
|
|
x_int = (x + .5);
|
|
y = x - x_int;
|
|
if (x_int <= 2 && y > RIGHT) {
|
|
t = y - x0;
|
|
y--; x_int++;
|
|
goto CONTINUE;
|
|
} else if (y < -LEFT) {
|
|
t = y +(1.0-x0);
|
|
CONTINUE:
|
|
z = t - x0_lo;
|
|
p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));
|
|
q = s0+z*(s1+z*(s2+z*(s3+z*s4)));
|
|
r = t*(z*(p/q) - x0_lo);
|
|
t = .5*t*t;
|
|
z = 1.0;
|
|
switch (x_int) {
|
|
case 6: z = (y + 5);
|
|
case 5: z *= (y + 4);
|
|
case 4: z *= (y + 3);
|
|
case 3: z *= (y + 2);
|
|
rr = __log__D(z);
|
|
rr.b += a0_lo; rr.a += a0_hi;
|
|
return(((r+rr.b)+t+rr.a));
|
|
case 2: return(((r+a0_lo)+t)+a0_hi);
|
|
case 0: r -= log1p(x);
|
|
default: rr = __log__D(x);
|
|
rr.a -= a0_hi; rr.b -= a0_lo;
|
|
return(((r - rr.b) + t) - rr.a);
|
|
}
|
|
} else {
|
|
p = p0+y*(p1+y*(p2+y*(p3+y*p4)));
|
|
q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));
|
|
p = p*(y/q);
|
|
t = (double)(float) y;
|
|
z = y-t;
|
|
hi = (double)(float) (p+a1_hi);
|
|
lo = a1_hi - hi; lo += p; lo += a1_lo;
|
|
r = lo*y + z*hi; /* q + r = y*(a0+p/q) */
|
|
q = hi*t;
|
|
z = 1.0;
|
|
switch (x_int) {
|
|
case 6: z = (y + 5);
|
|
case 5: z *= (y + 4);
|
|
case 4: z *= (y + 3);
|
|
case 3: z *= (y + 2);
|
|
rr = __log__D(z);
|
|
r += rr.b; r += q;
|
|
return(rr.a + r);
|
|
case 2: return (q+ r);
|
|
case 0: rr = __log__D(x);
|
|
r -= rr.b; r -= log1p(x);
|
|
r += q; r-= rr.a;
|
|
return(r);
|
|
default: rr = __log__D(x);
|
|
r -= rr.b;
|
|
q -= rr.a;
|
|
return (r+q);
|
|
}
|
|
}
|
|
}
|
|
|
|
static double
|
|
neg_lgam(double x)
|
|
{
|
|
int xi;
|
|
double y, z, one = 1.0, zero = 0.0;
|
|
|
|
/* avoid destructive cancellation as much as possible */
|
|
if (x > -170) {
|
|
xi = x;
|
|
if (xi == x) {
|
|
if (_IEEE)
|
|
return(one/zero);
|
|
else
|
|
return(infnan(ERANGE));
|
|
}
|
|
y = gamma(x);
|
|
if (y < 0)
|
|
y = -y, signgam = -1;
|
|
return (log(y));
|
|
}
|
|
z = floor(x + .5);
|
|
if (z == x) { /* convention: G(-(integer)) -> +Inf */
|
|
if (_IEEE)
|
|
return (one/zero);
|
|
else
|
|
return (infnan(ERANGE));
|
|
}
|
|
y = .5*ceil(x);
|
|
if (y == ceil(y))
|
|
signgam = -1;
|
|
x = -x;
|
|
z = fabs(x + z); /* 0 < z <= .5 */
|
|
if (z < .25)
|
|
z = sin(M_PI*z);
|
|
else
|
|
z = cos(M_PI*(0.5-z));
|
|
z = log(M_PI/(z*x));
|
|
y = large_lgam(x);
|
|
return (z - y);
|
|
}
|