NetBSD/sys/kern/vfs_subr2.c

1335 lines
33 KiB
C

/* $NetBSD: vfs_subr2.c,v 1.19 2008/02/15 13:46:04 ad Exp $ */
/*-
* Copyright (c) 1997, 1998, 2004, 2005, 2007, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
*/
/*
* External virtual filesystem routines.
*
* This file contains vfs subroutines which do not heavily depend on
* the kernel environment and are therefore suitable to be compiled
* outside of the kernel.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_subr2.c,v 1.19 2008/02/15 13:46:04 ad Exp $");
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/filedesc.h>
#include <sys/kauth.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/systm.h>
#include <sys/vnode.h>
#include <sys/proc.h>
#include <sys/kthread.h>
#include <sys/atomic.h>
#include <miscfs/syncfs/syncfs.h>
#include <miscfs/specfs/specdev.h>
#include <uvm/uvm_ddb.h>
const enum vtype iftovt_tab[16] = {
VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
};
const int vttoif_tab[9] = {
0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
S_IFSOCK, S_IFIFO, S_IFMT,
};
/*
* Insq/Remq for the vnode usage lists.
*/
#define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs)
#define bufremvn(bp) { \
LIST_REMOVE(bp, b_vnbufs); \
(bp)->b_vnbufs.le_next = NOLIST; \
}
int doforce = 1; /* 1 => permit forcible unmounting */
int prtactive = 0; /* 1 => print out reclaim of active vnodes */
kmutex_t mountlist_lock;
kmutex_t mntid_lock;
kmutex_t mntvnode_lock;
kmutex_t vnode_free_list_lock;
kmutex_t specfs_lock;
kmutex_t vfs_list_lock;
struct mntlist mountlist = /* mounted filesystem list */
CIRCLEQ_HEAD_INITIALIZER(mountlist);
static specificdata_domain_t mount_specificdata_domain;
/*
* These define the root filesystem and device.
*/
struct vnode *rootvnode;
struct device *root_device; /* root device */
#ifdef DEBUG
void printlockedvnodes(void);
#endif
u_int numvnodes;
/*
* Initialize the vnode management data structures.
*/
void
vntblinit(void)
{
mutex_init(&mountlist_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&mntid_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&mntvnode_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&vnode_free_list_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&specfs_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&vfs_list_lock, MUTEX_DEFAULT, IPL_NONE);
mount_specificdata_domain = specificdata_domain_create();
/* Initialize the filesystem syncer. */
vn_initialize_syncerd();
vn_init1();
}
/*
* Lookup a mount point by filesystem identifier.
*
* XXX Needs to add a reference to the mount point.
*/
struct mount *
vfs_getvfs(fsid_t *fsid)
{
struct mount *mp;
mutex_enter(&mountlist_lock);
CIRCLEQ_FOREACH(mp, &mountlist, mnt_list) {
if (mp->mnt_stat.f_fsidx.__fsid_val[0] == fsid->__fsid_val[0] &&
mp->mnt_stat.f_fsidx.__fsid_val[1] == fsid->__fsid_val[1]) {
mutex_exit(&mountlist_lock);
return (mp);
}
}
mutex_exit(&mountlist_lock);
return ((struct mount *)0);
}
/*
* Drop a reference to a mount structure, freeing if the last reference.
*/
void
vfs_destroy(struct mount *mp)
{
if (atomic_dec_uint_nv(&mp->mnt_refcnt) > 0) {
return;
}
specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref);
rw_destroy(&mp->mnt_lock);
if (mp->mnt_op != NULL) {
vfs_delref(mp->mnt_op);
}
mutex_destroy(&mp->mnt_renamelock);
kmem_free(mp, sizeof(*mp));
}
/*
* Wait for a vnode (typically with VI_XLOCK set) to be cleaned or
* recycled.
*/
void
vwait(vnode_t *vp, int flags)
{
KASSERT(mutex_owned(&vp->v_interlock));
KASSERT(vp->v_usecount != 0);
while ((vp->v_iflag & flags) != 0)
cv_wait(&vp->v_cv, &vp->v_interlock);
}
/*
* Insert a marker vnode into a mount's vnode list, after the
* specified vnode. mntvnode_lock must be held.
*/
void
vmark(vnode_t *mvp, vnode_t *vp)
{
struct mount *mp;
mp = mvp->v_mount;
KASSERT(mutex_owned(&mntvnode_lock));
KASSERT((mvp->v_iflag & VI_MARKER) != 0);
KASSERT(vp->v_mount == mp);
TAILQ_INSERT_AFTER(&mp->mnt_vnodelist, vp, mvp, v_mntvnodes);
}
/*
* Remove a marker vnode from a mount's vnode list, and return
* a pointer to the next vnode in the list. mntvnode_lock must
* be held.
*/
vnode_t *
vunmark(vnode_t *mvp)
{
vnode_t *vp;
struct mount *mp;
mp = mvp->v_mount;
KASSERT(mutex_owned(&mntvnode_lock));
KASSERT((mvp->v_iflag & VI_MARKER) != 0);
vp = TAILQ_NEXT(mvp, v_mntvnodes);
TAILQ_REMOVE(&mp->mnt_vnodelist, mvp, v_mntvnodes);
KASSERT(vp == NULL || vp->v_mount == mp);
return vp;
}
/*
* Update outstanding I/O count and do wakeup if requested.
*/
void
vwakeup(struct buf *bp)
{
struct vnode *vp;
if ((vp = bp->b_vp) == NULL)
return;
KASSERT(bp->b_objlock == &vp->v_interlock);
KASSERT(mutex_owned(bp->b_objlock));
if (--vp->v_numoutput < 0)
panic("vwakeup: neg numoutput, vp %p", vp);
if (vp->v_numoutput == 0)
cv_broadcast(&vp->v_cv);
}
/*
* Flush out and invalidate all buffers associated with a vnode.
* Called with the underlying vnode locked, which should prevent new dirty
* buffers from being queued.
*/
int
vinvalbuf(struct vnode *vp, int flags, kauth_cred_t cred, struct lwp *l,
bool catch, int slptimeo)
{
struct buf *bp, *nbp;
int error;
int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO |
(flags & V_SAVE ? PGO_CLEANIT | PGO_RECLAIM : 0);
/* XXXUBC this doesn't look at flags or slp* */
mutex_enter(&vp->v_interlock);
error = VOP_PUTPAGES(vp, 0, 0, flushflags);
if (error) {
return error;
}
if (flags & V_SAVE) {
error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0);
if (error)
return (error);
KASSERT(vp->v_numoutput == 0 && LIST_EMPTY(&vp->v_dirtyblkhd));
}
mutex_enter(&bufcache_lock);
restart:
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
error = bbusy(bp, catch, slptimeo, NULL);
if (error != 0) {
if (error == EPASSTHROUGH)
goto restart;
mutex_exit(&bufcache_lock);
return (error);
}
brelsel(bp, BC_INVAL | BC_VFLUSH);
}
for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
error = bbusy(bp, catch, slptimeo, NULL);
if (error != 0) {
if (error == EPASSTHROUGH)
goto restart;
mutex_exit(&bufcache_lock);
return (error);
}
/*
* XXX Since there are no node locks for NFS, I believe
* there is a slight chance that a delayed write will
* occur while sleeping just above, so check for it.
*/
if ((bp->b_oflags & BO_DELWRI) && (flags & V_SAVE)) {
#ifdef DEBUG
printf("buffer still DELWRI\n");
#endif
bp->b_cflags |= BC_BUSY | BC_VFLUSH;
mutex_exit(&bufcache_lock);
VOP_BWRITE(bp);
mutex_enter(&bufcache_lock);
goto restart;
}
brelsel(bp, BC_INVAL | BC_VFLUSH);
}
#ifdef DIAGNOSTIC
if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))
panic("vinvalbuf: flush failed, vp %p", vp);
#endif
mutex_exit(&bufcache_lock);
return (0);
}
/*
* Destroy any in core blocks past the truncation length.
* Called with the underlying vnode locked, which should prevent new dirty
* buffers from being queued.
*/
int
vtruncbuf(struct vnode *vp, daddr_t lbn, bool catch, int slptimeo)
{
struct buf *bp, *nbp;
int error;
voff_t off;
off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift);
mutex_enter(&vp->v_interlock);
error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO);
if (error) {
return error;
}
mutex_enter(&bufcache_lock);
restart:
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
if (bp->b_lblkno < lbn)
continue;
error = bbusy(bp, catch, slptimeo, NULL);
if (error != 0) {
if (error == EPASSTHROUGH)
goto restart;
mutex_exit(&bufcache_lock);
return (error);
}
brelsel(bp, BC_INVAL | BC_VFLUSH);
}
for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
if (bp->b_lblkno < lbn)
continue;
error = bbusy(bp, catch, slptimeo, NULL);
if (error != 0) {
if (error == EPASSTHROUGH)
goto restart;
mutex_exit(&bufcache_lock);
return (error);
}
brelsel(bp, BC_INVAL | BC_VFLUSH);
}
mutex_exit(&bufcache_lock);
return (0);
}
/*
* Flush all dirty buffers from a vnode.
* Called with the underlying vnode locked, which should prevent new dirty
* buffers from being queued.
*/
void
vflushbuf(struct vnode *vp, int sync)
{
struct buf *bp, *nbp;
int flags = PGO_CLEANIT | PGO_ALLPAGES | (sync ? PGO_SYNCIO : 0);
bool dirty;
mutex_enter(&vp->v_interlock);
(void) VOP_PUTPAGES(vp, 0, 0, flags);
loop:
mutex_enter(&bufcache_lock);
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
if ((bp->b_cflags & BC_BUSY))
continue;
if ((bp->b_oflags & BO_DELWRI) == 0)
panic("vflushbuf: not dirty, bp %p", bp);
bp->b_cflags |= BC_BUSY | BC_VFLUSH;
mutex_exit(&bufcache_lock);
/*
* Wait for I/O associated with indirect blocks to complete,
* since there is no way to quickly wait for them below.
*/
if (bp->b_vp == vp || sync == 0)
(void) bawrite(bp);
else
(void) bwrite(bp);
goto loop;
}
mutex_exit(&bufcache_lock);
if (sync == 0)
return;
mutex_enter(&vp->v_interlock);
while (vp->v_numoutput != 0)
cv_wait(&vp->v_cv, &vp->v_interlock);
dirty = !LIST_EMPTY(&vp->v_dirtyblkhd);
mutex_exit(&vp->v_interlock);
if (dirty) {
vprint("vflushbuf: dirty", vp);
goto loop;
}
}
/*
* Associate a buffer with a vnode. There must already be a hold on
* the vnode.
*/
void
bgetvp(struct vnode *vp, struct buf *bp)
{
KASSERT(bp->b_vp == NULL);
KASSERT(bp->b_objlock == &buffer_lock);
KASSERT(mutex_owned(&vp->v_interlock));
KASSERT(mutex_owned(&bufcache_lock));
KASSERT((bp->b_cflags & BC_BUSY) != 0);
vholdl(vp);
bp->b_vp = vp;
if (vp->v_type == VBLK || vp->v_type == VCHR)
bp->b_dev = vp->v_rdev;
else
bp->b_dev = NODEV;
/*
* Insert onto list for new vnode.
*/
bufinsvn(bp, &vp->v_cleanblkhd);
bp->b_objlock = &vp->v_interlock;
}
/*
* Disassociate a buffer from a vnode.
*/
void
brelvp(struct buf *bp)
{
struct vnode *vp = bp->b_vp;
KASSERT(vp != NULL);
KASSERT(bp->b_objlock == &vp->v_interlock);
KASSERT(mutex_owned(&vp->v_interlock));
KASSERT(mutex_owned(&bufcache_lock));
KASSERT((bp->b_cflags & BC_BUSY) != 0);
/*
* Delete from old vnode list, if on one.
*/
if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
bufremvn(bp);
if (TAILQ_EMPTY(&vp->v_uobj.memq) && (vp->v_iflag & VI_ONWORKLST) &&
LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
vp->v_iflag &= ~VI_WRMAPDIRTY;
vn_syncer_remove_from_worklist(vp);
}
bp->b_objlock = &buffer_lock;
bp->b_vp = NULL;
holdrelel(vp);
}
/*
* Reassign a buffer from one vnode list to another.
* The list reassignment must be within the same vnode.
* Used to assign file specific control information
* (indirect blocks) to the list to which they belong.
*/
void
reassignbuf(struct buf *bp, struct vnode *vp)
{
struct buflists *listheadp;
int delayx;
KASSERT(mutex_owned(&bufcache_lock));
KASSERT(bp->b_objlock == &vp->v_interlock);
KASSERT(mutex_owned(&vp->v_interlock));
KASSERT((bp->b_cflags & BC_BUSY) != 0);
/*
* Delete from old vnode list, if on one.
*/
if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
bufremvn(bp);
/*
* If dirty, put on list of dirty buffers;
* otherwise insert onto list of clean buffers.
*/
if ((bp->b_oflags & BO_DELWRI) == 0) {
listheadp = &vp->v_cleanblkhd;
if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
(vp->v_iflag & VI_ONWORKLST) &&
LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
vp->v_iflag &= ~VI_WRMAPDIRTY;
vn_syncer_remove_from_worklist(vp);
}
} else {
listheadp = &vp->v_dirtyblkhd;
if ((vp->v_iflag & VI_ONWORKLST) == 0) {
switch (vp->v_type) {
case VDIR:
delayx = dirdelay;
break;
case VBLK:
if (vp->v_specmountpoint != NULL) {
delayx = metadelay;
break;
}
/* fall through */
default:
delayx = filedelay;
break;
}
if (!vp->v_mount ||
(vp->v_mount->mnt_flag & MNT_ASYNC) == 0)
vn_syncer_add_to_worklist(vp, delayx);
}
}
bufinsvn(bp, listheadp);
}
/*
* Get a new unique fsid
*/
void
vfs_getnewfsid(struct mount *mp)
{
static u_short xxxfs_mntid;
fsid_t tfsid;
int mtype;
mutex_enter(&mntid_lock);
mtype = makefstype(mp->mnt_op->vfs_name);
mp->mnt_stat.f_fsidx.__fsid_val[0] = makedev(mtype, 0);
mp->mnt_stat.f_fsidx.__fsid_val[1] = mtype;
mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
if (xxxfs_mntid == 0)
++xxxfs_mntid;
tfsid.__fsid_val[0] = makedev(mtype & 0xff, xxxfs_mntid);
tfsid.__fsid_val[1] = mtype;
if (!CIRCLEQ_EMPTY(&mountlist)) {
while (vfs_getvfs(&tfsid)) {
tfsid.__fsid_val[0]++;
xxxfs_mntid++;
}
}
mp->mnt_stat.f_fsidx.__fsid_val[0] = tfsid.__fsid_val[0];
mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
mutex_exit(&mntid_lock);
}
/*
* Make a 'unique' number from a mount type name.
*/
long
makefstype(const char *type)
{
long rv;
for (rv = 0; *type; type++) {
rv <<= 2;
rv ^= *type;
}
return rv;
}
/*
* Set vnode attributes to VNOVAL
*/
void
vattr_null(struct vattr *vap)
{
vap->va_type = VNON;
/*
* Assign individually so that it is safe even if size and
* sign of each member are varied.
*/
vap->va_mode = VNOVAL;
vap->va_nlink = VNOVAL;
vap->va_uid = VNOVAL;
vap->va_gid = VNOVAL;
vap->va_fsid = VNOVAL;
vap->va_fileid = VNOVAL;
vap->va_size = VNOVAL;
vap->va_blocksize = VNOVAL;
vap->va_atime.tv_sec =
vap->va_mtime.tv_sec =
vap->va_ctime.tv_sec =
vap->va_birthtime.tv_sec = VNOVAL;
vap->va_atime.tv_nsec =
vap->va_mtime.tv_nsec =
vap->va_ctime.tv_nsec =
vap->va_birthtime.tv_nsec = VNOVAL;
vap->va_gen = VNOVAL;
vap->va_flags = VNOVAL;
vap->va_rdev = VNOVAL;
vap->va_bytes = VNOVAL;
vap->va_vaflags = 0;
}
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
#define ARRAY_PRINT(idx, arr) \
((idx) > 0 && (idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN")
const char * const vnode_tags[] = { VNODE_TAGS };
const char * const vnode_types[] = { VNODE_TYPES };
const char vnode_flagbits[] = VNODE_FLAGBITS;
/*
* Print out a description of a vnode.
*/
void
vprint(const char *label, struct vnode *vp)
{
struct vnlock *vl;
char bf[96];
int flag;
vl = (vp->v_vnlock != NULL ? vp->v_vnlock : &vp->v_lock);
flag = vp->v_iflag | vp->v_vflag | vp->v_uflag;
bitmask_snprintf(flag, vnode_flagbits, bf, sizeof(bf));
if (label != NULL)
printf("%s: ", label);
printf("vnode @ %p, flags (%s)\n\ttag %s(%d), type %s(%d), "
"usecount %d, writecount %d, holdcount %d\n"
"\tfreelisthd %p, mount %p, data %p lock %p recursecnt %d\n",
vp, bf, ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
vp->v_usecount, vp->v_writecount, vp->v_holdcnt,
vp->v_freelisthd, vp->v_mount, vp->v_data, vl, vl->vl_recursecnt);
if (vp->v_data != NULL) {
printf("\t");
VOP_PRINT(vp);
}
}
#ifdef DEBUG
/*
* List all of the locked vnodes in the system.
* Called when debugging the kernel.
*/
void
printlockedvnodes(void)
{
struct mount *mp, *nmp;
struct vnode *vp;
printf("Locked vnodes\n");
mutex_enter(&mountlist_lock);
for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
mp = nmp) {
if (vfs_trybusy(mp, RW_READER, &mountlist_lock)) {
nmp = CIRCLEQ_NEXT(mp, mnt_list);
continue;
}
TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
if (VOP_ISLOCKED(vp))
vprint(NULL, vp);
}
mutex_enter(&mountlist_lock);
nmp = CIRCLEQ_NEXT(mp, mnt_list);
vfs_unbusy(mp, false);
}
mutex_exit(&mountlist_lock);
}
#endif
/*
* Do the usual access checking.
* file_mode, uid and gid are from the vnode in question,
* while acc_mode and cred are from the VOP_ACCESS parameter list
*/
int
vaccess(enum vtype type, mode_t file_mode, uid_t uid, gid_t gid,
mode_t acc_mode, kauth_cred_t cred)
{
mode_t mask;
int error, ismember;
/*
* Super-user always gets read/write access, but execute access depends
* on at least one execute bit being set.
*/
if (kauth_authorize_generic(cred, KAUTH_GENERIC_ISSUSER, NULL) == 0) {
if ((acc_mode & VEXEC) && type != VDIR &&
(file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
return (EACCES);
return (0);
}
mask = 0;
/* Otherwise, check the owner. */
if (kauth_cred_geteuid(cred) == uid) {
if (acc_mode & VEXEC)
mask |= S_IXUSR;
if (acc_mode & VREAD)
mask |= S_IRUSR;
if (acc_mode & VWRITE)
mask |= S_IWUSR;
return ((file_mode & mask) == mask ? 0 : EACCES);
}
/* Otherwise, check the groups. */
error = kauth_cred_ismember_gid(cred, gid, &ismember);
if (error)
return (error);
if (kauth_cred_getegid(cred) == gid || ismember) {
if (acc_mode & VEXEC)
mask |= S_IXGRP;
if (acc_mode & VREAD)
mask |= S_IRGRP;
if (acc_mode & VWRITE)
mask |= S_IWGRP;
return ((file_mode & mask) == mask ? 0 : EACCES);
}
/* Otherwise, check everyone else. */
if (acc_mode & VEXEC)
mask |= S_IXOTH;
if (acc_mode & VREAD)
mask |= S_IROTH;
if (acc_mode & VWRITE)
mask |= S_IWOTH;
return ((file_mode & mask) == mask ? 0 : EACCES);
}
/*
* Given a file system name, look up the vfsops for that
* file system, or return NULL if file system isn't present
* in the kernel.
*/
struct vfsops *
vfs_getopsbyname(const char *name)
{
struct vfsops *v;
mutex_enter(&vfs_list_lock);
LIST_FOREACH(v, &vfs_list, vfs_list) {
if (strcmp(v->vfs_name, name) == 0)
break;
}
if (v != NULL)
v->vfs_refcount++;
mutex_exit(&vfs_list_lock);
return (v);
}
void
copy_statvfs_info(struct statvfs *sbp, const struct mount *mp)
{
const struct statvfs *mbp;
if (sbp == (mbp = &mp->mnt_stat))
return;
(void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx));
sbp->f_fsid = mbp->f_fsid;
sbp->f_owner = mbp->f_owner;
sbp->f_flag = mbp->f_flag;
sbp->f_syncwrites = mbp->f_syncwrites;
sbp->f_asyncwrites = mbp->f_asyncwrites;
sbp->f_syncreads = mbp->f_syncreads;
sbp->f_asyncreads = mbp->f_asyncreads;
(void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare));
(void)memcpy(sbp->f_fstypename, mbp->f_fstypename,
sizeof(sbp->f_fstypename));
(void)memcpy(sbp->f_mntonname, mbp->f_mntonname,
sizeof(sbp->f_mntonname));
(void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname,
sizeof(sbp->f_mntfromname));
sbp->f_namemax = mbp->f_namemax;
}
int
set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom,
const char *vfsname, struct mount *mp, struct lwp *l)
{
int error;
size_t size;
struct statvfs *sfs = &mp->mnt_stat;
int (*fun)(const void *, void *, size_t, size_t *);
(void)strlcpy(mp->mnt_stat.f_fstypename, vfsname,
sizeof(mp->mnt_stat.f_fstypename));
if (onp) {
struct cwdinfo *cwdi = l->l_proc->p_cwdi;
fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr;
if (cwdi->cwdi_rdir != NULL) {
size_t len;
char *bp;
char *path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
if (!path) /* XXX can't happen with M_WAITOK */
return ENOMEM;
bp = path + MAXPATHLEN;
*--bp = '\0';
rw_enter(&cwdi->cwdi_lock, RW_READER);
error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp,
path, MAXPATHLEN / 2, 0, l);
rw_exit(&cwdi->cwdi_lock);
if (error) {
free(path, M_TEMP);
return error;
}
len = strlen(bp);
if (len > sizeof(sfs->f_mntonname) - 1)
len = sizeof(sfs->f_mntonname) - 1;
(void)strncpy(sfs->f_mntonname, bp, len);
free(path, M_TEMP);
if (len < sizeof(sfs->f_mntonname) - 1) {
error = (*fun)(onp, &sfs->f_mntonname[len],
sizeof(sfs->f_mntonname) - len - 1, &size);
if (error)
return error;
size += len;
} else {
size = len;
}
} else {
error = (*fun)(onp, &sfs->f_mntonname,
sizeof(sfs->f_mntonname) - 1, &size);
if (error)
return error;
}
(void)memset(sfs->f_mntonname + size, 0,
sizeof(sfs->f_mntonname) - size);
}
if (fromp) {
fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr;
error = (*fun)(fromp, sfs->f_mntfromname,
sizeof(sfs->f_mntfromname) - 1, &size);
if (error)
return error;
(void)memset(sfs->f_mntfromname + size, 0,
sizeof(sfs->f_mntfromname) - size);
}
return 0;
}
void
vfs_timestamp(struct timespec *ts)
{
nanotime(ts);
}
time_t rootfstime; /* recorded root fs time, if known */
void
setrootfstime(time_t t)
{
rootfstime = t;
}
/*
* mount_specific_key_create --
* Create a key for subsystem mount-specific data.
*/
int
mount_specific_key_create(specificdata_key_t *keyp, specificdata_dtor_t dtor)
{
return (specificdata_key_create(mount_specificdata_domain, keyp, dtor));
}
/*
* mount_specific_key_delete --
* Delete a key for subsystem mount-specific data.
*/
void
mount_specific_key_delete(specificdata_key_t key)
{
specificdata_key_delete(mount_specificdata_domain, key);
}
/*
* mount_initspecific --
* Initialize a mount's specificdata container.
*/
void
mount_initspecific(struct mount *mp)
{
int error;
error = specificdata_init(mount_specificdata_domain,
&mp->mnt_specdataref);
KASSERT(error == 0);
}
/*
* mount_finispecific --
* Finalize a mount's specificdata container.
*/
void
mount_finispecific(struct mount *mp)
{
specificdata_fini(mount_specificdata_domain, &mp->mnt_specdataref);
}
/*
* mount_getspecific --
* Return mount-specific data corresponding to the specified key.
*/
void *
mount_getspecific(struct mount *mp, specificdata_key_t key)
{
return (specificdata_getspecific(mount_specificdata_domain,
&mp->mnt_specdataref, key));
}
/*
* mount_setspecific --
* Set mount-specific data corresponding to the specified key.
*/
void
mount_setspecific(struct mount *mp, specificdata_key_t key, void *data)
{
specificdata_setspecific(mount_specificdata_domain,
&mp->mnt_specdataref, key, data);
}
int
VFS_MOUNT(struct mount *mp, const char *a, void *b, size_t *c)
{
int error;
KERNEL_LOCK(1, NULL);
error = (*(mp->mnt_op->vfs_mount))(mp, a, b, c);
KERNEL_UNLOCK_ONE(NULL);
return error;
}
int
VFS_START(struct mount *mp, int a)
{
int error;
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_LOCK(1, NULL);
}
error = (*(mp->mnt_op->vfs_start))(mp, a);
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_UNLOCK_ONE(NULL);
}
return error;
}
int
VFS_UNMOUNT(struct mount *mp, int a)
{
int error;
KERNEL_LOCK(1, NULL);
error = (*(mp->mnt_op->vfs_unmount))(mp, a);
KERNEL_UNLOCK_ONE(NULL);
return error;
}
int
VFS_ROOT(struct mount *mp, struct vnode **a)
{
int error;
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_LOCK(1, NULL);
}
error = (*(mp->mnt_op->vfs_root))(mp, a);
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_UNLOCK_ONE(NULL);
}
return error;
}
int
VFS_QUOTACTL(struct mount *mp, int a, uid_t b, void *c)
{
int error;
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_LOCK(1, NULL);
}
error = (*(mp->mnt_op->vfs_quotactl))(mp, a, b, c);
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_UNLOCK_ONE(NULL);
}
return error;
}
int
VFS_STATVFS(struct mount *mp, struct statvfs *a)
{
int error;
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_LOCK(1, NULL);
}
error = (*(mp->mnt_op->vfs_statvfs))(mp, a);
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_UNLOCK_ONE(NULL);
}
return error;
}
int
VFS_SYNC(struct mount *mp, int a, struct kauth_cred *b)
{
int error;
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_LOCK(1, NULL);
}
error = (*(mp->mnt_op->vfs_sync))(mp, a, b);
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_UNLOCK_ONE(NULL);
}
return error;
}
int
VFS_FHTOVP(struct mount *mp, struct fid *a, struct vnode **b)
{
int error;
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_LOCK(1, NULL);
}
error = (*(mp->mnt_op->vfs_fhtovp))(mp, a, b);
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_UNLOCK_ONE(NULL);
}
return error;
}
int
VFS_VPTOFH(struct vnode *vp, struct fid *a, size_t *b)
{
int error;
if ((vp->v_vflag & VV_MPSAFE) == 0) {
KERNEL_LOCK(1, NULL);
}
error = (*(vp->v_mount->mnt_op->vfs_vptofh))(vp, a, b);
if ((vp->v_vflag & VV_MPSAFE) == 0) {
KERNEL_UNLOCK_ONE(NULL);
}
return error;
}
int
VFS_SNAPSHOT(struct mount *mp, struct vnode *a, struct timespec *b)
{
int error;
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_LOCK(1, NULL);
}
error = (*(mp->mnt_op->vfs_snapshot))(mp, a, b);
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_UNLOCK_ONE(NULL);
}
return error;
}
int
VFS_EXTATTRCTL(struct mount *mp, int a, struct vnode *b, int c, const char *d)
{
int error;
KERNEL_LOCK(1, NULL); /* XXXSMP check ffs */
error = (*(mp->mnt_op->vfs_extattrctl))(mp, a, b, c, d);
KERNEL_UNLOCK_ONE(NULL); /* XXX */
return error;
}
int
VFS_SUSPENDCTL(struct mount *mp, int a)
{
int error;
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_LOCK(1, NULL);
}
error = (*(mp->mnt_op->vfs_suspendctl))(mp, a);
if ((mp->mnt_iflag & IMNT_MPSAFE) == 0) {
KERNEL_UNLOCK_ONE(NULL);
}
return error;
}
#ifdef DDB
static const char buf_flagbits[] = BUF_FLAGBITS;
void
vfs_buf_print(struct buf *bp, int full, void (*pr)(const char *, ...))
{
char bf[1024];
(*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" rawblkno 0x%"
PRIx64 " dev 0x%x\n",
bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_rawblkno, bp->b_dev);
bitmask_snprintf(bp->b_flags | bp->b_oflags | bp->b_cflags,
buf_flagbits, bf, sizeof(bf));
(*pr)(" error %d flags 0x%s\n", bp->b_error, bf);
(*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n",
bp->b_bufsize, bp->b_bcount, bp->b_resid);
(*pr)(" data %p saveaddr %p dep %p\n",
bp->b_data, bp->b_saveaddr, LIST_FIRST(&bp->b_dep));
(*pr)(" iodone %p objlock %p\n", bp->b_iodone, bp->b_objlock);
}
void
vfs_vnode_print(struct vnode *vp, int full, void (*pr)(const char *, ...))
{
char bf[256];
uvm_object_printit(&vp->v_uobj, full, pr);
bitmask_snprintf(vp->v_iflag | vp->v_vflag | vp->v_uflag,
vnode_flagbits, bf, sizeof(bf));
(*pr)("\nVNODE flags %s\n", bf);
(*pr)("mp %p numoutput %d size 0x%llx writesize 0x%llx\n",
vp->v_mount, vp->v_numoutput, vp->v_size, vp->v_writesize);
(*pr)("data %p writecount %ld holdcnt %ld\n",
vp->v_data, vp->v_writecount, vp->v_holdcnt);
(*pr)("tag %s(%d) type %s(%d) mount %p typedata %p\n",
ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
vp->v_mount, vp->v_mountedhere);
(*pr)("v_lock %p v_vnlock %p\n", &vp->v_lock, vp->v_vnlock);
if (full) {
struct buf *bp;
(*pr)("clean bufs:\n");
LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) {
(*pr)(" bp %p\n", bp);
vfs_buf_print(bp, full, pr);
}
(*pr)("dirty bufs:\n");
LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
(*pr)(" bp %p\n", bp);
vfs_buf_print(bp, full, pr);
}
}
}
void
vfs_mount_print(struct mount *mp, int full, void (*pr)(const char *, ...))
{
char sbuf[256];
(*pr)("vnodecovered = %p syncer = %p data = %p\n",
mp->mnt_vnodecovered,mp->mnt_syncer,mp->mnt_data);
(*pr)("fs_bshift %d dev_bshift = %d\n",
mp->mnt_fs_bshift,mp->mnt_dev_bshift);
bitmask_snprintf(mp->mnt_flag, __MNT_FLAG_BITS, sbuf, sizeof(sbuf));
(*pr)("flag = %s\n", sbuf);
bitmask_snprintf(mp->mnt_iflag, __IMNT_FLAG_BITS, sbuf, sizeof(sbuf));
(*pr)("iflag = %s\n", sbuf);
(*pr)("refcnt = %d lock @ %p writer = %p\n", mp->mnt_refcnt,
&mp->mnt_lock, mp->mnt_writer);
(*pr)("statvfs cache:\n");
(*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize);
(*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize);
(*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize);
(*pr)("\tblocks = %"PRIu64"\n",mp->mnt_stat.f_blocks);
(*pr)("\tbfree = %"PRIu64"\n",mp->mnt_stat.f_bfree);
(*pr)("\tbavail = %"PRIu64"\n",mp->mnt_stat.f_bavail);
(*pr)("\tbresvd = %"PRIu64"\n",mp->mnt_stat.f_bresvd);
(*pr)("\tfiles = %"PRIu64"\n",mp->mnt_stat.f_files);
(*pr)("\tffree = %"PRIu64"\n",mp->mnt_stat.f_ffree);
(*pr)("\tfavail = %"PRIu64"\n",mp->mnt_stat.f_favail);
(*pr)("\tfresvd = %"PRIu64"\n",mp->mnt_stat.f_fresvd);
(*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n",
mp->mnt_stat.f_fsidx.__fsid_val[0],
mp->mnt_stat.f_fsidx.__fsid_val[1]);
(*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner);
(*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax);
bitmask_snprintf(mp->mnt_stat.f_flag, __MNT_FLAG_BITS, sbuf,
sizeof(sbuf));
(*pr)("\tflag = %s\n",sbuf);
(*pr)("\tsyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_syncwrites);
(*pr)("\tasyncwrites = %" PRIu64 "\n",mp->mnt_stat.f_asyncwrites);
(*pr)("\tsyncreads = %" PRIu64 "\n",mp->mnt_stat.f_syncreads);
(*pr)("\tasyncreads = %" PRIu64 "\n",mp->mnt_stat.f_asyncreads);
(*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename);
(*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname);
(*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname);
{
int cnt = 0;
struct vnode *vp;
(*pr)("locked vnodes =");
TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
if (VOP_ISLOCKED(vp)) {
if ((++cnt % 6) == 0) {
(*pr)(" %p,\n\t", vp);
} else {
(*pr)(" %p,", vp);
}
}
}
(*pr)("\n");
}
if (full) {
int cnt = 0;
struct vnode *vp;
(*pr)("all vnodes =");
TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
if (!TAILQ_NEXT(vp, v_mntvnodes)) {
(*pr)(" %p", vp);
} else if ((++cnt % 6) == 0) {
(*pr)(" %p,\n\t", vp);
} else {
(*pr)(" %p,", vp);
}
}
(*pr)("\n", vp);
}
}
#endif /* DDB */