NetBSD/sys/dev/acpi/acpi.c

1958 lines
45 KiB
C

/* $NetBSD: acpi.c,v 1.255 2012/09/23 00:31:06 chs Exp $ */
/*-
* Copyright (c) 2003, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum of By Noon Software, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Frank van der Linden for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright 2001, 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi.c,v 1.255 2012/09/23 00:31:06 chs Exp $");
#include "opt_acpi.h"
#include "opt_pcifixup.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/timetc.h>
#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_osd.h>
#include <dev/acpi/acpi_pci.h>
#include <dev/acpi/acpi_power.h>
#include <dev/acpi/acpi_timer.h>
#include <dev/acpi/acpi_wakedev.h>
#include <machine/acpi_machdep.h>
#define _COMPONENT ACPI_BUS_COMPONENT
ACPI_MODULE_NAME ("acpi")
/*
* The acpi_active variable is set when the ACPI subsystem is active.
* Machine-dependent code may wish to skip other steps (such as attaching
* subsystems that ACPI supercedes) when ACPI is active.
*/
int acpi_active = 0;
int acpi_suspended = 0;
int acpi_force_load = 0;
int acpi_verbose_loaded = 0;
struct acpi_softc *acpi_softc = NULL;
static uint64_t acpi_root_pointer;
extern kmutex_t acpi_interrupt_list_mtx;
extern struct cfdriver acpi_cd;
static ACPI_HANDLE acpi_scopes[4];
ACPI_TABLE_HEADER *madt_header;
/*
* This structure provides a context for the ACPI
* namespace walk performed in acpi_build_tree().
*/
struct acpi_walkcontext {
struct acpi_softc *aw_sc;
struct acpi_devnode *aw_parent;
};
/*
* Ignored HIDs.
*/
static const char * const acpi_ignored_ids[] = {
#if defined(i386) || defined(x86_64)
"ACPI0007", /* ACPI CPUs do not attach to acpi(4) */
"PNP0000", /* AT interrupt controller is handled internally */
"PNP0200", /* AT DMA controller is handled internally */
"PNP0A??", /* PCI Busses are handled internally */
"PNP0B00", /* AT RTC is handled internally */
"PNP0C0F", /* ACPI PCI link devices are handled internally */
#endif
#if defined(x86_64)
"PNP0C04", /* FPU is handled internally */
#endif
NULL
};
/*
* Devices that should be attached early.
*/
static const char * const acpi_early_ids[] = {
"PNP0C09", /* acpiec(4) */
NULL
};
static int acpi_match(device_t, cfdata_t, void *);
static int acpi_submatch(device_t, cfdata_t, const int *, void *);
static void acpi_attach(device_t, device_t, void *);
static int acpi_detach(device_t, int);
static void acpi_childdet(device_t, device_t);
static bool acpi_suspend(device_t, const pmf_qual_t *);
static bool acpi_resume(device_t, const pmf_qual_t *);
static void acpi_build_tree(struct acpi_softc *);
static void acpi_config_tree(struct acpi_softc *);
static ACPI_STATUS acpi_make_devnode(ACPI_HANDLE, uint32_t,
void *, void **);
static ACPI_STATUS acpi_make_devnode_post(ACPI_HANDLE, uint32_t,
void *, void **);
static void acpi_make_name(struct acpi_devnode *, uint32_t);
static int acpi_rescan(device_t, const char *, const int *);
static void acpi_rescan_early(struct acpi_softc *);
static void acpi_rescan_nodes(struct acpi_softc *);
static void acpi_rescan_capabilities(device_t);
static int acpi_print(void *aux, const char *);
static void acpi_notify_handler(ACPI_HANDLE, uint32_t, void *);
static void acpi_register_fixed_button(struct acpi_softc *, int);
static void acpi_deregister_fixed_button(struct acpi_softc *, int);
static uint32_t acpi_fixed_button_handler(void *);
static void acpi_fixed_button_pressed(void *);
static void acpi_sleep_init(struct acpi_softc *);
static int sysctl_hw_acpi_fixedstats(SYSCTLFN_PROTO);
static int sysctl_hw_acpi_sleepstate(SYSCTLFN_PROTO);
static int sysctl_hw_acpi_sleepstates(SYSCTLFN_PROTO);
static bool acpi_is_scope(struct acpi_devnode *);
static ACPI_TABLE_HEADER *acpi_map_rsdt(void);
static void acpi_unmap_rsdt(ACPI_TABLE_HEADER *);
void acpi_print_verbose_stub(struct acpi_softc *);
void acpi_print_dev_stub(const char *);
static void acpi_activate_device(ACPI_HANDLE, ACPI_DEVICE_INFO **);
ACPI_STATUS acpi_allocate_resources(ACPI_HANDLE);
void (*acpi_print_verbose)(struct acpi_softc *) = acpi_print_verbose_stub;
void (*acpi_print_dev)(const char *) = acpi_print_dev_stub;
CFATTACH_DECL2_NEW(acpi, sizeof(struct acpi_softc),
acpi_match, acpi_attach, acpi_detach, NULL, acpi_rescan, acpi_childdet);
/*
* Probe for ACPI support.
*
* This is called by the machine-dependent ACPI front-end.
* Note: this is not an autoconfiguration interface function.
*/
int
acpi_probe(void)
{
ACPI_TABLE_HEADER *rsdt;
ACPI_STATUS rv;
int quirks;
if (acpi_softc != NULL)
panic("%s: already probed", __func__);
mutex_init(&acpi_interrupt_list_mtx, MUTEX_DEFAULT, IPL_NONE);
/*
* Start up ACPICA.
*/
AcpiGbl_AllMethodsSerialized = false;
AcpiGbl_EnableInterpreterSlack = true;
rv = AcpiInitializeSubsystem();
if (ACPI_FAILURE(rv)) {
aprint_error("%s: failed to initialize subsystem\n", __func__);
return 0;
}
/*
* Allocate space for RSDT/XSDT and DSDT,
* but allow resizing if more tables exist.
*/
rv = AcpiInitializeTables(NULL, 2, true);
if (ACPI_FAILURE(rv)) {
aprint_error("%s: failed to initialize tables\n", __func__);
goto fail;
}
rv = AcpiLoadTables();
if (ACPI_FAILURE(rv)) {
aprint_error("%s: failed to load tables\n", __func__);
goto fail;
}
rsdt = acpi_map_rsdt();
if (rsdt == NULL) {
aprint_error("%s: failed to map RSDT\n", __func__);
goto fail;
}
quirks = acpi_find_quirks();
if (acpi_force_load == 0 && (quirks & ACPI_QUIRK_BROKEN) != 0) {
aprint_normal("ACPI: BIOS is listed as broken:\n");
aprint_normal("ACPI: X/RSDT: OemId <%6.6s,%8.8s,%08x>, "
"AslId <%4.4s,%08x>\n", rsdt->OemId, rsdt->OemTableId,
rsdt->OemRevision, rsdt->AslCompilerId,
rsdt->AslCompilerRevision);
aprint_normal("ACPI: Not used. Set acpi_force_load to use.\n");
acpi_unmap_rsdt(rsdt);
goto fail;
}
if (acpi_force_load == 0 && (quirks & ACPI_QUIRK_OLDBIOS) != 0) {
aprint_normal("ACPI: BIOS is too old (%s). "
"Set acpi_force_load to use.\n",
pmf_get_platform("bios-date"));
acpi_unmap_rsdt(rsdt);
goto fail;
}
acpi_unmap_rsdt(rsdt);
rv = AcpiEnableSubsystem(~(ACPI_NO_HARDWARE_INIT|ACPI_NO_ACPI_ENABLE));
if (ACPI_FAILURE(rv)) {
aprint_error("%s: failed to enable subsystem\n", __func__);
goto fail;
}
return 1;
fail:
(void)AcpiTerminate();
return 0;
}
void
acpi_disable(void)
{
if (acpi_softc == NULL)
return;
KASSERT(acpi_active != 0);
if (AcpiGbl_FADT.SmiCommand != 0)
AcpiDisable();
}
int
acpi_check(device_t parent, const char *ifattr)
{
return (config_search_ia(acpi_submatch, parent, ifattr, NULL) != NULL);
}
int
acpi_reset(void)
{
struct acpi_softc *sc = acpi_softc;
ACPI_GENERIC_ADDRESS *ResetReg;
ACPI_PCI_ID PciId;
ACPI_STATUS status;
if (sc == NULL)
return ENXIO;
ResetReg = &AcpiGbl_FADT.ResetRegister;
/* Check if the reset register is supported */
if (!(AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER) ||
!ResetReg->Address) {
return ENOENT;
}
switch (ResetReg->SpaceId) {
case ACPI_ADR_SPACE_PCI_CONFIG:
PciId.Segment = PciId.Bus = 0;
PciId.Device = ACPI_GAS_PCI_DEV(ResetReg->Address);
PciId.Function = ACPI_GAS_PCI_FUNC(ResetReg->Address);
status = AcpiOsWritePciConfiguration(&PciId,
ACPI_GAS_PCI_REGOFF(ResetReg->Address),
AcpiGbl_FADT.ResetValue, ResetReg->BitWidth);
break;
case ACPI_ADR_SPACE_SYSTEM_IO:
case ACPI_ADR_SPACE_SYSTEM_MEMORY:
status = AcpiReset();
break;
default:
status = AE_TYPE;
break;
}
return ACPI_FAILURE(status) ? EIO : 0;
}
/*
* Autoconfiguration.
*/
static int
acpi_match(device_t parent, cfdata_t match, void *aux)
{
/*
* XXX: Nada; MD code has called acpi_probe().
*/
return 1;
}
static int
acpi_submatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
{
struct cfattach *ca;
ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
return (ca == &acpi_ca);
}
static void
acpi_attach(device_t parent, device_t self, void *aux)
{
struct acpi_softc *sc = device_private(self);
struct acpibus_attach_args *aa = aux;
ACPI_TABLE_HEADER *rsdt;
ACPI_STATUS rv;
aprint_naive("\n");
aprint_normal(": Intel ACPICA %08x\n", ACPI_CA_VERSION);
if (acpi_softc != NULL)
panic("%s: already attached", __func__);
rsdt = acpi_map_rsdt();
if (rsdt == NULL)
aprint_error_dev(self, "X/RSDT: Not found\n");
else {
aprint_verbose_dev(self,
"X/RSDT: OemId <%6.6s,%8.8s,%08x>, AslId <%4.4s,%08x>\n",
rsdt->OemId, rsdt->OemTableId,
rsdt->OemRevision,
rsdt->AslCompilerId, rsdt->AslCompilerRevision);
}
acpi_unmap_rsdt(rsdt);
sc->sc_dev = self;
sc->sc_root = NULL;
sc->sc_sleepstate = ACPI_STATE_S0;
sc->sc_quirks = acpi_find_quirks();
sysmon_power_settype("acpi");
sc->sc_iot = aa->aa_iot;
sc->sc_memt = aa->aa_memt;
sc->sc_pc = aa->aa_pc;
sc->sc_pciflags = aa->aa_pciflags;
sc->sc_ic = aa->aa_ic;
SIMPLEQ_INIT(&sc->ad_head);
acpi_softc = sc;
if (pmf_device_register(self, acpi_suspend, acpi_resume) != true)
aprint_error_dev(self, "couldn't establish power handler\n");
/*
* Bring ACPICA on-line.
*/
rv = AcpiEnableSubsystem(ACPI_FULL_INITIALIZATION);
if (ACPI_FAILURE(rv))
goto fail;
/*
* Early initialization of acpiec(4) via ECDT.
*/
(void)config_found_ia(self, "acpiecdtbus", aa, NULL);
rv = AcpiInitializeObjects(ACPI_FULL_INITIALIZATION);
if (ACPI_FAILURE(rv))
goto fail;
/*
* Scan the namespace and build our device tree.
*/
acpi_build_tree(sc);
acpi_md_callback(sc);
/*
* Early initialization of the _PDC control method
* that may load additional SSDT tables dynamically.
*/
(void)acpi_md_pdc();
/*
* Install global notify handlers.
*/
rv = AcpiInstallNotifyHandler(ACPI_ROOT_OBJECT,
ACPI_SYSTEM_NOTIFY, acpi_notify_handler, NULL);
if (ACPI_FAILURE(rv))
goto fail;
rv = AcpiInstallNotifyHandler(ACPI_ROOT_OBJECT,
ACPI_DEVICE_NOTIFY, acpi_notify_handler, NULL);
if (ACPI_FAILURE(rv))
goto fail;
acpi_active = 1;
/* Show SCI interrupt. */
aprint_verbose_dev(self, "SCI interrupting at int %u\n",
AcpiGbl_FADT.SciInterrupt);
/*
* Install fixed-event handlers.
*/
acpi_register_fixed_button(sc, ACPI_EVENT_POWER_BUTTON);
acpi_register_fixed_button(sc, ACPI_EVENT_SLEEP_BUTTON);
acpitimer_init(sc);
acpi_config_tree(sc);
acpi_sleep_init(sc);
#ifdef ACPI_DEBUG
acpi_debug_init();
#endif
/*
* Print debug information.
*/
acpi_print_verbose(sc);
return;
fail:
aprint_error("%s: failed to initialize ACPI: %s\n",
__func__, AcpiFormatException(rv));
}
/*
* XXX: This is incomplete.
*/
static int
acpi_detach(device_t self, int flags)
{
struct acpi_softc *sc = device_private(self);
ACPI_STATUS rv;
int rc;
rv = AcpiRemoveNotifyHandler(ACPI_ROOT_OBJECT,
ACPI_SYSTEM_NOTIFY, acpi_notify_handler);
if (ACPI_FAILURE(rv))
return EBUSY;
rv = AcpiRemoveNotifyHandler(ACPI_ROOT_OBJECT,
ACPI_DEVICE_NOTIFY, acpi_notify_handler);
if (ACPI_FAILURE(rv))
return EBUSY;
if ((rc = config_detach_children(self, flags)) != 0)
return rc;
if ((rc = acpitimer_detach()) != 0)
return rc;
acpi_deregister_fixed_button(sc, ACPI_EVENT_POWER_BUTTON);
acpi_deregister_fixed_button(sc, ACPI_EVENT_SLEEP_BUTTON);
pmf_device_deregister(self);
acpi_softc = NULL;
return 0;
}
static void
acpi_childdet(device_t self, device_t child)
{
struct acpi_softc *sc = device_private(self);
struct acpi_devnode *ad;
if (sc->sc_apmbus == child)
sc->sc_apmbus = NULL;
if (sc->sc_hpet == child)
sc->sc_hpet = NULL;
if (sc->sc_wdrt == child)
sc->sc_wdrt = NULL;
SIMPLEQ_FOREACH(ad, &sc->ad_head, ad_list) {
if (ad->ad_device == child)
ad->ad_device = NULL;
}
}
static bool
acpi_suspend(device_t dv, const pmf_qual_t *qual)
{
acpi_suspended = 1;
return true;
}
static bool
acpi_resume(device_t dv, const pmf_qual_t *qual)
{
acpi_suspended = 0;
return true;
}
/*
* Namespace scan.
*/
static void
acpi_build_tree(struct acpi_softc *sc)
{
struct acpi_walkcontext awc;
/*
* Get the root scope handles.
*/
KASSERT(__arraycount(acpi_scopes) == 4);
(void)AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_PR_", &acpi_scopes[0]);
(void)AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &acpi_scopes[1]);
(void)AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SI_", &acpi_scopes[2]);
(void)AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_TZ_", &acpi_scopes[3]);
/*
* Make the root node.
*/
awc.aw_sc = sc;
awc.aw_parent = NULL;
(void)acpi_make_devnode(ACPI_ROOT_OBJECT, 0, &awc, NULL);
KASSERT(sc->sc_root == NULL);
KASSERT(awc.aw_parent != NULL);
sc->sc_root = awc.aw_parent;
/*
* Build the internal namespace.
*/
(void)AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, UINT32_MAX,
acpi_make_devnode, acpi_make_devnode_post, &awc, NULL);
/*
* Scan the internal namespace.
*/
(void)acpi_pcidev_scan(sc->sc_root);
}
static void
acpi_config_tree(struct acpi_softc *sc)
{
/*
* Configure all everything found "at acpi?".
*/
(void)acpi_rescan(sc->sc_dev, NULL, NULL);
/*
* Update GPE information.
*
* Note that this must be called after
* all GPE handlers have been installed.
*/
(void)AcpiUpdateAllGpes();
/*
* Defer rest of the configuration.
*/
(void)config_defer(sc->sc_dev, acpi_rescan_capabilities);
}
static ACPI_STATUS
acpi_make_devnode(ACPI_HANDLE handle, uint32_t level,
void *context, void **status)
{
struct acpi_walkcontext *awc = context;
struct acpi_softc *sc = awc->aw_sc;
struct acpi_devnode *ad;
ACPI_DEVICE_INFO *devinfo;
ACPI_OBJECT_TYPE type;
ACPI_STATUS rv;
rv = AcpiGetObjectInfo(handle, &devinfo);
if (ACPI_FAILURE(rv))
return AE_OK; /* Do not terminate the walk. */
type = devinfo->Type;
switch (type) {
case ACPI_TYPE_DEVICE:
acpi_activate_device(handle, &devinfo);
case ACPI_TYPE_PROCESSOR:
case ACPI_TYPE_THERMAL:
case ACPI_TYPE_POWER:
ad = kmem_zalloc(sizeof(*ad), KM_SLEEP);
if (ad == NULL)
return AE_NO_MEMORY;
ad->ad_device = NULL;
ad->ad_notify = NULL;
ad->ad_pciinfo = NULL;
ad->ad_wakedev = NULL;
ad->ad_type = type;
ad->ad_handle = handle;
ad->ad_devinfo = devinfo;
ad->ad_root = sc->sc_dev;
ad->ad_parent = awc->aw_parent;
acpi_match_node_init(ad);
acpi_make_name(ad, devinfo->Name);
/*
* Identify wake GPEs from the _PRW. Note that
* AcpiUpdateAllGpes() must be called afterwards.
*/
if (ad->ad_devinfo->Type == ACPI_TYPE_DEVICE)
acpi_wakedev_init(ad);
SIMPLEQ_INIT(&ad->ad_child_head);
SIMPLEQ_INSERT_TAIL(&sc->ad_head, ad, ad_list);
if (ad->ad_parent != NULL) {
SIMPLEQ_INSERT_TAIL(&ad->ad_parent->ad_child_head,
ad, ad_child_list);
}
awc->aw_parent = ad;
}
return AE_OK;
}
static ACPI_STATUS
acpi_make_devnode_post(ACPI_HANDLE handle, uint32_t level,
void *context, void **status)
{
struct acpi_walkcontext *awc = context;
KASSERT(awc != NULL);
KASSERT(awc->aw_parent != NULL);
if (handle == awc->aw_parent->ad_handle)
awc->aw_parent = awc->aw_parent->ad_parent;
return AE_OK;
}
static void
acpi_make_name(struct acpi_devnode *ad, uint32_t name)
{
ACPI_NAME_UNION *anu;
int clear, i;
anu = (ACPI_NAME_UNION *)&name;
ad->ad_name[4] = '\0';
for (i = 3, clear = 0; i >= 0; i--) {
if (clear == 0 && anu->Ascii[i] == '_')
ad->ad_name[i] = '\0';
else {
ad->ad_name[i] = anu->Ascii[i];
clear = 1;
}
}
if (ad->ad_name[0] == '\0')
ad->ad_name[0] = '_';
}
/*
* Device attachment.
*/
static int
acpi_rescan(device_t self, const char *ifattr, const int *locators)
{
struct acpi_softc *sc = device_private(self);
struct acpi_attach_args aa;
/*
* Try to attach hpet(4) first via a specific table.
*/
aa.aa_memt = sc->sc_memt;
if (ifattr_match(ifattr, "acpihpetbus") && sc->sc_hpet == NULL)
sc->sc_hpet = config_found_ia(sc->sc_dev,
"acpihpetbus", &aa, NULL);
/*
* A two-pass scan for acpinodebus.
*/
if (ifattr_match(ifattr, "acpinodebus")) {
acpi_rescan_early(sc);
acpi_rescan_nodes(sc);
}
/*
* Attach APM emulation and acpiwdrt(4).
*/
if (ifattr_match(ifattr, "acpiapmbus") && sc->sc_apmbus == NULL)
sc->sc_apmbus = config_found_ia(sc->sc_dev,
"acpiapmbus", NULL, NULL);
if (ifattr_match(ifattr, "acpiwdrtbus") && sc->sc_wdrt == NULL)
sc->sc_wdrt = config_found_ia(sc->sc_dev,
"acpiwdrtbus", NULL, NULL);
return 0;
}
static void
acpi_rescan_early(struct acpi_softc *sc)
{
struct acpi_attach_args aa;
struct acpi_devnode *ad;
/*
* First scan for devices such as acpiec(4) that
* should be always attached before anything else.
* We want these devices to attach regardless of
* the device status and other restrictions.
*/
SIMPLEQ_FOREACH(ad, &sc->ad_head, ad_list) {
if (ad->ad_device != NULL)
continue;
if (ad->ad_devinfo->Type != ACPI_TYPE_DEVICE)
continue;
if (acpi_match_hid(ad->ad_devinfo, acpi_early_ids) == 0)
continue;
aa.aa_node = ad;
aa.aa_iot = sc->sc_iot;
aa.aa_memt = sc->sc_memt;
aa.aa_pc = sc->sc_pc;
aa.aa_pciflags = sc->sc_pciflags;
aa.aa_ic = sc->sc_ic;
ad->ad_device = config_found_ia(sc->sc_dev,
"acpinodebus", &aa, acpi_print);
}
}
static void
acpi_rescan_nodes(struct acpi_softc *sc)
{
const char * const hpet_ids[] = { "PNP0103", NULL };
struct acpi_attach_args aa;
struct acpi_devnode *ad;
ACPI_DEVICE_INFO *di;
SIMPLEQ_FOREACH(ad, &sc->ad_head, ad_list) {
if (ad->ad_device != NULL)
continue;
/*
* There is a bug in ACPICA: it defines the type
* of the scopes incorrectly for its own reasons.
*/
if (acpi_is_scope(ad) != false)
continue;
di = ad->ad_devinfo;
/*
* We only attach devices which are present, enabled, and
* functioning properly. However, if a device is enabled,
* it is decoding resources and we should claim these,
* if possible. This requires changes to bus_space(9).
* Note: there is a possible race condition, because _STA
* may have changed since di->CurrentStatus was set.
*/
if (di->Type == ACPI_TYPE_DEVICE) {
if ((di->Valid & ACPI_VALID_STA) != 0 &&
(di->CurrentStatus & ACPI_STA_OK) != ACPI_STA_OK)
continue;
}
if (di->Type == ACPI_TYPE_POWER)
continue;
if (di->Type == ACPI_TYPE_PROCESSOR)
continue;
if (acpi_match_hid(di, acpi_early_ids) != 0)
continue;
if (acpi_match_hid(di, acpi_ignored_ids) != 0)
continue;
if (acpi_match_hid(di, hpet_ids) != 0 && sc->sc_hpet != NULL)
continue;
aa.aa_node = ad;
aa.aa_iot = sc->sc_iot;
aa.aa_memt = sc->sc_memt;
aa.aa_pc = sc->sc_pc;
aa.aa_pciflags = sc->sc_pciflags;
aa.aa_ic = sc->sc_ic;
ad->ad_device = config_found_ia(sc->sc_dev,
"acpinodebus", &aa, acpi_print);
}
}
static void
acpi_rescan_capabilities(device_t self)
{
struct acpi_softc *sc = device_private(self);
struct acpi_devnode *ad;
ACPI_HANDLE tmp;
ACPI_STATUS rv;
SIMPLEQ_FOREACH(ad, &sc->ad_head, ad_list) {
if (ad->ad_devinfo->Type != ACPI_TYPE_DEVICE)
continue;
/*
* Scan power resource capabilities.
*
* If any power states are supported,
* at least _PR0 and _PR3 must be present.
*/
rv = AcpiGetHandle(ad->ad_handle, "_PR0", &tmp);
if (ACPI_SUCCESS(rv)) {
ad->ad_flags |= ACPI_DEVICE_POWER;
acpi_power_add(ad);
}
/*
* Scan wake-up capabilities.
*/
if (ad->ad_wakedev != NULL) {
ad->ad_flags |= ACPI_DEVICE_WAKEUP;
acpi_wakedev_add(ad);
}
/*
* Scan docking stations.
*/
rv = AcpiGetHandle(ad->ad_handle, "_DCK", &tmp);
if (ACPI_SUCCESS(rv))
ad->ad_flags |= ACPI_DEVICE_DOCK;
/*
* Scan devices that are ejectable.
*/
rv = AcpiGetHandle(ad->ad_handle, "_EJ0", &tmp);
if (ACPI_SUCCESS(rv))
ad->ad_flags |= ACPI_DEVICE_EJECT;
}
}
static int
acpi_print(void *aux, const char *pnp)
{
struct acpi_attach_args *aa = aux;
struct acpi_devnode *ad;
const char *hid, *uid;
ACPI_DEVICE_INFO *di;
ad = aa->aa_node;
di = ad->ad_devinfo;
hid = di->HardwareId.String;
uid = di->UniqueId.String;
if (pnp != NULL) {
if (di->Type != ACPI_TYPE_DEVICE) {
aprint_normal("%s (ACPI Object Type '%s') at %s",
ad->ad_name, AcpiUtGetTypeName(ad->ad_type), pnp);
return UNCONF;
}
if ((di->Valid & ACPI_VALID_HID) == 0 || hid == NULL)
return 0;
aprint_normal("%s (%s) ", ad->ad_name, hid);
acpi_print_dev(hid);
aprint_normal("at %s", pnp);
return UNCONF;
}
aprint_normal(" (%s", ad->ad_name);
if ((di->Valid & ACPI_VALID_HID) != 0 && hid != NULL) {
aprint_normal(", %s", hid);
if ((di->Valid & ACPI_VALID_UID) != 0 && uid != NULL) {
if (uid[0] == '\0')
uid = "<null>";
aprint_normal("-%s", uid);
}
}
aprint_normal(")");
return UNCONF;
}
/*
* Notify.
*/
static void
acpi_notify_handler(ACPI_HANDLE handle, uint32_t event, void *aux)
{
struct acpi_softc *sc = acpi_softc;
struct acpi_devnode *ad;
KASSERT(sc != NULL);
KASSERT(aux == NULL);
KASSERT(acpi_active != 0);
if (acpi_suspended != 0)
return;
/*
* System: 0x00 - 0x7F.
* Device: 0x80 - 0xFF.
*/
switch (event) {
case ACPI_NOTIFY_BUS_CHECK:
case ACPI_NOTIFY_DEVICE_CHECK:
case ACPI_NOTIFY_DEVICE_WAKE:
case ACPI_NOTIFY_EJECT_REQUEST:
case ACPI_NOTIFY_DEVICE_CHECK_LIGHT:
case ACPI_NOTIFY_FREQUENCY_MISMATCH:
case ACPI_NOTIFY_BUS_MODE_MISMATCH:
case ACPI_NOTIFY_POWER_FAULT:
case ACPI_NOTIFY_CAPABILITIES_CHECK:
case ACPI_NOTIFY_DEVICE_PLD_CHECK:
case ACPI_NOTIFY_RESERVED:
case ACPI_NOTIFY_LOCALITY_UPDATE:
break;
}
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "notification 0x%02X for "
"%s (%p)\n", event, acpi_name(handle), handle));
/*
* We deliver notifications only to drivers
* that have been successfully attached and
* that have registered a handler with us.
* The opaque pointer is always the device_t.
*/
SIMPLEQ_FOREACH(ad, &sc->ad_head, ad_list) {
if (ad->ad_device == NULL)
continue;
if (ad->ad_notify == NULL)
continue;
if (ad->ad_handle != handle)
continue;
(*ad->ad_notify)(ad->ad_handle, event, ad->ad_device);
return;
}
aprint_debug_dev(sc->sc_dev, "unhandled notify 0x%02X "
"for %s (%p)\n", event, acpi_name(handle), handle);
}
bool
acpi_register_notify(struct acpi_devnode *ad, ACPI_NOTIFY_HANDLER notify)
{
struct acpi_softc *sc = acpi_softc;
KASSERT(sc != NULL);
KASSERT(acpi_active != 0);
if (acpi_suspended != 0)
goto fail;
if (ad == NULL || notify == NULL)
goto fail;
ad->ad_notify = notify;
return true;
fail:
aprint_error_dev(sc->sc_dev, "failed to register notify "
"handler for %s (%p)\n", ad->ad_name, ad->ad_handle);
return false;
}
void
acpi_deregister_notify(struct acpi_devnode *ad)
{
ad->ad_notify = NULL;
}
/*
* Fixed buttons.
*/
static void
acpi_register_fixed_button(struct acpi_softc *sc, int event)
{
struct sysmon_pswitch *smpsw;
ACPI_STATUS rv;
int type;
switch (event) {
case ACPI_EVENT_POWER_BUTTON:
if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) != 0)
return;
type = PSWITCH_TYPE_POWER;
smpsw = &sc->sc_smpsw_power;
break;
case ACPI_EVENT_SLEEP_BUTTON:
if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) != 0)
return;
type = PSWITCH_TYPE_SLEEP;
smpsw = &sc->sc_smpsw_sleep;
break;
default:
rv = AE_TYPE;
goto fail;
}
smpsw->smpsw_type = type;
smpsw->smpsw_name = device_xname(sc->sc_dev);
if (sysmon_pswitch_register(smpsw) != 0) {
rv = AE_ERROR;
goto fail;
}
AcpiClearEvent(event);
rv = AcpiInstallFixedEventHandler(event,
acpi_fixed_button_handler, smpsw);
if (ACPI_FAILURE(rv)) {
sysmon_pswitch_unregister(smpsw);
goto fail;
}
aprint_debug_dev(sc->sc_dev, "fixed %s button present\n",
(type != ACPI_EVENT_SLEEP_BUTTON) ? "power" : "sleep");
return;
fail:
aprint_error_dev(sc->sc_dev, "failed to register "
"fixed event %d: %s\n", event, AcpiFormatException(rv));
}
static void
acpi_deregister_fixed_button(struct acpi_softc *sc, int event)
{
struct sysmon_pswitch *smpsw;
ACPI_STATUS rv;
switch (event) {
case ACPI_EVENT_POWER_BUTTON:
smpsw = &sc->sc_smpsw_power;
if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) != 0) {
KASSERT(smpsw->smpsw_type != PSWITCH_TYPE_POWER);
return;
}
break;
case ACPI_EVENT_SLEEP_BUTTON:
smpsw = &sc->sc_smpsw_sleep;
if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) != 0) {
KASSERT(smpsw->smpsw_type != PSWITCH_TYPE_SLEEP);
return;
}
break;
default:
rv = AE_TYPE;
goto fail;
}
rv = AcpiRemoveFixedEventHandler(event, acpi_fixed_button_handler);
if (ACPI_SUCCESS(rv)) {
sysmon_pswitch_unregister(smpsw);
return;
}
fail:
aprint_error_dev(sc->sc_dev, "failed to deregister "
"fixed event: %s\n", AcpiFormatException(rv));
}
static uint32_t
acpi_fixed_button_handler(void *context)
{
static const int handler = OSL_NOTIFY_HANDLER;
struct sysmon_pswitch *smpsw = context;
(void)AcpiOsExecute(handler, acpi_fixed_button_pressed, smpsw);
return ACPI_INTERRUPT_HANDLED;
}
static void
acpi_fixed_button_pressed(void *context)
{
struct sysmon_pswitch *smpsw = context;
ACPI_DEBUG_PRINT((ACPI_DB_INFO, "%s fixed button pressed\n",
(smpsw->smpsw_type != ACPI_EVENT_SLEEP_BUTTON) ?
"power" : "sleep"));
sysmon_pswitch_event(smpsw, PSWITCH_EVENT_PRESSED);
}
/*
* Sleep.
*/
static void
acpi_sleep_init(struct acpi_softc *sc)
{
uint8_t a, b, i;
ACPI_STATUS rv;
CTASSERT(ACPI_STATE_S0 == 0 && ACPI_STATE_S1 == 1);
CTASSERT(ACPI_STATE_S2 == 2 && ACPI_STATE_S3 == 3);
CTASSERT(ACPI_STATE_S4 == 4 && ACPI_STATE_S5 == 5);
/*
* Evaluate supported sleep states.
*/
for (i = ACPI_STATE_S0; i <= ACPI_STATE_S5; i++) {
rv = AcpiGetSleepTypeData(i, &a, &b);
if (ACPI_SUCCESS(rv))
sc->sc_sleepstates |= __BIT(i);
}
}
/*
* Must be called with interrupts enabled.
*/
void
acpi_enter_sleep_state(int state)
{
struct acpi_softc *sc = acpi_softc;
ACPI_STATUS rv;
int err;
if (acpi_softc == NULL)
return;
if (state == sc->sc_sleepstate)
return;
if (state < ACPI_STATE_S0 || state > ACPI_STATE_S5)
return;
aprint_normal_dev(sc->sc_dev, "entering state S%d\n", state);
switch (state) {
case ACPI_STATE_S0:
sc->sc_sleepstate = ACPI_STATE_S0;
return;
case ACPI_STATE_S1:
case ACPI_STATE_S2:
case ACPI_STATE_S3:
case ACPI_STATE_S4:
if ((sc->sc_sleepstates & __BIT(state)) == 0) {
aprint_error_dev(sc->sc_dev, "sleep state "
"S%d is not available\n", state);
return;
}
/*
* Evaluate the _TTS method. This should be done before
* pmf_system_suspend(9) and the evaluation of _PTS.
* We should also re-evaluate this once we return to
* S0 or if we abort the sleep state transition in the
* middle (see ACPI 3.0, section 7.3.6). In reality,
* however, the _TTS method is seldom seen in the field.
*/
rv = acpi_eval_set_integer(NULL, "\\_TTS", state);
if (ACPI_SUCCESS(rv))
aprint_debug_dev(sc->sc_dev, "evaluated _TTS\n");
if (state != ACPI_STATE_S1 &&
pmf_system_suspend(PMF_Q_NONE) != true) {
aprint_error_dev(sc->sc_dev, "aborting suspend\n");
break;
}
/*
* This will evaluate the _PTS and _SST methods,
* but unlike the documentation claims, not _GTS,
* which is evaluated in AcpiEnterSleepState().
* This must be called with interrupts enabled.
*/
rv = AcpiEnterSleepStatePrep(state);
if (ACPI_FAILURE(rv)) {
aprint_error_dev(sc->sc_dev, "failed to prepare "
"S%d: %s\n", state, AcpiFormatException(rv));
break;
}
/*
* After the _PTS method has been evaluated, we can
* enable wake and evaluate _PSW (ACPI 4.0, p. 284).
*/
acpi_wakedev_commit(sc, state);
sc->sc_sleepstate = state;
if (state == ACPI_STATE_S1) {
/*
* Before the transition to S1, CPU caches
* must be flushed (see ACPI 4.0, 7.3.4.2).
*
* Note that interrupts must be off before
* calling AcpiEnterSleepState(). Conversely,
* AcpiLeaveSleepState() should always be
* called with interrupts enabled.
*/
acpi_md_OsDisableInterrupt();
ACPI_FLUSH_CPU_CACHE();
rv = AcpiEnterSleepState(state);
if (ACPI_FAILURE(rv))
aprint_error_dev(sc->sc_dev, "failed to "
"enter S1: %s\n", AcpiFormatException(rv));
/*
* Clear fixed events and disable all GPEs before
* interrupts are enabled.
*/
AcpiClearEvent(ACPI_EVENT_PMTIMER);
AcpiClearEvent(ACPI_EVENT_GLOBAL);
AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
AcpiClearEvent(ACPI_EVENT_RTC);
AcpiHwDisableAllGpes();
acpi_md_OsEnableInterrupt();
rv = AcpiLeaveSleepState(state);
} else {
err = acpi_md_sleep(state);
if (state == ACPI_STATE_S4)
AcpiEnable();
(void)pmf_system_bus_resume(PMF_Q_NONE);
(void)AcpiLeaveSleepState(state);
(void)AcpiSetFirmwareWakingVector(0);
(void)pmf_system_resume(PMF_Q_NONE);
}
/*
* No wake GPEs should be enabled at runtime.
*/
acpi_wakedev_commit(sc, ACPI_STATE_S0);
break;
case ACPI_STATE_S5:
(void)acpi_eval_set_integer(NULL, "\\_TTS", ACPI_STATE_S5);
rv = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
if (ACPI_FAILURE(rv)) {
aprint_error_dev(sc->sc_dev, "failed to prepare "
"S%d: %s\n", state, AcpiFormatException(rv));
break;
}
(void)AcpiDisableAllGpes();
DELAY(1000000);
sc->sc_sleepstate = state;
acpi_md_OsDisableInterrupt();
(void)AcpiEnterSleepState(ACPI_STATE_S5);
aprint_error_dev(sc->sc_dev, "WARNING: powerdown failed!\n");
break;
}
sc->sc_sleepstate = ACPI_STATE_S0;
(void)acpi_eval_set_integer(NULL, "\\_TTS", ACPI_STATE_S0);
}
/*
* Sysctl.
*/
SYSCTL_SETUP(sysctl_acpi_setup, "sysctl hw.acpi subtree setup")
{
const struct sysctlnode *rnode, *snode;
int err;
err = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
NULL, NULL, 0, NULL, 0,
CTL_HW, CTL_EOL);
if (err != 0)
return;
err = sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE,
"acpi", SYSCTL_DESCR("ACPI subsystem parameters"),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
if (err != 0)
return;
(void)sysctl_createv(NULL, 0, &rnode, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READONLY, CTLTYPE_QUAD,
"root", SYSCTL_DESCR("ACPI root pointer"),
NULL, 0, &acpi_root_pointer, sizeof(acpi_root_pointer),
CTL_CREATE, CTL_EOL);
err = sysctl_createv(clog, 0, &rnode, &snode,
CTLFLAG_PERMANENT, CTLTYPE_NODE,
"sleep", SYSCTL_DESCR("ACPI sleep"),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
if (err != 0)
return;
(void)sysctl_createv(NULL, 0, &snode, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
"state", SYSCTL_DESCR("System sleep state"),
sysctl_hw_acpi_sleepstate, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
(void)sysctl_createv(NULL, 0, &snode, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READONLY, CTLTYPE_STRING,
"states", SYSCTL_DESCR("Supported sleep states"),
sysctl_hw_acpi_sleepstates, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
err = sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE,
"stat", SYSCTL_DESCR("ACPI statistics"),
NULL, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
if (err != 0)
return;
(void)sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READONLY, CTLTYPE_QUAD,
"gpe", SYSCTL_DESCR("Number of dispatched GPEs"),
NULL, 0, &AcpiGpeCount, sizeof(AcpiGpeCount),
CTL_CREATE, CTL_EOL);
(void)sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READONLY, CTLTYPE_QUAD,
"sci", SYSCTL_DESCR("Number of SCI interrupts"),
NULL, 0, &AcpiSciCount, sizeof(AcpiSciCount),
CTL_CREATE, CTL_EOL);
(void)sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READONLY, CTLTYPE_QUAD,
"fixed", SYSCTL_DESCR("Number of fixed events"),
sysctl_hw_acpi_fixedstats, 0, NULL, 0,
CTL_CREATE, CTL_EOL);
(void)sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READONLY, CTLTYPE_QUAD,
"method", SYSCTL_DESCR("Number of methods executed"),
NULL, 0, &AcpiMethodCount, sizeof(AcpiMethodCount),
CTL_CREATE, CTL_EOL);
CTASSERT(sizeof(AcpiGpeCount) == sizeof(uint64_t));
CTASSERT(sizeof(AcpiSciCount) == sizeof(uint64_t));
}
static int
sysctl_hw_acpi_fixedstats(SYSCTLFN_ARGS)
{
struct sysctlnode node;
uint64_t t;
int err, i;
for (i = t = 0; i < __arraycount(AcpiFixedEventCount); i++)
t += AcpiFixedEventCount[i];
node = *rnode;
node.sysctl_data = &t;
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err || newp == NULL)
return err;
return 0;
}
static int
sysctl_hw_acpi_sleepstate(SYSCTLFN_ARGS)
{
struct acpi_softc *sc = acpi_softc;
struct sysctlnode node;
int err, t;
if (acpi_softc == NULL)
return ENOSYS;
node = *rnode;
t = sc->sc_sleepstate;
node.sysctl_data = &t;
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err || newp == NULL)
return err;
if (t < ACPI_STATE_S0 || t > ACPI_STATE_S5)
return EINVAL;
acpi_enter_sleep_state(t);
return 0;
}
static int
sysctl_hw_acpi_sleepstates(SYSCTLFN_ARGS)
{
struct acpi_softc *sc = acpi_softc;
struct sysctlnode node;
char t[3 * 6 + 1];
int err;
if (acpi_softc == NULL)
return ENOSYS;
(void)memset(t, '\0', sizeof(t));
(void)snprintf(t, sizeof(t), "%s%s%s%s%s%s",
((sc->sc_sleepstates & __BIT(0)) != 0) ? "S0 " : "",
((sc->sc_sleepstates & __BIT(1)) != 0) ? "S1 " : "",
((sc->sc_sleepstates & __BIT(2)) != 0) ? "S2 " : "",
((sc->sc_sleepstates & __BIT(3)) != 0) ? "S3 " : "",
((sc->sc_sleepstates & __BIT(4)) != 0) ? "S4 " : "",
((sc->sc_sleepstates & __BIT(5)) != 0) ? "S5 " : "");
node = *rnode;
node.sysctl_data = &t;
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err || newp == NULL)
return err;
return 0;
}
/*
* Tables.
*/
ACPI_PHYSICAL_ADDRESS
acpi_OsGetRootPointer(void)
{
ACPI_PHYSICAL_ADDRESS PhysicalAddress;
/*
* We let MD code handle this since there are multiple ways to do it:
*
* IA-32: Use AcpiFindRootPointer() to locate the RSDP.
*
* IA-64: Use the EFI.
*/
PhysicalAddress = acpi_md_OsGetRootPointer();
if (acpi_root_pointer == 0)
acpi_root_pointer = PhysicalAddress;
return PhysicalAddress;
}
static ACPI_TABLE_HEADER *
acpi_map_rsdt(void)
{
ACPI_PHYSICAL_ADDRESS paddr;
ACPI_TABLE_RSDP *rsdp;
paddr = AcpiOsGetRootPointer();
if (paddr == 0)
return NULL;
rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP));
if (rsdp == NULL)
return NULL;
if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress)
paddr = rsdp->XsdtPhysicalAddress;
else
paddr = rsdp->RsdtPhysicalAddress;
AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
return AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER));
}
/*
* XXX: Refactor to be a generic function that unmaps tables.
*/
static void
acpi_unmap_rsdt(ACPI_TABLE_HEADER *rsdt)
{
if (rsdt == NULL)
return;
AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
}
/*
* XXX: Refactor to be a generic function that maps tables.
*/
ACPI_STATUS
acpi_madt_map(void)
{
ACPI_STATUS rv;
if (madt_header != NULL)
return AE_ALREADY_EXISTS;
rv = AcpiGetTable(ACPI_SIG_MADT, 1, &madt_header);
if (ACPI_FAILURE(rv))
return rv;
return AE_OK;
}
void
acpi_madt_unmap(void)
{
madt_header = NULL;
}
/*
* XXX: Refactor to be a generic function that walks tables.
*/
void
acpi_madt_walk(ACPI_STATUS (*func)(ACPI_SUBTABLE_HEADER *, void *), void *aux)
{
ACPI_SUBTABLE_HEADER *hdrp;
char *madtend, *where;
madtend = (char *)madt_header + madt_header->Length;
where = (char *)madt_header + sizeof (ACPI_TABLE_MADT);
while (where < madtend) {
hdrp = (ACPI_SUBTABLE_HEADER *)where;
if (ACPI_FAILURE(func(hdrp, aux)))
break;
where += hdrp->Length;
}
}
/*
* Miscellaneous.
*/
static bool
acpi_is_scope(struct acpi_devnode *ad)
{
int i;
/*
* Return true if the node is a root scope.
*/
if (ad->ad_parent == NULL)
return false;
if (ad->ad_parent->ad_handle != ACPI_ROOT_OBJECT)
return false;
for (i = 0; i < __arraycount(acpi_scopes); i++) {
if (acpi_scopes[i] == NULL)
continue;
if (ad->ad_handle == acpi_scopes[i])
return true;
}
return false;
}
/*
* ACPIVERBOSE.
*/
void
acpi_load_verbose(void)
{
if (acpi_verbose_loaded == 0)
module_autoload("acpiverbose", MODULE_CLASS_MISC);
}
void
acpi_print_verbose_stub(struct acpi_softc *sc)
{
acpi_load_verbose();
if (acpi_verbose_loaded != 0)
acpi_print_verbose(sc);
}
void
acpi_print_dev_stub(const char *pnpstr)
{
acpi_load_verbose();
if (acpi_verbose_loaded != 0)
acpi_print_dev(pnpstr);
}
MALLOC_DECLARE(M_ACPI); /* XXX: ACPI_ACTIVATE_DEV should use kmem(9). */
/*
* ACPI_ACTIVATE_DEV.
*/
static void
acpi_activate_device(ACPI_HANDLE handle, ACPI_DEVICE_INFO **di)
{
#ifndef ACPI_ACTIVATE_DEV
return;
}
#else
static const int valid = ACPI_VALID_STA | ACPI_VALID_HID;
ACPI_DEVICE_INFO *newdi;
ACPI_STATUS rv;
uint32_t old;
/*
* If the device is valid and present,
* but not enabled, try to activate it.
*/
if (((*di)->Valid & valid) != valid)
return;
old = (*di)->CurrentStatus;
if ((old & (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_ENABLED)) !=
ACPI_STA_DEVICE_PRESENT)
return;
rv = acpi_allocate_resources(handle);
if (ACPI_FAILURE(rv))
goto fail;
rv = AcpiGetObjectInfo(handle, &newdi);
if (ACPI_FAILURE(rv))
goto fail;
ACPI_FREE(*di);
*di = newdi;
aprint_verbose_dev(acpi_softc->sc_dev,
"%s activated, STA 0x%08X -> STA 0x%08X\n",
(*di)->HardwareId.String, old, (*di)->CurrentStatus);
return;
fail:
aprint_error_dev(acpi_softc->sc_dev, "failed to "
"activate %s\n", (*di)->HardwareId.String);
}
/*
* XXX: This very incomplete.
*/
ACPI_STATUS
acpi_allocate_resources(ACPI_HANDLE handle)
{
ACPI_BUFFER bufp, bufc, bufn;
ACPI_RESOURCE *resp, *resc, *resn;
ACPI_RESOURCE_IRQ *irq;
ACPI_RESOURCE_EXTENDED_IRQ *xirq;
ACPI_STATUS rv;
uint delta;
rv = acpi_get(handle, &bufp, AcpiGetPossibleResources);
if (ACPI_FAILURE(rv))
goto out;
rv = acpi_get(handle, &bufc, AcpiGetCurrentResources);
if (ACPI_FAILURE(rv)) {
goto out1;
}
bufn.Length = 1000;
bufn.Pointer = resn = malloc(bufn.Length, M_ACPI, M_WAITOK);
resp = bufp.Pointer;
resc = bufc.Pointer;
while (resc->Type != ACPI_RESOURCE_TYPE_END_TAG &&
resp->Type != ACPI_RESOURCE_TYPE_END_TAG) {
while (resc->Type != resp->Type && resp->Type != ACPI_RESOURCE_TYPE_END_TAG)
resp = ACPI_NEXT_RESOURCE(resp);
if (resp->Type == ACPI_RESOURCE_TYPE_END_TAG)
break;
/* Found identical Id */
resn->Type = resc->Type;
switch (resc->Type) {
case ACPI_RESOURCE_TYPE_IRQ:
memcpy(&resn->Data, &resp->Data,
sizeof(ACPI_RESOURCE_IRQ));
irq = (ACPI_RESOURCE_IRQ *)&resn->Data;
irq->Interrupts[0] =
((ACPI_RESOURCE_IRQ *)&resp->Data)->
Interrupts[irq->InterruptCount-1];
irq->InterruptCount = 1;
resn->Length = ACPI_RS_SIZE(ACPI_RESOURCE_IRQ);
break;
case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
memcpy(&resn->Data, &resp->Data,
sizeof(ACPI_RESOURCE_EXTENDED_IRQ));
xirq = (ACPI_RESOURCE_EXTENDED_IRQ *)&resn->Data;
#if 0
/*
* XXX: Not duplicating the interrupt logic above
* because its not clear what it accomplishes.
*/
xirq->Interrupts[0] =
((ACPI_RESOURCE_EXT_IRQ *)&resp->Data)->
Interrupts[irq->NumberOfInterrupts-1];
xirq->NumberOfInterrupts = 1;
#endif
resn->Length = ACPI_RS_SIZE(ACPI_RESOURCE_EXTENDED_IRQ);
break;
case ACPI_RESOURCE_TYPE_IO:
memcpy(&resn->Data, &resp->Data,
sizeof(ACPI_RESOURCE_IO));
resn->Length = resp->Length;
break;
default:
aprint_error_dev(acpi_softc->sc_dev,
"%s: invalid type %u\n", __func__, resc->Type);
rv = AE_BAD_DATA;
goto out2;
}
resc = ACPI_NEXT_RESOURCE(resc);
resn = ACPI_NEXT_RESOURCE(resn);
resp = ACPI_NEXT_RESOURCE(resp);
delta = (uint8_t *)resn - (uint8_t *)bufn.Pointer;
if (delta >=
bufn.Length-ACPI_RS_SIZE(ACPI_RESOURCE_DATA)) {
bufn.Length *= 2;
bufn.Pointer = realloc(bufn.Pointer, bufn.Length,
M_ACPI, M_WAITOK);
resn = (ACPI_RESOURCE *)((uint8_t *)bufn.Pointer +
delta);
}
}
if (resc->Type != ACPI_RESOURCE_TYPE_END_TAG) {
aprint_error_dev(acpi_softc->sc_dev,
"%s: resc not exhausted\n", __func__);
rv = AE_BAD_DATA;
goto out3;
}
resn->Type = ACPI_RESOURCE_TYPE_END_TAG;
rv = AcpiSetCurrentResources(handle, &bufn);
if (ACPI_FAILURE(rv))
aprint_error_dev(acpi_softc->sc_dev, "%s: failed to set "
"resources: %s\n", __func__, AcpiFormatException(rv));
out3:
free(bufn.Pointer, M_ACPI);
out2:
ACPI_FREE(bufc.Pointer);
out1:
ACPI_FREE(bufp.Pointer);
out:
return rv;
}
#endif /* ACPI_ACTIVATE_DEV */