632 lines
16 KiB
C
632 lines
16 KiB
C
/* $NetBSD: vm_glue.c,v 1.64 1996/11/06 20:20:04 cgd Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/user.h>
|
|
#ifdef SYSVSHM
|
|
#include <sys/shm.h>
|
|
#endif
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_kern.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
int avefree = 0; /* XXX */
|
|
unsigned maxdmap = MAXDSIZ; /* XXX */
|
|
unsigned maxsmap = MAXSSIZ; /* XXX */
|
|
int readbuffers = 0; /* XXX allow kgdb to read kernel buffer pool */
|
|
|
|
int
|
|
kernacc(addr, len, rw)
|
|
caddr_t addr;
|
|
int len, rw;
|
|
{
|
|
boolean_t rv;
|
|
vm_offset_t saddr, eaddr;
|
|
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
|
|
|
|
saddr = trunc_page(addr);
|
|
eaddr = round_page(addr+len);
|
|
rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
|
|
/*
|
|
* XXX there are still some things (e.g. the buffer cache) that
|
|
* are managed behind the VM system's back so even though an
|
|
* address is accessible in the mind of the VM system, there may
|
|
* not be physical pages where the VM thinks there is. This can
|
|
* lead to bogus allocation of pages in the kernel address space
|
|
* or worse, inconsistencies at the pmap level. We only worry
|
|
* about the buffer cache for now.
|
|
*/
|
|
if (!readbuffers && rv && (eaddr > (vm_offset_t)buffers &&
|
|
saddr < (vm_offset_t)buffers + MAXBSIZE * nbuf))
|
|
rv = FALSE;
|
|
return(rv == TRUE);
|
|
}
|
|
|
|
int
|
|
useracc(addr, len, rw)
|
|
caddr_t addr;
|
|
int len, rw;
|
|
{
|
|
boolean_t rv;
|
|
vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
|
|
|
|
#if defined(i386) || defined(pc532)
|
|
/*
|
|
* XXX - specially disallow access to user page tables - they are
|
|
* in the map. This is here until i386 & pc532 pmaps are fixed...
|
|
*/
|
|
if ((vm_offset_t) addr >= VM_MAXUSER_ADDRESS
|
|
|| (vm_offset_t) addr + len > VM_MAXUSER_ADDRESS
|
|
|| (vm_offset_t) addr + len <= (vm_offset_t) addr)
|
|
return (FALSE);
|
|
#endif
|
|
|
|
rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
|
|
trunc_page(addr), round_page(addr+len), prot);
|
|
return(rv == TRUE);
|
|
}
|
|
|
|
#ifdef KGDB
|
|
/*
|
|
* Change protections on kernel pages from addr to addr+len
|
|
* (presumably so debugger can plant a breakpoint).
|
|
*
|
|
* We force the protection change at the pmap level. If we were
|
|
* to use vm_map_protect a change to allow writing would be lazily-
|
|
* applied meaning we would still take a protection fault, something
|
|
* we really don't want to do. It would also fragment the kernel
|
|
* map unnecessarily. We cannot use pmap_protect since it also won't
|
|
* enforce a write-enable request. Using pmap_enter is the only way
|
|
* we can ensure the change takes place properly.
|
|
*/
|
|
void
|
|
chgkprot(addr, len, rw)
|
|
register caddr_t addr;
|
|
int len, rw;
|
|
{
|
|
vm_prot_t prot;
|
|
vm_offset_t pa, sva, eva;
|
|
|
|
prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
|
|
eva = round_page(addr + len);
|
|
for (sva = trunc_page(addr); sva < eva; sva += PAGE_SIZE) {
|
|
/*
|
|
* Extract physical address for the page.
|
|
* We use a cheezy hack to differentiate physical
|
|
* page 0 from an invalid mapping, not that it
|
|
* really matters...
|
|
*/
|
|
pa = pmap_extract(pmap_kernel(), sva|1);
|
|
if (pa == 0)
|
|
panic("chgkprot: invalid page");
|
|
pmap_enter(pmap_kernel(), sva, pa&~1, prot, TRUE);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void
|
|
vslock(addr, len)
|
|
caddr_t addr;
|
|
u_int len;
|
|
{
|
|
vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
|
|
round_page(addr+len), FALSE);
|
|
}
|
|
|
|
void
|
|
vsunlock(addr, len)
|
|
caddr_t addr;
|
|
u_int len;
|
|
{
|
|
vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
|
|
round_page(addr+len), TRUE);
|
|
}
|
|
|
|
/*
|
|
* Implement fork's actions on an address space.
|
|
* Here we arrange for the address space to be copied or referenced,
|
|
* allocate a user struct (pcb and kernel stack), then call the
|
|
* machine-dependent layer to fill those in and make the new process
|
|
* ready to run.
|
|
* NOTE: the kernel stack may be at a different location in the child
|
|
* process, and thus addresses of automatic variables may be invalid
|
|
* after cpu_fork returns in the child process. We do nothing here
|
|
* after cpu_fork returns.
|
|
*/
|
|
#ifdef __FORK_BRAINDAMAGE
|
|
int
|
|
#else
|
|
void
|
|
#endif
|
|
vm_fork(p1, p2)
|
|
register struct proc *p1, *p2;
|
|
{
|
|
register struct user *up;
|
|
vm_offset_t addr;
|
|
|
|
#if defined(i386) || defined(pc532)
|
|
/*
|
|
* avoid copying any of the parent's pagetables or other per-process
|
|
* objects that reside in the map by marking all of them non-inheritable
|
|
*/
|
|
(void)vm_map_inherit(&p1->p_vmspace->vm_map,
|
|
VM_MAXUSER_ADDRESS, VM_MAX_ADDRESS, VM_INHERIT_NONE);
|
|
#endif
|
|
p2->p_vmspace = vmspace_fork(p1->p_vmspace);
|
|
|
|
#ifdef SYSVSHM
|
|
if (p1->p_vmspace->vm_shm)
|
|
shmfork(p1, p2);
|
|
#endif
|
|
|
|
#if !defined(vax)
|
|
/*
|
|
* Allocate a wired-down (for now) pcb and kernel stack for the process
|
|
*/
|
|
addr = kmem_alloc_pageable(kernel_map, USPACE);
|
|
if (addr == 0)
|
|
panic("vm_fork: no more kernel virtual memory");
|
|
vm_map_pageable(kernel_map, addr, addr + USPACE, FALSE);
|
|
#else
|
|
/*
|
|
* XXX somehow, on 386, ocassionally pageout removes active, wired down
|
|
* kstack and pagetables, WITHOUT going thru vm_page_unwire! Why this
|
|
* appears to work is not yet clear, yet it does...
|
|
*/
|
|
addr = kmem_alloc(kernel_map, USPACE);
|
|
if (addr == 0)
|
|
panic("vm_fork: no more kernel virtual memory");
|
|
#endif
|
|
up = (struct user *)addr;
|
|
p2->p_addr = up;
|
|
|
|
/*
|
|
* p_stats and p_sigacts currently point at fields
|
|
* in the user struct but not at &u, instead at p_addr.
|
|
* Copy p_sigacts and parts of p_stats; zero the rest
|
|
* of p_stats (statistics).
|
|
*/
|
|
p2->p_stats = &up->u_stats;
|
|
p2->p_sigacts = &up->u_sigacts;
|
|
up->u_sigacts = *p1->p_sigacts;
|
|
bzero(&up->u_stats.pstat_startzero,
|
|
(unsigned) ((caddr_t)&up->u_stats.pstat_endzero -
|
|
(caddr_t)&up->u_stats.pstat_startzero));
|
|
bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
|
|
((caddr_t)&up->u_stats.pstat_endcopy -
|
|
(caddr_t)&up->u_stats.pstat_startcopy));
|
|
|
|
#if defined(i386) || defined(pc532)
|
|
{ vm_offset_t addr = VM_MAXUSER_ADDRESS; struct vm_map *vp;
|
|
|
|
/* ream out old pagetables and kernel stack */
|
|
vp = &p2->p_vmspace->vm_map;
|
|
(void)vm_deallocate(vp, addr, VM_MAX_ADDRESS - addr);
|
|
(void)vm_allocate(vp, &addr, VM_MAX_ADDRESS - addr, FALSE);
|
|
(void)vm_map_inherit(vp, addr, VM_MAX_ADDRESS, VM_INHERIT_NONE);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __FORK_BRAINDAMAGE
|
|
/*
|
|
* cpu_fork will copy and update the kernel stack and pcb,
|
|
* and make the child ready to run. It marks the child
|
|
* so that it can return differently than the parent.
|
|
* It returns twice, once in the parent process and
|
|
* once in the child.
|
|
*/
|
|
return (cpu_fork(p1, p2));
|
|
#else
|
|
/*
|
|
* cpu_fork will copy and update the kernel stack and pcb,
|
|
* and make the child ready to run. The child will exit
|
|
* directly to user mode on its first time slice, and will
|
|
* not return here.
|
|
*/
|
|
cpu_fork(p1, p2);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set default limits for VM system.
|
|
* Called for proc 0, and then inherited by all others.
|
|
*/
|
|
void
|
|
vm_init_limits(p)
|
|
register struct proc *p;
|
|
{
|
|
|
|
/*
|
|
* Set up the initial limits on process VM.
|
|
* Set the maximum resident set size to be all
|
|
* of (reasonably) available memory. This causes
|
|
* any single, large process to start random page
|
|
* replacement once it fills memory.
|
|
*/
|
|
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
|
|
p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
|
|
p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(cnt.v_free_count);
|
|
}
|
|
|
|
#include <vm/vm_pageout.h>
|
|
|
|
#ifdef DEBUG
|
|
int enableswap = 1;
|
|
int swapdebug = 0;
|
|
#define SDB_FOLLOW 1
|
|
#define SDB_SWAPIN 2
|
|
#define SDB_SWAPOUT 4
|
|
#endif
|
|
|
|
/*
|
|
* Swap in a process's u-area.
|
|
*/
|
|
void
|
|
swapin(p)
|
|
struct proc *p;
|
|
{
|
|
vm_offset_t addr;
|
|
int s;
|
|
|
|
addr = (vm_offset_t)p->p_addr;
|
|
vm_map_pageable(kernel_map, addr, addr + USPACE, FALSE);
|
|
/*
|
|
* Some architectures need to be notified when the
|
|
* user area has moved to new physical page(s) (e.g.
|
|
* see pmax/pmax/vm_machdep.c).
|
|
*/
|
|
cpu_swapin(p);
|
|
s = splstatclock();
|
|
if (p->p_stat == SRUN)
|
|
setrunqueue(p);
|
|
p->p_flag |= P_INMEM;
|
|
splx(s);
|
|
p->p_swtime = 0;
|
|
++cnt.v_swpin;
|
|
}
|
|
|
|
/*
|
|
* Brutally simple:
|
|
* 1. Attempt to swapin every swaped-out, runnable process in
|
|
* order of priority.
|
|
* 2. If not enough memory, wake the pageout daemon and let it
|
|
* clear some space.
|
|
*/
|
|
void
|
|
scheduler()
|
|
{
|
|
register struct proc *p;
|
|
register int pri;
|
|
struct proc *pp;
|
|
int ppri;
|
|
|
|
loop:
|
|
#ifdef DEBUG
|
|
while (!enableswap)
|
|
tsleep((caddr_t)&proc0, PVM, "noswap", 0);
|
|
#endif
|
|
pp = NULL;
|
|
ppri = INT_MIN;
|
|
for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
|
|
if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
|
|
pri = p->p_swtime + p->p_slptime
|
|
- (p->p_nice - NZERO) * 8;
|
|
if (pri > ppri) {
|
|
pp = p;
|
|
ppri = pri;
|
|
}
|
|
}
|
|
}
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_FOLLOW)
|
|
printf("scheduler: running, procp %p pri %d\n", pp, ppri);
|
|
#endif
|
|
/*
|
|
* Nothing to do, back to sleep
|
|
*/
|
|
if ((p = pp) == NULL) {
|
|
tsleep((caddr_t)&proc0, PVM, "scheduler", 0);
|
|
goto loop;
|
|
}
|
|
|
|
/*
|
|
* We would like to bring someone in.
|
|
* This part is really bogus cuz we could deadlock on memory
|
|
* despite our feeble check.
|
|
*/
|
|
if (cnt.v_free_count > atop(USPACE)) {
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_SWAPIN)
|
|
printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
|
|
p->p_pid, p->p_comm, p->p_addr,
|
|
ppri, cnt.v_free_count);
|
|
#endif
|
|
swapin(p);
|
|
goto loop;
|
|
}
|
|
/*
|
|
* Not enough memory, jab the pageout daemon and wait til the
|
|
* coast is clear.
|
|
*/
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_FOLLOW)
|
|
printf("scheduler: no room for pid %d(%s), free %d\n",
|
|
p->p_pid, p->p_comm, cnt.v_free_count);
|
|
#endif
|
|
(void) splhigh();
|
|
VM_WAIT;
|
|
(void) spl0();
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_FOLLOW)
|
|
printf("scheduler: room again, free %d\n", cnt.v_free_count);
|
|
#endif
|
|
goto loop;
|
|
}
|
|
|
|
#define swappable(p) \
|
|
(((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM && \
|
|
(p)->p_holdcnt == 0)
|
|
|
|
/*
|
|
* Swapout is driven by the pageout daemon. Very simple, we find eligible
|
|
* procs and unwire their u-areas. We try to always "swap" at least one
|
|
* process in case we need the room for a swapin.
|
|
* If any procs have been sleeping/stopped for at least maxslp seconds,
|
|
* they are swapped. Else, we swap the longest-sleeping or stopped process,
|
|
* if any, otherwise the longest-resident process.
|
|
*/
|
|
void
|
|
swapout_threads()
|
|
{
|
|
register struct proc *p;
|
|
struct proc *outp, *outp2;
|
|
int outpri, outpri2;
|
|
int didswap = 0;
|
|
extern int maxslp;
|
|
|
|
#ifdef DEBUG
|
|
if (!enableswap)
|
|
return;
|
|
#endif
|
|
outp = outp2 = NULL;
|
|
outpri = outpri2 = 0;
|
|
for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
|
|
if (!swappable(p))
|
|
continue;
|
|
switch (p->p_stat) {
|
|
case SRUN:
|
|
if (p->p_swtime > outpri2) {
|
|
outp2 = p;
|
|
outpri2 = p->p_swtime;
|
|
}
|
|
continue;
|
|
|
|
case SSLEEP:
|
|
case SSTOP:
|
|
if (p->p_slptime >= maxslp) {
|
|
swapout(p);
|
|
didswap++;
|
|
} else if (p->p_slptime > outpri) {
|
|
outp = p;
|
|
outpri = p->p_slptime;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* If we didn't get rid of any real duds, toss out the next most
|
|
* likely sleeping/stopped or running candidate. We only do this
|
|
* if we are real low on memory since we don't gain much by doing
|
|
* it (USPACE bytes).
|
|
*/
|
|
if (didswap == 0 &&
|
|
cnt.v_free_count <= atop(round_page(USPACE))) {
|
|
if ((p = outp) == 0)
|
|
p = outp2;
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_SWAPOUT)
|
|
printf("swapout_threads: no duds, try procp %p\n", p);
|
|
#endif
|
|
if (p)
|
|
swapout(p);
|
|
}
|
|
}
|
|
|
|
void
|
|
swapout(p)
|
|
register struct proc *p;
|
|
{
|
|
vm_offset_t addr;
|
|
int s;
|
|
|
|
#ifdef DEBUG
|
|
if (swapdebug & SDB_SWAPOUT)
|
|
printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
|
|
p->p_pid, p->p_comm, p->p_addr, p->p_stat,
|
|
p->p_slptime, cnt.v_free_count);
|
|
#endif
|
|
|
|
/*
|
|
* Do any machine-specific actions necessary before swapout.
|
|
* This can include saving floating point state, etc.
|
|
*/
|
|
cpu_swapout(p);
|
|
|
|
/*
|
|
* Unwire the to-be-swapped process's user struct and kernel stack.
|
|
*/
|
|
addr = (vm_offset_t)p->p_addr;
|
|
vm_map_pageable(kernel_map, addr, addr + USPACE, TRUE);
|
|
pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
|
|
|
|
/*
|
|
* Mark it as (potentially) swapped out.
|
|
*/
|
|
s = splstatclock();
|
|
p->p_flag &= ~P_INMEM;
|
|
if (p->p_stat == SRUN)
|
|
remrunqueue(p);
|
|
splx(s);
|
|
p->p_swtime = 0;
|
|
++cnt.v_swpout;
|
|
}
|
|
|
|
/*
|
|
* The rest of these routines fake thread handling
|
|
*/
|
|
|
|
void
|
|
assert_wait(event, ruptible)
|
|
void *event;
|
|
boolean_t ruptible;
|
|
{
|
|
#ifdef lint
|
|
ruptible++;
|
|
#endif
|
|
curproc->p_thread = event;
|
|
}
|
|
|
|
void
|
|
thread_block()
|
|
{
|
|
int s = splhigh();
|
|
|
|
if (curproc->p_thread)
|
|
tsleep(curproc->p_thread, PVM, "thrd_block", 0);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
thread_sleep(event, lock, ruptible)
|
|
void *event;
|
|
simple_lock_t lock;
|
|
boolean_t ruptible;
|
|
{
|
|
int s = splhigh();
|
|
|
|
#ifdef lint
|
|
ruptible++;
|
|
#endif
|
|
curproc->p_thread = event;
|
|
simple_unlock(lock);
|
|
if (curproc->p_thread)
|
|
tsleep(event, PVM, "thrd_sleep", 0);
|
|
splx(s);
|
|
}
|
|
|
|
void
|
|
thread_wakeup(event)
|
|
void *event;
|
|
{
|
|
int s = splhigh();
|
|
|
|
wakeup(event);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* DEBUG stuff
|
|
*/
|
|
|
|
int indent = 0;
|
|
|
|
/*
|
|
* Note that stdarg.h and the ANSI style va_start macro is used for both
|
|
* ANSI and traditional C compilers. (Same as subr_prf.c does.)
|
|
* XXX: This requires that stdarg.h defines: va_alist, va_dcl
|
|
*/
|
|
#include <machine/stdarg.h>
|
|
|
|
/*ARGSUSED2*/
|
|
void
|
|
#ifdef __STDC__
|
|
iprintf(void (*pr)(const char *, ...), const char *fmt, ...)
|
|
#else
|
|
iprintf(pr, fmt, va_alist)
|
|
void (*pr)();
|
|
const char *fmt;
|
|
va_dcl
|
|
#endif
|
|
{
|
|
register int i;
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
for (i = indent; i >= 8; i -= 8)
|
|
(*pr)("\t");
|
|
while (--i >= 0)
|
|
(*pr)(" ");
|
|
(*pr)("%:", fmt, ap);
|
|
va_end(ap);
|
|
}
|